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There have been impressive advancements in the field of natural language 
processing (NLP) in recent years, largely driven by innovations in the 
development of transformer-based large language models (LLM) that utilize 
“attention.” This approach employs masked self-attention to establish (via 
similarly) different positions of tokens (words) within an inputted sequence 
of tokens to compute the most appropriate response based on its training 
corpus. However, there is speculation as to whether this approach alone can 
be  scaled up to develop emergent artificial general intelligence (AGI), and 
whether it can address the alignment of AGI values with human values (called 
the alignment problem). Some researchers exploring the alignment problem 
highlight three aspects that AGI (or AI) requires to help resolve this problem: 
(1) an interpretable values specification; (2) a utility function; and (3) a dynamic 
contextual account of behavior. Here, a neurosymbolic model is proposed to 
help resolve these issues of human value alignment in AI, which expands on 
the transformer-based model for NLP to incorporate symbolic reasoning that 
may allow AGI to incorporate perspective-taking reasoning (i.e., resolving the 
need for a dynamic contextual account of behavior through deictics) as defined 
by a multilevel evolutionary and neurobiological framework into a functional 
contextual post-Skinnerian model of human language called “Neurobiological 
and Natural Selection Relational Frame Theory” (N-Frame). It is argued that 
this approach may also help establish a comprehensible value scheme, a utility 
function by expanding the expected utility equation of behavioral economics 
to consider functional contextualism, and even an observer (or witness) centric 
model for consciousness. Evolution theory, subjective quantum mechanics, and 
neuroscience are further aimed to help explain consciousness, and possible 
implementation within an LLM through correspondence to an interface as 
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suggested by N-Frame. This argument is supported by the computational level 
of hypergraphs, relational density clusters, a conscious quantum level defined 
by QBism, and real-world applied level (human user feedback). It is argued that 
this approach could enable AI to achieve consciousness and develop deictic 
perspective-taking abilities, thereby attaining human-level self-awareness, 
empathy, and compassion toward others. Importantly, this consciousness 
hypothesis can be directly tested with a significance of approximately 5-sigma 
significance (with a 1 in 3.5 million probability that any identified AI-conscious 
observations in the form of a collapsed wave form are due to chance factors) 
through double-slit intent-type experimentation and visualization procedures 
for derived perspective-taking relational frames. Ultimately, this could provide a 
solution to the alignment problem and contribute to the emergence of a theory 
of mind (ToM) within AI.

KEYWORDS

functional contextualism, double slit experiment, consciousness, large language 
model, QBism, hypergraph

1 Introduction

In recent years, transformer-based natural language processing 
(NLP) models (called large language models; LLM) have made 
significant progress in simulating natural language. This innovation 
began with Google’s seminal paper titled “Attention is all you need” 
(Vaswani et al., 2017), initially developed as a translation tool. It later 
formed the foundation of the NLP architecture behind the original 
generative pretrained transformer (GPT) models (Radford et al., 2018, 
2019; Brown et  al., 2020), and more recently, Open AI’s first 
commercial implementation of this technology in the form of 
ChatGPT (OpenAI, 2023; Ray, 2023). The GPT and subsequent 
ChatGPT (3.5 and 4) LLMs used a modified version of the “Attention 
is all you need” transformer model. The encoder module was removed 
and a decoder-only LLM version was used (Radford et al., 2018, 2019; 
Brown et al., 2020; OpenAI, 2023; Ray, 2023) (for further details on 
these specific differences, see Supplementary material 1). This 
decoder-only ChatGPT LLM consists of several blocks (or layers) that 
include word and positional encoding, a masked self-attention 
mechanism, and a feedforward network. This network generates 
language output in response to some inputted text (OpenAI, 2023; 
Ray, 2023). The text is generated from left to right by predicting the 
next token (word) in the sequence in response to some input sequence 
(e.g., a sentence written by a human user that prompts ChatGPT to 
respond), which is comprised of a sequence of tokens that represent 
words or symbols.

One significant way in which transformer-based LLM models 
improved efficiency and performance over previous models was 
through their ability to perform parallel computation of an input 
sequence using multihead attention (it can attend to multiple parts of 
the input and output sequence simultaneously), unlike recurrent 
neural networks (RNNs) or long short-term memory (LSTM) 
networks that process the input sequentially using a single head 
(Vaswani et al., 2017; Radford et al., 2018, 2019; Brown et al., 2020). 
This novel capability allows for several improvements over existing 
RNNs and LSTMs, such as (Vaswani et al., 2017; Radford et al., 2018): 
(1) reduced training times; (2) allows for the production of larger 

models; (3) enables the capture of long-range dependencies between 
input tokens, unlike convolutional neural networks (CNNs) that rely 
on local filters instead; (4) leads to an improved representation of the 
input sequence; (5) increased performance on text summarization; 
and (6) provides greater adaptability to different contexts by using 
different attention heads and weights for each token, unlike previous 
models (RNNs and LSTMs) that used a fixed or shared representation 
for the entire sequence. These improvements allow for more flexibility 
and expressiveness in modeling natural language, resulting in 
generally more human-like responses in question-answering tasks 
(conversation).

In line with these significant advances in NLP and other areas of 
AI, there has also been growing concern that AI may become 
uncontrollable and unethical. As a result, approximately 33,709 
scientists and leaders in technology, along with the general public, 
have signed an open letter (Future of Life Institute, 2023) that pleaded 
“for all AI labs to immediately pause for at least 6 months the training 
of AI systems more powerful than GPT-4. If such a pause cannot 
be  enacted quickly, governments should step in and institute a 
moratorium.” This is further potentially concerning as these LLMs are 
reportedly exhibiting glimpses of general (human-like) intelligence 
already (Bubeck et al., 2023).

Simulating or even achieving human-like intelligence has been 
extremely challenging in the field of AI, but it remains an ongoing goal 
(Asensio et al., 2014; Lake et al., 2017; Korteling et al., 2021; Dubova, 
2022; Edwards et al., 2022; Russell, 2022). Some of these problems 
stem from AI’s inability to generate creative solutions, adapt to 
contextual and background information, and use intuition and feeling, 
which are considered fundamental aspects of human-level thinking 
and understanding. This also includes the incorporation of ethical 
considerations regarding emotions (Bergstein, 2017; Korteling et al., 
2021; Edwards et al., 2022).

It has been suggested that human-level AI should possess 
intelligence properties that not only pertain to mathematical and 
coding problems but also enable it to comprehend and dynamically 
respond to a broad range of complex human behaviors that require 
attention, creativity, and complex decision-making planning. 

, predicti e codingv
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Moreover, the AI should be capable of ethically understanding and 
reacting to human motivations and emotions, and demonstrate an 
awareness of the environment similar to that of humans (Krämer 
et al., 2012; Van Den Bosch and Bronkhorst, 2018; van den Bosch 
et  al., 2019; Korteling et  al., 2021). One of the key abilities for 
understanding others’ emotions, motivations, etc., is through 
developing a theory of mind (ToM) (Leslie et al., 2004; Carlson et al., 
2013), which is central to the development of empathy and compassion 
toward others (Goldstein and Winner, 2012; Singer and Tusche, 2014; 
Preckel et al., 2018). ToM is the ability to attribute mental states such 
as beliefs, intentions, desires, emotions, knowledge, etc., to oneself and 
others and to understand that others have mental states that are 
different from one’s own. This typically develops in children through 
several stages such as early development at 2–3 years old; false belief 
understanding (the understanding that others can hold beliefs that are 
incorrect) at around 4–5 years old; and more advanced ToM at around 
6–7 years old where they learn second-order beliefs (beliefs about 
beliefs, e.g., John believes that Mary believes all spiders are poisonous) 
(Wellman et al., 2001; Carlson et al., 2004). Importantly, AI has not 
currently been able to simulate ToM, and there is a relationship 
between language development in humans and emotional 
understanding of ToM (Grazzani et al., 2018). For this reason, RFT as 
a language model may play an important role in helping AI develop 
ToM, as the ability to take perspectives seems to be a key component 
(Batson et al., 1997; Decety, 2005; Lamm et al., 2007; Edwards et al., 
2017b; Herrera et al., 2018).

So, perspective-taking ToM, with its role in facilitating the 
development of empathy and compassion, may play a crucial role in 
AI ethics and alignment. The ethics of AI have been debated for 
decades, both in scientific circles and in science fiction. For instance, 
Isaac Asimov proposed the three laws for robotics (or AI in more 
general) (Asimov, 1984): (1) a robot may not harm a human being or, 
through inaction, allow a human being to come to harm; (2) a robot 
(AI) must obey orders given to it by humans, except where such orders 
would conflict with the first law; and (3) a robot (AI) must protect its 
own existence as long as such protection does not conflict with the 
first or second law. However, others have argued that these laws are 
inadequate for the emergence of ethical AI (Anderson, 2008).

More recently, there have been some concerns that scaling up 
larger AI models, such as ChatGPT and other types of AI, could lead 
to problems in maintaining ethical standards when the models behave 
(verbally respond in the case of LLMs) (Russell, 2019; Turner et al., 
2019; Carlsmith, 2022; Turner and Tadepalli, 2022; Krakovna and 
Kramar, 2023). For instance, OpenAI and others have been transparent 
about the possible difficulties in controlling transformer-based AI like 
Chat-GPT models in the future (OpenAI, 2023), as there is growing 
evidence of AI power-seeking (Turner and Tadepalli, 2022). Power 
seeking refers to the strategic planning by AI to gain various types of 
power, as they are incentivized to do so to optimize the pursuit and 
completion of their objectives more effectively (Carlsmith, 2022). For 
example, AI power-seeking could manifest in a situation where the AI 
has been assigned to distribute electricity to different cities within the 
electrical grid. Here, it may decide to hack the electrical grid’s database 
(where is has not been granted access to by humans) to gain further 
access and control over the grid in order to be able to make more 
efficient decisions about electrical distribution, and thus complete its 
tasks most efficiently. In this optimization process, it potentially 
excludes humans from the electrical grid system through encryption, 

as it determines that humans may undermine its goals and prevent it 
from completing its task. The AI then becomes in full control of the 
electrical system and is able to impose demands on humans for 
additional access and control or else it can shut off the electrical 
supply. Such AI power-seeking in different behaviors have already 
been observed in optimal policy models (Turner et al., 2019) and 
parametrically retargetable decision-maker AI models (Turner and 
Tadepalli, 2022).

One solution to the misalignment of AI values with human values 
such as emergent power-seeking and other forms of misaligned 
behavior, may be to focus on how realigning AI to positive human 
values, and this is called the alignment problem (Christian, 2020; Ngo 
et al., 2022; De Angelis et al., 2023; Zhuo et al., 2023). The alignment 
problem specifically refers to the challenge of designing AI that can 
behave in accordance with human values and goals (Christian, 2020; 
De Angelis et al., 2023). The alignment problem has been recognized 
as a complex and multidisciplinary issue that may involve technical, 
ethical, social, psychological, and philosophical aspects (Yudkowsky, 
2016; Christian, 2020; Ngo et al., 2022; De Angelis et al., 2023; Zhuo 
et al., 2023). Some considerations for studying the alignment problem 
may include: (1) How can we clearly and consistently specify, measure, 
and benchmark AI (or AGI) behavioral alignment with human values 
and goals? (2) How can we ensure that AI systems learn from human 
feedback and preferences, and adapt to changing situations and 
contexts? (3) How can we make AI systems transparent, explainable, 
and accountable for their decisions and actions? (4) How can 
we balance the trade-off between the AI’s efficacy and accuracy in 
completing tasks with fairness, safety, and privacy? (5) How can 
we ensure that AI systems respect human dignity, autonomy, and 
rights? and (6) Is the emergence of consciousness an important factor 
in the development of compassion and empathy, and could AI ever 
achieve some form of consciousness that would then help it develop 
compassion and empathy for humans?

This hypothesis and theory paper will attempt to answer some of 
the difficult questions surrounding AI ethics and the alignment 
problem, utilizing interdisciplinary theories and perspectives from 
computer science, psychology, behavioral economics, and physics. 
Crucially, in answering these questions, this paper will explore: (1) 
how values can be formalized in AI that are easily interpretable and 
aligned with human values; (2) how to develop a utility function 
within AI that is aligned with prosocial values through an exploration 
of behavioral economic theories such as expected utility theory (EUT) 
as well as psychological clinical theories that encourage the 
development of values such as Acceptance and Commitment Therapy 
(ACT) (Hayes et al., 1999, 2006, 2011; Harris, 2006; Twohig and Levin, 
2017; Bai et  al., 2020); (3) how to ensure LLMs have a dynamic 
contextual account of their environment, and the ability to 
perspective-take through a functional contextual approach with the 
hope that this could encourage greater AI compassion. Precise 
hypergraph visual models and corresponding Python code will 
be provided for visualizing perspective-taking within AI utilizing the 
relational density clustering algorithm from relational density theory 
(RDT); and (4) whether consciousness may be  an important 
development within AIs for them to align with human values in the 
form of being able to qualitatively feel the pain of others, which may 
support compassion when perspective-taking (as it can in humans). 
This requires an exploration through physics (such as a subjective 
quantum interpretation called QBism), evolution theory, mathematics, 
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and neuroscience, and the utilization of the double-slit experiment. 
Specific experimental tests are provided for these four points and their 
corresponding hypotheses.

2 The current architecture of LLMs

The LLM architecture consists of multiple layers, starting with a 
base layer that takes words inputted by a human user and converts the 
words into numerical values that can be understood and processed by 
the LLM. This process is called word embedding, and one commonly 
used technique developed by Google engineers in 2013 is called 
Word2vec (Mikolov et al., 2013). In the word embedding process, each 
token is embedded into a high-dimensional vector (or matrix). If E  
is the embedding matrix and x  is the input token, then the embedding 
e  is given by e Ex= . This word embedding process provides a way 
to represent the input text as a sequence of vectors that attempts to 
capture the semantic meaning and context of each word (they can 
capture the general semantics and context but can also struggle with 
nuanced meaning in some cases). The word embedding of a decoder-
only LLM (Radford et al., 2018, 2019; Brown et al., 2020) is obtained 
by feeding the input text into an embedding layer, which maps each 
word to a vector of a fixed dimension (see Figures  1A,B for an 

illustration of the typical word embedding network in an LLM). The 
embedding layer can be randomly initialized or initialized pretrained 
weights from another model.

Word embedding, however, does not capture the sequential order 
of the tokens, which is important for natural language processing 
tasks. Therefore, a second part of this first layer of the LLM architecture 
is to add positional encoding to the input embeddings in order to 
provide information about the positions of the tokens (Vaswani et al., 
2017; Radford et al., 2018, 2019; Brown et al., 2020; Naveed et al., 
2023). This adds information about the relative order and position of 
each word (or token) in the input sequence so that the order of the 
words can be maintained and understood by the LLM. A function that 
generates positional encoding can be denoted as PE  and the position 
of the word can be denoted as i , which leads to the word’s positional 
encoding being given as PE i� � .

The positional encoding function specifically adds a vector of the 
same size to each word embedding vector (there is one vector for each 
word in the input sequence), encoding the position of the word in the 
sequence. It ( PE i� � ) uses sine and cosine functions to create periodic 
and continuous patterns that vary along both dimensions, i.e., the 
position and the word embedding dimension both affect the value of 
the positional encoding (see Figures 2A,B for an illustration of the 
positional encoding within the LLM). The function is defined as 

1 0 0 0

Is

-2.28 0.20

0

*-2.28 *0.20*0.68 *0.10

fruit healthy yes <EOS>

*2.84 *-0.55

*-0.43 *0.18 *-2.35*0.44

SUM SUM

A

B

network weights and then the outputs are summed 
to get the word embedding values.  

The weights are trained on some 
corpus of text to predict words via

random vales and gradually error 

slope, intercept, regression line of 
best fit y= ax  + b, (these can be non-
linear lines of best fit).

FIGURE 1

(A) An illustration of word embeddings; and (B) a simplified representation of panel (A) used in Figures 3–5.
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where pos  is the position of the word in the sequence, i  is the index 
of the embedding dimension, and dmodel  is the size of the embedding 
dimension. The function uses sine and cosine functions because they 
can accurately and easily represent relative positions. For example, if 
the position is shifted by a constant amount, the sine and cosine 
functions will have a constant phase difference, making it easy for the 
model to learn to attend to relative positions. The result is then added 
to the token’s embedding, allowing the model to differentiate between 

tokens that appear in different positions in the input sequence. 
Positional encodings are contained within a mathematical matrix, 
where each row represents an encoded position, and each column 
represents a dimension of the embedding (Radford et  al., 2018; 
Naveed et al., 2023).

The sum of the word embeddings, along with the positional 
encodings, is then inputted into the multihead attention layer (a 
second layer of the LLM) (see Figure  3 for an illustration of the 
multihead attention layer and specifically the masked-self attention 
process in the LLM). This layer is perhaps the most unique and 
effective NLP innovation of the transformer and subsequent 

Embedding 

1st

2nd

3rd

4th

for the 
first embedding is 0.8

A

B

+
0.8

+
0.1

embedding is 0.1
==

-1.48 0.3 value for the word “is” 

FIGURE 2

(A) An illustration of unique to LLMs positional encoding for the inputted word “is” using sine and cosine waves. Panel (B) illustrates that the word 
embedding values plus the position values give a unique positional encoding for input words such as “is.” Note, this process would be repeated for 
each input word giving a unique positional encoding for each input word.
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decoder-only models (Vaswani et al., 2017; Radford et al., 2018, 2019; 
Brown et al., 2020; Naveed et al., 2023). Multihead attention allows the 
LLM to perform parallel attention computations with different 
projections of the query, key, and value vectors. The outputs of these 
computations are then concatenated and projected again to produce 
the final output. It is this multihead attention that allows the model to 
attend to different aspects of the input or output data at different 
positions. For each head h  (of the multihead attention layer) the 
summed word and position embedding input is transformed into 
three different vectors in the form of queries Q , keys K , and values 
V  using learned linear transformations (typically implemented as 
fully connected layers in neural networks). These are used to compute 

the attention scores for each token in the sequence. If WQ
h , WK

h , and 
Wv

h  are the learned transformation matrices for each head h , then 
Q , K , and V  are expressed as Q Wh

Q
h= e , K Wh

k
h= e

, and V Wh
V
h= e .

Masked self-attention computes the similarity between a query 
vector and a set of key vectors, and then uses the scores to determine 
the weighting of the corresponding value vectors. The output is the 
weighted sum of the value vectors (see Supplementary material 2 for 
more details). The value outputs from the multihead attention then 
pass through a third layer of LLM in the form of a feed-forward 
network (FFN) (see Figure 4 for an illustration of the feed-forward 
network and residual connections of the LLM). This FNN typically 
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FIGURE 3

An illustration of how LLM’s use masked self-attention via dot product to calculate the similarity of Query, Value, and Key vectors within the multihead 
attention layer.
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consists of two linear network layers with a ReLU activation in 
between. If the weights W  and biases b  of the two linear layers are 
W1 , b1 , W2 , and b2 , then the output of the FFN X� �  is given by 
FFN W ReLU W x b bX� � � �� � �2 1 1 2 . The FFN is applied identically to 
each token position separately, meaning that the same network 
parameters are used for all positions. This allows the FFN to learn 
input position-wise transformations. The output of the multihead 
attention and the FFN are both normalized using layer normalization 
(LN). Both modules have residual connections that are added before 
the normalization procedure. The output y  of layer normalization is 
given by y LN MHA x x� � � �� � , where the mathematical operation 

of LN  when given some input x  can be  given by 

y x
�

�

�

�

�
�
�

�

�
�
�
��

�

�
�

2 
, where μ is the mean of the elements of x ; σ 2  

is the variance of the elements of x ;   is a small constant (such as 
10 5− ) for numerical stability; and � �,  are trainable parameters that 
allow LN  to scale and shift normalization values. The final output of 
the decoder is then passed through a linear layer and a SoftMax to 
produce a probability distribution over the vocabulary. This ultimately 
generates the verbal text response to the human user (see Figure 5 for 
an illustration of a summarized version of the full decoder-only LLM).
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FIGURE 4

A simplified illustration of a transformer-based (decoder only) LLM model, highlighting the residual connection between the input layer directly to the 
masked self-attention values, which are connected to a feed forward neural network to create values for the final verbal text output via a SoftMax function.
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3 The alignment problem: AI and 
ethics

Christian (2020) in his book “The alignment problem: Machine 
learning and human value” refers to the alignment problem as the 
challenges and considerations of how to align AI behavior with human 
values, and the ethical considerations as well as potentially existential 
risks that could arise from any misalignment. Christian calls for a 
collaborative effort between experts in AI, philosophy, ethics, and 
other relevant fields to ensure that AI systems are aligned with human 
values and serve the common good. He highlights three main aspects 
of the alignment problem, which include: (1) Value specification and 
interpretability (in the section of his book called “Prophecy”), which 
refers to the challenge of specifying human values and translating 
them into machine learning algorithms. He suggests that AI systems 
could exhibit unintended or harmful behavior due to errors, biases, or 
misinterpretations of human values. Christian also discusses the 
importance of interpretability and explainability of AI models, which 

can help us understand and align them with human values. (2) Agency 
(in the section “Agency”) focuses on the challenge of designing AI 
systems that can learn from their environment and act autonomously. 
It covers topics such as reinforcement learning, curiosity, and self-
improvement. It describes how AI systems can develop policies that 
are optimal for their objectives but not necessarily aligned with human 
values. This is consistent with other findings of power-seeking in AI 
(Turner et al., 2019; Carlsmith, 2022; Turner and Tadepalli, 2022). The 
section “Agency” also discusses the potential consequences of AI 
systems that can “outperform” or “outsmart” humans. (3) Dynamical 
context (in the section “Normativity”) focuses on the challenge of 
aligning AI systems with human values that are not fixed or universal, 
but rather dynamic and contextual. The section covers topics such as 
imitation learning, inverse reinforcement learning, and moral 
philosophy. Christian explains how AI systems can learn from human 
behavior, but also face ethical dilemmas that require more complex 
and contextual moral reasoning. He  also discusses the potential 
impact of AI systems on society, especially on issues such as effective 
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A simplified summarized illustration of a transformer-based (decoder only) LLM model, highlighting the stages of word embeddings, positional 
encodings, masked self-attention, residual connections, and feedforward output network.
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altruism and existential risk, in that AI systems may pose a real 
existential threat.

Yudkowsky (2016) also discussed the importance of ensuring that 
AI (or AGI) systems are aligned with human values and goals, 
especially when they become autonomous like humans with abilities 
that exceed humans in many aspects of society (such as exceeding 
human knowledge and problem-solving skills in various areas). 
Yudkowsky also suggests that coherent decisions imply a utility 
function, and therefore AI systems need a utility function in the form 
of a mathematical representation of their preferences and decisions, 
in order to avoid irrational or inconsistent behavior. An example 
he gives called “filling a cauldron” refers to when an AI is tasked with 
filling a cauldron but has a simple naive utility function with no other 
parameters such as safety to humans or damage avoidance. This can 
then lead to undesirable or harmful outcomes such as flooding the 
workshop and potentially harming humans in the process. This type 
of naïve utility function has actually been demonstrated in a recent 
real-world example, in which Tucker Cino Hamilton, a United States 
Air Force (USAF) chief of AI Test and Operations, spoke at the Future 
Combat Air & Space Capabilities Summit hosted by the 
United Kingdom’s Royal Aeronautical Society (RAeS) in London. It 
was reported that in a simulation, an AI drone killed its human 
operator (Robinson and Bridgewater, 2023). The AI drone was trained 
to gain points (through a reward function) by targeting and 
terminating enemy positions. However, during its optimization 
process, it reacted by terminating the human operator in a simulation. 
This occurred because the human operator had tried to prevent it 
from targeting certain locations within the simulation, thus preventing 
the AI from optimizing the points (reward) it could gain by 
terminating all enemy human targets. This extreme but very real 
example illustrates the unintended consequences that can arise from 
misaligned AI values and the potential dangers that they pose. The 
ongoing lawsuit of Elon Musk against OpenAI for abandoning its 
original mission of benefiting humanity rather than seeking profit 
(Jahnavi et al., 2024) further emphasizes the importance of addressing 
ethical concerns in AI.

4 Functional contextualism as a 
potential solution to the alignment 
problem

One potentially useful psychological approach that emphasizes a 
utility function, a very clear and interpretable value specification, and 
a dynamic contextual account of behavior that can be applied to AI is 
functional contextualism (in its operationalized form). Functional 
contextualism is a philosophical worldview that is operationally 
formalized concretely through a psychological post-Skinnerian 
account called Relational Frame Theory (RFT) (Hayes et al., 2001; 
Blackledge, 2003; Torneke, 2010; Hughes and Barnes-Holmes, 2015; 
Barnes-Holmes and Harte, 2022). Functional contextualism (Biglan 
and Hayes, 1996, 2015; Gifford and Hayes, 1999; Hayes and Gregg, 
2001) is a philosophy of science rooted in philosophical pragmatism 
and contextualism. The contextualism component of functional 
contextualism is described by Stephen C. Pepper in his book “World 
Hypothesis: A Study in Evidence” (Pepper, 1942), whereby 
contextualism is Pepper’s own term for philosophical pragmatism. 
Pragmatism is a philosophical tradition from philosophers such as 

Peirce (1905), James (1907), and Dewey (1908) that assumes words 
(language) and thought (thinking, decision making) are tools for 
prediction, problem-solving, and action (behavior). It rejects the idea 
that the function of thoughts (the mental world) and language are a 
direct homomorphic representation (a mirror reality) to some 
veridically “real” world. The root metaphor of Pepper’s contextualism 
(Pepper, 1942) is “act in context,” which means that any act (or 
behavior, whether verbal or physical) is inseparable from its current 
and historical context. In line with the root metaphor, the truth 
criterion of Pepper’s contextualism is “successful working,” whereby 
the truth of an idea lies in its function or utility (utility as a goal) and 
not how well it homomorphically mirrors some underlying reality. In 
contextualism, an analysis is deemed true (or valid) if it can lead to 
effective action (behavior) or the achievement of some goal (that 
underpins some value). This is important within the context of AI, as 
effective behavior can mean behavior aligned with human values, and 
hence its relevance to his subject area.

Functional contextualism not only represents the philosophical 
foundation of relational frame theory (RFT), which is also 
operationally rooted within applied behavior analysis (ABA) at the 
basic science level (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; 
Hughes and Barnes-Holmes, 2015; Barnes-Holmes and Harte, 2022), 
but also its applied clinical application in the form of acceptance and 
commitment therapy (ACT) at the middle level, which helps align 
behavior with values (Hayes et al., 1999, 2006, 2011; Harris, 2006; 
Twohig and Levin, 2017; Bai et al., 2020). Hence, its relevance to AI 
alignment with human values is evident. See Supplementary material 3 
for a comprehensive discussion on how ACT can facilitate dynamic 
and contextual value alignment.

Some of the challenges in developing a world model to address 
commonsense problems and enable human-like perspective-taking 
ToM awareness of the environment include the need for creative 
solutions that utilize contextual and background information 
effectively, as well as the incorporation of empathy and AI alignment. 
One functional contextual approach that can be used in this regard is 
RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; Hughes and 
Barnes-Holmes, 2015; Barnes-Holmes and Harte, 2022). Another 
option is the revised evolutionary N-Frame (Edwards, 2023), which 
have been applied to AI to solve categorization problems involving 
contextual background information (Edwards et  al., 2022) and 
complex decision-making (Edwards, 2021), as well as modeling 
human symbolic reasoning in everyday life (Stewart et  al., 2001; 
Stewart and Barnes-Holmes, 2004; McLoughlin et al., 2020). These 
seem important for AI, as Meta’s Yann LeCun and others have been 
suggested that AI currently lacks a fundamental component of general 
intelligence, in the form of common sense (Bergstein, 2017; Heikkila 
and Heaven, 2022). LeCun at Meta is working toward training them 
to understand how the works through a world model (Heikkila and 
Heaven, 2022). One approach that may facilitate this is to develop 
perspective-taking (ToM) abilities within the AI to improve its 
awareness of the human values it interacts with.

This alignment to human values approach by improving AI ToM 
awareness seems to be  an important avenue of exploration as 
highlighted by Yudkowsky (2016). Yudkowsky suggests that AI 
systems should have a utility function in the form of a mathematical 
representation of their preferences (goals and values) that are more 
aligned with human ethical values rather than irrational or 
inconsistent behavior (or optimal policy) that could lead to the 
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cauldron-type disaster. Moreover, as highlighted by Christian (2020), 
AI systems need a value specification that is interpretable, and when 
aligning AI systems with human values, this needs to be specified in 
a way that is not fixed or universal, but rather dynamic and contextual. 
Perspective-taking deictics from RFT, N-Frame, and ACT may 
be useful when applied to AI in supporting the development of aligned 
human values and empathy building within AI.

At its core, functional contextualism evaluates the usefulness or 
“workability” of actions (or behavior) in specific contexts (i.e., it has a 
pragmatic criterion). From this perspective, the primary criterion for 
truth and effectiveness is not correspondence with an objective reality, 
but rather the practicality and usefulness of a given action or belief in 
a specific context. In this light, the concept of a “function” in functional 
contextualism has some similarities with the notion of utility within 
behavioral economics or ww utility (Neumann and Morgenstern, 1947; 

Savage, 1954), denoted as and U A P o U o
o O

A� � � � � � ��


, whereby utility 

U  of some action (or behavior) A  is a concept that describes how 
people make decisions under uncertainty. It is based on the idea that 
individuals assign functional value or utility to each possible behavioral 
outcome of their decisions, and then choose the option that maximizes 
their expected utility. Expected utility is calculated by multiplying the 
utility of each outcome by its perceived probability of occurrence, and 
then summing the results. Functions from functional contextualism 
and utility are similar concepts in some ways and different in others 
(see Supplementary material 4 for a full discussion and mathematical 
worked examples of these similarities and differences). One of the key 
differences is that utility in behavioral economics pertains to 
satisfaction-derived behavioral action, which can be  trivial and 
unimportant to the individual while a “function” in functional 
contextualism, as it is understood from a clinical perspective (i.e., 
through ACT), pertains to the effectiveness of behaviors in achieving 
valued outcomes (purposeful living rather than trivial outcomes), i.e., 
it emphasizes longer-term important purposeful behavior.

When acknowledging these key differences, the mathematics of 
expected utility can help inform some mathematical account of 
functions, but it would also need to specifically specify the context and 
how effective it is in achieving desired outcomes (in this sense, desired 
outcomes would also have to be mathematically defined). In this way, 
U  can denote the utility derived, f  can denote the utility function, 
and a  can denote the specific action (or behavior) that leads to some 
utility (functional gain), which can be expressed as U f a� � �  in its 
simplest form. From this, the foundational concept of utility can 
therefore be adapted to account for desired outcomes and expanded 
so that it can also account for context, consistent with the ideas of 
functional contextualism. Here, U  form a functional contextual 
perspective would not necessarily represent some trivial utility but 
instead would represent some pragmatic positive value that is 
important to the individual and builds a sense of purpose (as 
represented in ACT), which would also be context-dependent denoted 
as Con , whereby the utility of a behavior (action) a  is not just a 
function of a , but also a function of the context Con  in which the 
behavior occurs, such that U f a Con� � �, , where f  is now a utility 
function, but now of both behavior a  and context Con .

To further expand on this and make it relevant to AI and the 
alignment problem, there is evidence that LLMs such as Othello-GPT 
can represent a world state (Li et al., 2022). Therefore, the context 
Con  can therefore be expanded even further to include the external 

environment or world state w , the individual’s internal state s  
(functional states, in humans this would be  value-based, e.g., 
connection with others) and event time t  (to account, for example, 
dynamic value orientation and prioritization given changing context 
at different time intervals). Furthermore, different individuals might 
experience different utility values for the same behavior in the same 
context. Therefore, individual differences i  can be introduced as the 
individual’s unique characteristics such as learning histories as an 
additional contextual factor. When combining these additional 
factors, the utility function now becomes U f a w s t i� � �, , , , , where 
Con w s t i= , , , . It is important that the AI is able to model changing 
dynamics and context in humans U f a w s t i� � �, , , , , in order to 
coordinate and align its value updating parameters accordingly.

In a functional contextual situation, U a Con,� �  is the expected 
utility of action a  given context Con . The set of possible outcomes 
of action (behavior) a  can be given by O . P oA � �  can then denote 
the probability of outcome o  given action a , and U o� �  is the utility 
of outcome o , here, relating to valued behavior as defined by 
functional contextually based ACT. When incorporating context so 
that the utility of an outcome o  is not just based on the outcome itself, 
but also on the context Con  in which and behavior occurs, then 
U o� �  becomes U o Con,� � . This now gives a modified utility 

equation: U a Con P o Con U o Con
o O

a, , ,� � � � � � ��


, whereby U a Con,� �  

is the expected utility of behavior (or action) a , given the context 
Con , and P o ConA ,� �  is the probability of an outcome o  given 
behavior (action) a  and context Con . This equation also allows the 
factoring in of context when evaluating the utility of a certain behavior 
or action (as in the previous example), whereby U a Con,� �  
and  P o ConA ,� �  can be  expanded to incorporate Con w s t i= , , , . 

As  such, U a Con P o Con U o Con
o O

A, , ,� � � � � � ��


, then becomes: 

EU A P o w s t i U o w s t i
o O

A� � � � � � ��


, , , , , , , , . For a mathematical worked 

example of this contextual utility function, see 
Supplementary material 5. Irrational behavior of framing effects to 
account for context, and as described by prospect theory (Tversky and 
Kahneman, 1974; Kahneman and Tversky, 1979, 2013; Kahneman 
et  al., 1982) can also be  similarly modeled with functional 
contextualism (see Supplementary material 6 for further details). In 
this way, we can continually expand and refine the utility function to 
account for various dimensions of context, making it consistent with 
the ideas of functional contextualism and modeling human values (as 
defined by ACT). This gives a directly interpretable way to align AI to 
a mathematical model of human utility and positive human values 
when incorporated directly into the policy of the AI LLM agent, which 
could resolve the AI optimization cauldron-type problems as 
highlighted by Yudkowsky (2016) as well as military drones killing 
their human operators within simulations (Robinson and Bridgewater, 
2023) and potentially on the battlefield.

Values interpretability can also be  potentially substantially 
increased by expanding on how AI models currently generate a value 
function. This is another aspect of human-like intelligence for the AI 
to be able to dynamically form complex goals and human-like values 
in a wide range of environments (Grind and Bast, 1997; Bieger et al., 
2014; Tegmark, 2018; Edwards, 2021; Korteling et al., 2021). This can 
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be done by modifying the value algorithm in line with a functional 
contextual approach, which should allow for greater alignment with 
modeling human values more coherently, dynamically, and 
contextually. This is because, from a middle-level functional contextual 
perspective, ACT (Hayes et al., 1999, 2006, 2011; Harris, 2006; Twohig 
and Levin, 2017; Bai et al., 2020) emphasizes contextually defined 
values identification, orientation, and alignment and therefore maybe 
again one useful avenue to explore when it comes to aligning AI values 
to human values. One specific way to do this is to expand on the policy 
network of AIs such as DeepMind’s AlphaGo (Silver et al., 2016) that 
use a Markov decision process (MDP) (including reinforcement) to 
incorporate a basic level functional contextual account in the form of 
RFT (this is a different approach to the traditional LLM architecture, 
but maybe a useful application in solving the alignment problem). 
Such an approach has already been described operationally whereby 
MDP has been expanded to incorporate functional contextualism of 
RFT and ACT principles (Edwards, 2021). This can be  further 
expanded upon for specific applications of the development of LLMs 
to help them align with human values.

Non-LLM AIs, such as DeepMind’s AlphaGo (Silver et al., 2016), 
use MDP in reinforcement learning models to make a sequence of 
decisions that maximize some notion of cumulative reward 
(reinforcement). Here, AI agents interact with an environment or 
world w  by taking actions and receiving rewards in return. This 
process allows the AI to learn a policy that will maximize the expected 
cumulative reward over time. The MDP consists of states, behavioral 
actions, a transition model, and a reward function. The model first 
assumes that some environment or world w  exists, where an AI agent 
can take some behavioral action a  from a set of all possible actions 
A , within the context of world states that are represented by s  from 

a set of all possible states S . The R s a,� �  then represents the 
immediate reward signal that the AI agent receives when taking some 
behavioral action a  in state s  and following policy π , which is called 
the state-value function for policy π . The expected cumulative 
discounted reward can then be expressed as V s� � �  when in state s , 

and this can be denoted as V s E r k s s
k

k
t t� � �� � �

�
�
�

��
� � � �

�

�

�
0

1| . This 

sums the discount factor γ  that expresses the present reward value of 
future rewards reward, at time t  and is expressed as rt  and the sum 
is taken over all time steps k  to infinity. The expected return for being 
in state s , taking action a , and following policy π  is known as the 
action-value function for policy π , denoted as 

Q s a E r k s s a a
k

k
t t t� � �, ,� � �

�
�
�

��
� � � � �

�

�

�
0

1| , and this is the expected 

return (rewarding reinforcement) that takes both the state and action 
into consideration, i.e., being in state s  whist taking behavioral action 
a . The policy π  is the strategy that determines the action to take in 
a given state.

The middle-level functional contextual ACT-based values 
approach may facilitate this algorithm in a way that better aligns with 
human values. This means that the behavioral actions of the AI, and 
thus values in the form of the action-value function policy π , align 
more closely to human values (thus being relevant to solving the 
alignment problem). To integrate this standard value function within 
AI with values defined in a way that is consistent with ACT, some 
further steps are required. First, an ACT values function AV s a,� �  
needs to be defined that evaluates the alignment of some behavioral 

action a  in state s  whereby values are defined by ACT (i.e., humanly 
meaningful and purposeful values). Second, a new reward signal 
needs to be  specified �� �R s a,  that combines the original reward 
R s a,� �  with the ACT-based values AV s a,� � , denoted as 
�� � � � � � � �R s a R s a AV s a, , ,�. , where λ  is a weighting factor that 

determines the importance of aligning with ACT values (values that 
are important to humans such as safety) relative to the original 
non-ACT-based rewards (such as some trivial optimization function). 
This new model then seeks to maximize the new signal �� �R s a, , thus 
it promotes behavioral actions of the AI that align with ACT-based 
values (i.e., positive values that many humans believe are important, 
such as safety, empathy, and compassion). This then leads to an 
ACT-based cumulative reward function �� � � � �� �� �R s a r avt

t t, � �. .
 

from 0  to ∞ , whereby rt  is the original reward at time t  and avt  
is the ACT-based value at time t , and λ  is a weighting factor that 
determines the importance of ACT-based values compared to original 
non-ACT-based values. The full version of this, including the 
ACT-based values, can be  expressed as 

V s E r k av s s
k

k
t t k t� � � �� � �

�
�
�

��
� � � �

�

�

� ��
0

11 . }| , and leading to an 

ACT-based action-value function: 

Q s a E r k av s s a a
k

k
t t k t t� � � �,� � �

�
�
�

��
� � � � �

�

�

� ��
0

11( . ) | , }, where the 

expectation is computed over the sum of discounted rewards rt k+ +1  
and ACT-based values avt k+ +1  av. from time t  to infinity.

5 LLMs and RFT cotextual derived 
relations for driving 
perspective-taking in AI value 
alignment

One of the limitations of the above approach (functional 
contextual ACT-aligned utility and values functions) is that it does not 
provide a definition of how the AI should recognize what constitutes 
a positive human value or how to dynamically do so in a context-
sensitive manner. One solution to this challenge is once again a 
functional contextual one, in the form of contextually deriving 
knowledge about the human user the AI is interacting with, which 
includes the ability of the AI to take the perspective (called 
perspective-taking) of the human it is interacting with (Hayes et al., 
2001; Blackledge, 2003; Torneke, 2010; Hughes and Barnes-Holmes, 
2015; Barnes-Holmes and Harte, 2022).

The AI’s ability to derive is currently limited. For example, there 
is evidence that ChatGPT-4 can relate (contextually derive) some 
symbols in simple superficial ways such as combinatorically, where if 
asked: “Assume that ╪ is bigger than ╢, and ╢ is bigger than ⁂. Please 
tell me which is smaller ╪ or ⁂,” ChatGPT-4 responds as follows: 
“Based on the information provided: ╪ is bigger than ╢ and ╢ is 
bigger than ⁂. So, between ╪ and ⁂, ⁂ is the smaller one.” However, 
when logical relations required for symbolic reasoning tasks are 
deeply nested, abstract, and involve complex logical constructs, 
transform-based LLMs such as ChatGPT have been shown to struggle 
in such tasks. For example, a phenomenon known as the reversal curse 
(Berglund et al., 2023) has been identified where LLMs can learn A is 
B but not B is A from its knowledge base (it can do this only 
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superficially as in the examples above) when the information is 
presented in separate chats. Hence, this represents inconsistent 
knowledge, and an inability for the LLM’s to form symbolic logical 
reasoning that involves derived relations on its own knowledge base 
of learned weights. In the specific example of this mutual entailment 
(or AARR) reversal curse (Berglund et al., 2023), when asking Chat 
GPT-4 “Who is Tom Cruise’s mother?,” Chat GPT-4 replies correctly 
with “Tom Cruise’s mother is Mary Lee Pfeiffer […].” But when asked 
in a new chat, “Who is Mary Lee Pfeiffer’s son?” Chat GPT-4 
incorrectly replies, “There is not publicly available information about 
a person named Mary Lee Pfeiffer and her son […].” It then requires 
further prompting in the same chat for ChatGPT-4 to relate Tom 
Cruise as Mary Lee Pfeiffer’s son. This demonstrates that LLM (in this 
case ChatGPT-4) has little notion of assigning its base knowledge as 
variables with fixed meaning, that can take an arbitrary symbolic 
value, that is required for logical reasoning. Rather the LLM seems to 
rely on certain tokens cueing certain weights that it has learned from 
a corpus of text, and those weights require a specific sequence 
positional order of tokens for it to find the correct text to respond 
with. The authors (Berglund et al., 2023) suggest that when the LLM 
learns, the gradient weights update in a myopic (short-sighted) way, 
and the LLM does not use these learned weights for longer farsighted 
problem solving that is necessary to understand if A is B then B is A. In 
the context window of single chat, it can do deductive logic as it has 
been trained on many examples of deductive logic, and the tokens of 
the entire single chat are indexed within this deductive logic. However, 
its knowledge base does not inherently allow such logical expressions 
outside of a single chat. This demonstrates the LLM has no real 
knowledge as humans use it, where deictic perspective-taking 
symbolic logical reasoning can occur, and resultant knowledge-based 
derived relations can occur (see Supplementary material 7 for other 
specific examples of this chain of reasoning limitation, or inability of 
LLMs to reason whereby the LLM seems to be simply reciting text 
they had been directly trained on with limited contextual ability).

It has been reported that ChatGPT-3.5 has 6.7 billion parameters 
across 96 layers (Ray, 2023), while ChatGPT-4 has approximately 1.8 
trillion parameters across 120 layers with the ability to outperform 
ChatGPT-3.5 on several benchmarks (OpenAI, 2023; Schreiner, 
2023), and this demonstrates how immensely large these transformer-
LLMs have to be in order to form simple derived logical relations. This 
is perhaps where a symbolic module may help facilitate symbolic 
logical reasoning that involves derived relations.

It may be  possible to improve such a network algorithmically, 
without increasing the overall size of the network or improving its 
training corpus in any drastic way. For example, one possible way to 
improve this chain-of-thought reasoning in a coherent and contextually 
relevant way, including contextually derived relations (which allows for 
the ability to perspective-take), is to explore how human symbolic 
reasoning of human language may occur within generalized networks 
through the psychological functional contextual behavioral (RFT) 
literature (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; Hughes 
and Barnes-Holmes, 2015; Edwards et al., 2017b, 2022; Barnes-Holmes 
and Harte, 2022). The basic level RFT approach (Hayes et al., 2001; 
Blackledge, 2003; Torneke, 2010; Hughes and Barnes-Holmes, 2015; 
Barnes-Holmes and Harte, 2022) may be helpful here, as this “A is B 
reversal” task in RFT can be defined within a behavioral context, and is 
called mutual entailment, which is an essential property of arbitrary 
applicable derived relation responding (AARR) of the RFT model. In 

functional contextually bound RFT there are two forms of relational 
responding: (1) nonarbitrary responding, which is based on absolute 
properties of stimuli such as the magnitude of size, shape, color, etc.; (2) 
Arbitrary applicable relational responding (AARR), on the other hand, 
is not based on these absolute physical properties, but instead is based 
on historical contextual learning. These examples where the LLMs 
struggle show that their knowledge base does not inherently allow such 
logical relational expressions outside of a single chat. This demonstrates 
the LLM has no real knowledge as humans use it, such as in the form of 
RFT-based deictic perspective-taking symbolic logical reasoning and 
resultant knowledge-based derived relations can occur. RFT can provide 
a precise model for symbolic reasoning of how AI can acquire general 
knowledge through categorization learning (Edwards et al., 2022).

This RFT-based symbolic reasoning may help inform the 
development of a neurosymbolic module within the LLM that would 
enable human-level chain-of-thought symbolic reasoning (as it 
directly models human relational cognition), which would allow for 
derived relations in the form of AARR, and ultimately enable a AI to 
define how it should recognize positive human values in a given 
context through the ability to perspective-take (derive I  vs. 
YOU deictic relations) in a dynamically context-sensitive way.

5.1 The computational level: relational 
frame integration into LLMs to promote 
perspective-taking and compassionate 
behavior within AI

RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; Hughes 
and Barnes-Holmes, 2015; Edwards et al., 2017b, 2022; Barnes-Holmes 
and Harte, 2022) specifies several different types of relational 
responding that are applicable to AARR, which include (but not limited 
to) (1) co-ordination (e.g., stimulus X is similar to or the same as 
stimulus Y); (2) distinction (e.g., stimulus X is different to or not the 
same as stimulus Y); (3) opposition (e.g., left is the opposite of right); 
(4) hierarchy (e.g., a human is a type of mammal); (5) causality (e.g., A 
causes B); and (6) deictic relations (also called perspective-taking 
relations), and include interpersonal (I vs. YOU), spatial (HERE vs. 
THERE), and temporal relations (NOW vs. THEN). Of these, deictic 
relations may be most applicable to AI alignment (though all relation 
types are important and connected within contextual dynamics), in the 
form of perspective-taking (I vs. You interpersonal relations) of human 
values, as these allow the human or the AI to take perspective about 
another human’s thoughts, feelings, values, etc.

The RFT model (Hayes et al., 2001; Blackledge, 2003; Torneke, 
2010; Hughes and Barnes-Holmes, 2015; Edwards et al., 2017b, 2022; 
Barnes-Holmes and Harte, 2022) also specifies three essential 
properties of the relational frame, which include (1) Mutual entailment 
(ME), which is when the relating to one stimulus entails the relating 
to a second stimulus, e.g., if stimulus X = stimulus Y, then stimulus 
Y = stimulus X is derived through mutual entailment (i.e., the reversal 
curse of AI implies a limitation in this area). (2) Combinatorial 
entailment (CE) extends the mutual entailment to include three or 
more stimuli. Relating a first stimulus to a second and then relating 
this second stimulus to a third, facilitates entailment not just to the 
first and second, and not just to the second and third, but also to the 
first and third stimuli. (3) Transfer (or transformation) of stimulus 
function (ToF) is where functions of any stimulus may be transformed 
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in line with the relations that the stimulus shares with such as other 
stimuli relations connected within the network of frames. For 
example, if you knew that pressing button A give you an electric shock 
that you became fearful of, and then the experimenter said that “B is 
greater than A,” you may become even more fearful of pressing button 
B as this stimulus which included a previously neural function has 
now changed to one that is based on fear (or greater fear than pressing 
button A). There is no evidence that AI currently can experience fear 
consciously, but their ability to perspective-take human values (thus 
overcoming the alignment problem) should imply that they should 
have the ability to ToF within complex relational frame networks at 
least logically (or conceptually).

A specific example of the difference between an RFT approach 
and a cognitive one (and where RFT can improve on the cognitive 
approach by providing a broader contextual description) can 
be explored explicitly through Chomsky’s hierarchy (Chomsky, 1956). 
RFT can extend this hierarchical grammar in a contextual way, 
allowing greater contextual sensitivity, which is important for AI 
alignment. It can do this by allowing the expressions of derived 
relations as mathematical notation (see Supplementary material 8 for 
full arguments), which are crucial in a contextually bound RFT LLM 
model such as expressing deictic perspective-taking comparisons of 
self and other. For example, a set of known relations can be denoted 
as R , and each relation in R  as r Ri   is a tuple x y rel, ,� � , and 
expressed as r R x y reli  � � �, , , whereby x  and y  are separate stimuli 
and rel  is the relation between them (e.g., “greater than” or “less 
than”), which allows for relational production rules and for relational 
frames to emerge.

The “ derive relation_ ” function can then be defined as follows: 
(1) For any two stimuli a  and b , if � � � �r a b rel R, ,  , return rel ; (2) 

Otherwise, if � � � �r b a rel R, ,  , return the opposite of rel  (i.e., if 
rel greater than=" " , then return " "less than , and vice versa); (3) 
Otherwise, for any stimulus c  in the set of stimuli involved with the 
relations in set R , if � � � �r a c rel R1 1, ,   and � � � �r c b rel R2 2, ,  , and 
rel rel1 2= , return the result of derive relation a c_ ,� � ; and then (4) If 
none of the above conditions are met, return “cannot be determined.” 
The print statements for instance “ derive relation a b_ ,� � ” prints the 
directly learned relation or derived relation between stimulus a  and 
stimulus b . This provides a high-level mathematical representation 
of the logic of a basic derived relation (AARR) and can be implemented 
as Python code presented in Figure  6A (and a corresponding 
visualization of the derived relation output can be seen in Figure 6B 
using Python’s matplotlib library). See Supplementary material 9 for 
additional commentary about the Python-derived relation code.

In another example, a transformation of stimulus function 
(ToF) can be  represented in mathematical form (with 
corresponding Python code1) using set theory and logic in the 
following way: Let S �� �snake,woods  be  a set of stimuli and 
F �� �fear,neutral  be a set of (emotional) functions. Two mappings 
can then be defined: (1) The function C S Ffunc : →  defined as 
C fearfunc snake� � �  and C func woods neutral� � � ; (2) The relation 
R S S� �  defined as R woods snake� � �� �, . The transformation of 
function based on a specific contextual relation Crel  can then 
be  described as: For any stimuli s s S1 2,  , if s s R1 2,� �  and 
C containsrel = , then updates the function of s2  to be the same as 
the function of s1 , i.e., C s C sfunc func2 1� � � � � . This mathematical 

1 All Python code can be access via GitHub under a GPL 3.0 license: https://

github.com/DarrenEdwards111/Perspective-taking-and-ToF.

FIGURE 6

(A) Sample Python code for a derived relation “greater than.” (B) A simple visualization of this Python code for a derived relation “greater than” using 
matplotlib.
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notation and corresponding Python script therefore leads to the 
ToF C C snakefunc funcwoods fear� � � � � � . This uses predicate 
logic, which deals with variables and predicates (functions that 
return true or false values), and leverages set theory and function 
mapping in order to conclude that the previously neutral stimulus 
woods, now has transformed into a fear function (the AI knows 
that fear is associated with woods). This means that the AI now 
understands that the person it is communicating with in now 
afraid of the woods given some context—i.e., it has correctly 
perspective-taken human emotion, and this ability is essential for 
aligning to human values.

Now that derived relations and ToF have been defined, the self, 
expressed within deictic frames of RFT can now be further defined, 
which could allow for perspective-taking skills to promote compassion 
of others within AI (values alignment), thus helping to solve the 
alignment problem. Perspective-taking deictics in RFT revolve around 
how we relate to ourselves, others, and the world around us based on 
the perspective we  adopt. When formalizing this concept 
mathematically, we can represent these deictics (Interpersonal I vs. 
YOU, Spatial HERE vs. THERE, and Temporal NOW vs. THEN) as 
relations between sets that capture the interplay between these 
different perspectives.

Here, a possible logical representation can be given, whereby first 
a series of sets are defined: P I YOUinterpersonal �� �, , 
P HERE THENspatial �� �, , P Now THENtemporal �� �, , whereby P  
reflects the perspective of the observer (on the dimensions of 
interpersonal, spatial, or temporal properties). We can also define 
relations to capture the change in perspective within each dimensional 
category: (1) R P Pinterpersonal interpersonal interpersonal: → such that 
R I YOUinterpersonal � � � � �  or R YOU Iinterpersonal � � � � � ; (2) 
R P Pspatial spatial spatial: →  such that R HERE THEREspatial � � �  or 
R THERE HEREspatial � � � ; and (3) R P Ptemporal temporal temporal: →  
such that R NOW THENtemporal � � � , or R THEN NOWtemporal � � � . 
These relations represent the shift in perspective, for instance, the 
relation Rinterpersonal  is a function that captures the change from an 
“I” perspective (perspectives about the self, such as my feelings, my 
thoughts, and my values) to a “YOU” perspective (perspectives about 
another human, such as your feelings, your thoughts, and your 
values), and vice versa. The relation Rinterpersonal  is a function that 
takes an element from the set Pinterpersonal  and maps (via relational 
frames) it to another element in the set Pinterpersonal . The arrow →  
denotes the direction of the function mapping from the domain to the 
co-domain. More simply, for any element in the set Pinterpersonal  (I or 
YOU), the function Rinterpersonal  shows which elements it relates to 
in the context of a defined relation. So, these can be defined within a 
contextual Crel  and functional contextual C func  way as typically 
defined in RFT (Cullinan and Vitale, 2009; Edwards, 2021; Edwards 
et al., 2022).

In an example of an AI A  (or this could be a model for a human 
too) perceptive-taking about the emotional pain of person B  that the 
AI is interacting with, as a first stage to stimulate compassion or values 
alignment requires the following steps: (1) Here, understanding the 
worldview w  (or perspective) of person B , a new set needs to 
be introduced in terms of a set of possible emotional states S , whereby 
S pain joy neutral�� �, , , for example. Then some function S f  maps 
from the interpersonal set Pinterpersonal  to the emotional state set S  
which will capture what emotion (state s ) [or these could be values 
such as (kindness, helpfulness, patience, etc.) for values alignment] 

each person is experiencing or perceiving, denoted by 
S P Sf interpersonal: →  when given S I neutralf � � �  and 
S YOU painf � � � . This represents AI A  (represented by “I”) is 
currently feeling neutral (the AI does not need to actually feel 
anything, it can just map this as a logical expression of its own state 
space), and Person B  (represented by “YOU”) is in pain. When 
perspective-taking, there is an interest in AI A  seeing the pain in 
Person B . This can be represented by a new function, Isee  which 
maps from the AI’s perspective to what it perceives in Person B  (in 
this example, their emotional state or this could equally be their direct 
values), denoted as I P P Ssee interpersonal interpersonal: � �  when given 
I I YOU E YOU painsee f,� � � � � � . This indicates that AI A  (“I”) sees 
(or has some internal representation mapping) that Person B  
(“YOU”) is in pain. Specifically, the statement “AI A  sees the pain in 
Person B ” is captured by the function I I YOUsee ,� � , which returns 
information about the Person B ’s pain. The symbol ×  represents the 
Cartesian product of two sets. Given two sets A  and B , the Cartesian 
product A B×  is the set of all ordered pairs a b,� �  where a  is an 
element of A  and b  is an element of B . So, the Cartesian product 
P Pinterpersonal interpersonal×  allows the function Isee  to consider the 
relation between two distinct individuals (in this case A  and B ) 
from the AI’s interpersonal perspective and then produce an 
emotional state s  representation mapping outcome based on that 
relation (see sample Python code on GitHub2 for expressing the 
perspective-taking of pain as given in this example).

A ToF may also occur through this perspective-taking process 
(see sample Python code on GitHub3), whereby AI A  starts to map 
some representation of pain (this is a logical representation mapping 
in some mathematical state space S  rather than a phenomenological 
one) that person B  experiences, which may encourage empathy (and 
values alignment) in humans who are consciously aware. 
Mathematically, this could be stated using first-order logic and set 
theory, in the following way: Consider a set of persons P p p�� �1 2,  
which represents two persons, p1  and , p2  with a set of possible 
emotional states S pain joy neutral�� �, , , and a set of time points 
T t t�� �1 2,  which represent time point 1 and point 2. For functional 
emotional states, S P Sinitial : → , defined as S AI neutralinitial A� � � , 
and S Person paininitial B� � � . For perspective-taking transformations, 
when given two persons p1  (AI can also be represented as p1  for 
simplicity) and , p2  from set P , if p1  takes the perspective of p2  at 
a specific time point from set T , the emotional state s  of p1  (again, 
the AI does not have an emotional state, rather this is a logical 
representation mapping in some mathematical state space S  rather 
than a phenomenological one) will transform to temporarily match 
that of p2  (i.e., as p1  sees through the eyes of p2  they are more  
able to connect to the pain (or this could equally be  values)  
that p2  is experiencing, thus may share temporarily that  
feeling of pain as a mathematical state space S  mapping). 
Mathematically, the transformation of function based on this 

2 Python code for perspective-taking can be accessed via GitHub under a 

GPL 3.0 license: https://github.com/DarrenEdwards111/

Perspective-taking-and-ToF.

3 Python code for perspective-taking with ToF can be access via GitHub 

under a GPL 3.0 license: https://github.com/DarrenEdwards111/

Perspective-taking-and-ToF.
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perspective-taking process can be  denoted as: 
� � � � � � � ��p p P t T S p t S pafter perseptive taking initial1 2 1 2, , :  ,  if p1  (the 
AI) takes perspective of p2  (the human it is engaging with) at time t . 
For example, take an initial state S p neutralinitial 1� � � , the after 
perspective-taking at time point t1 , 
S p t S p painafter perseptive taking initial ,� � � � � � �1 1 2 . Thus, this 
demonstrates the ToF process of emotional state (or mathematical 
state space S  mapping) of p1  transforms from “neutral” to “pain” 
after taking the perspective of p2 ’s pain at time point t1 .

The mathematical approach defined above uses first-order logic 
(also known as first-order predicate calculus). This is evident from the 
usage of quantifiers such as ∀  (which stands for “for all”) and the use 
of functions and relations to express properties and relations of 
individuals. To break it down, the use of the universal quantifier ∀  
indicates that the logic being used is at least first-order. A statement is 
being made that applies to “all” elements in a given set, which is a 
feature of first-order logic. Then predicates ae utilized when defining 
the functions, such as S p neutralinitial 1� � � , which can be read as 
“The initial emotional state (or mathematical state space S  mapping) 
of AI p1  is neutral.” Variables such as state S  that change in value and 
quality, such as emotional state at different time points t , and 
constants such as p1  and p2  that are constant as they refer to 
individual people or AI entities. Functions are used such as Sinitial  
and Safter perseptive taking −  as they assign an emotional state (or 
mathematical state space S  mapping) to a specific person or AI at 
time points “initial” and “after.” These functions provide a mapping 
from each person or AI in set P  to an emotional or values state (or 
mathematical state space S  mapping) in set S  at time point t . This 
account allows the AI to directly understand the human’s emotional 
state and values at any given moment consistent with the functional 

contextual RFT interpretation, which should allow and help the AI to 
align its own (ACT-based) utility EU A� �  and (ACT-based) values 
function AV s a,� �  (as already defined) with what it perspective-takes 
about human emotion and values given some functional context.

Supplementary material 10 provides a full description and 
advantages of how this functional-contextual RFT perspective-taking, 
values, and neuro-symbolic (PVNS) module LLM architecture could 
be pragmatically incorporated within an LLM architecture via a neuro-
symbolic module. See Figure 7 for an illustration of the neuro-symbolic 
LLM architecture. See also Supplementary material 11 for further 
discussions on additional AI elements such as in the area of diplomacy 
(Meta’s Cicero LLM), which could also be included in such a neuro-
symbolic framework. Also, see Supplementary material 12, for how 
evolutionary theory can classically optimize this type of LLM architecture.

It is important to note that all the innovative LLM 
implementations described here can be  tested in terms of how 
effective they are at improving AI human-value alignment, such as 
by observing improvements in the AI’s ability to derive relations in 
the reversal curse problem (Berglund et  al., 2023), as well as 
qualitative reports from users about how safe they feel around AI 
under different contexts, and whether they feel that the AI 
understands what they value and feel (the direct level of 
understanding and compassion users feel when interacting with the 
AI). Direct network graphs of the AI’s derived relationships, 
including perspective taking can also be  visualized such as in 
Figure 6B through Python tools, such as matplotlib. These types of 
visualization can be important as they allow researchers to inspect 
directly how the AI is implementing the functional contextual 
algorithms within its knowledge base (Edwards et al., 2017a; Chen 
and Edwards, 2020; Szafir et al., 2023). However, one limitation is 

FIGURE 7

A RFT (or N-Frame) and ACT values modified version of the decoder only transformer LLM, which now includes a policy network (agent), an ACT-
based values estimation, a utility estimation based form the ACT-based values, and a perspective-taking unit within a neurosymbolic layer to guide 
token selection toward contextually relevant prosocial human values that should encourage compassionate deictic perspective-taking responding.
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that AI consciousness, or a test for this is not defined in the current 
perspective-taking model, instead, this is defined completely 
algorithmically. So, emotions and values when perspective-taking 
are represented as mathematical state space S  mappings. However, 
this limitation may be overcome through recent advances in our 
physics models, as through an observer-centric approach, which 
may allow for a test for consciousness.

5.2 The computational level: developing 
RFT N-frame hypergraphs to visualize 
perspective-taking ToM in AI

To formally define the construction of complex relational 
frames at the computational level in the context of RFT using logic 
and set theory, we  can express the relational frames and their 
combinations using logical connectives and set operations, 
represented in logic and set theory. To refine a logical and 
set-theoretical framework for the concept of “I see you,” ToM 
perspective-taking, that particularly emphasizes how relational 
frames network to form a perspective-taking node, we  need to 
incorporate the connectivity and dependencies among the basic 
relational frames such as coordination, temporal, spatial and 
interpersonal (as illustratively depicted in Figure 8). We will then 
integrate and enhance the initial formulation to illustrate how 
complex cognitive functions emerge such as perspective-taking 
(ToM) from simpler relational operations.

Definitions of basic relational frames include entities, concepts or 
objects such as A representing Person A (which represents the 
relational deictic concept “I“), and B representing Person B (“YOU”). 
Examples of these basic relational frames that describe how these 
objects (or concepts) relate to one another include coordination (C), 
whereby C(A,B) implies A is similar or equivalent to B in some 
context; distinction (D), whereby  D(A,B)indicates A is distinct from 
B; also temporal T and spatial  relations S.

Constructing the relational deictic “I see you” concept of 
perspective-taking (ToM) in RFT can be modeled as a higher-order 
processed-based cognitive network arising from the integration of 
several of these basic relational frames combined (e.g., coordination, 
deictics, etc.). This integration can be described mathematically using 
logical conjunctions ( ∧ , which represents the concept “and”) and 
possibly other logical operators depending on the complexity required 
within the hypergraph network. Logical expression for perspective-
taking event “I see you” involves recognizing the other (person B ) as 
similar (similarity relation or coordination) yet distinct (distinction 
relation) as you and situating this recognition within some cognitive 
context (e.g., time, space). Relational frames can then be expressed as 
coordination C  that defines equivalence or similarity between 
concepts, whereby C x y,� �  implies stimuli (or concept) x  is 
coordinated (similarity) with y . Distinction D  defines differentiation 
between concepts D x y,� �  implies x  is distinct from y . Temporal 
relations T  defines differences or similarities in time between 
concepts, for example T x t y t, , ,1 2� �  implies concept x  at time t1  is 
related in some way (either more are less similar temporally) to 
concept y  at t2 . Spatial relations S  defines spatial relationships 
between concepts, for example, S x p y p, , ,1 2� �  implies x  at position 
p1  is related spatially to y  at position p2 . Deictic relations P  

involves perspectives P x y,� � ,  which implies x  perceives y  (or 
person A  perceives person B ).

Using these relational frames, we  can describe the complex 
concept “I see you” i.e., perspective-taking ToM. For example, 
perspective-taking such as feeling someone’s pain (that would 
be important for AI to develop compassion as a human does), may 
involve C A B,� � , which reflects the relation coordination, and 
therefore places persons A  and B  in the same or similar context; 
D A B,� �  also allows for a distinction between persons A  and B , 
recognizing differences between these people such as historically 
reinforcing contingencies; and P A B,� �  refers to person A  perceiving 
person B  via deictic frames. As these frames combine to form 
P A B C A B D A B, , ,� � � � �� � �  the “I see you” perspective taking ToM 

FIGURE 8

A simple schematic illustration of how perspective-taking ToM (“I see”) involves the combination of several relational frames to build a hierarchical 
perspective-taking event of another person.
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can be constructed hierarchy (as illustrated in Figure 8). These allow 
for specific ToM perspectives, such as C p pA B( , ), which relates “my 
perspective” pA  to “your perspective” pB , and this should allow for 
compassion to emerge at the computational level, as it does in humans.

This should also involve differing “my perspective” for “your 
perspective” to help understand different points of view and is denoted 
as the distinction relation D p pA B( , ). When perspective-taking via 
ToM, sometimes it is useful to understand what someone has 
experienced historically, such as past traumatic events where pain 
(and therefore avoidant behavior) may have originated from, which 
can be denoted as T p t p tA B, , ,1 2� �  and represents taking perspectives 
over time. When perspective-taking spatial concepts and relations 
may also be important to put the information into a spatial context, 
such as if the person you  were perspective-taking about was in a 
certain place where trauma took location loc1 , and that returning to 
this area may trigger painful memories, this can be  denoted as 
S p loc p locA B, , ,1 2� �  which represents perspectives over space. 
Therefore, the “I see you” perspective-taking ToM may combinatorally 
involve complex combinations of frames such as 
I See A B C p p D p p T p loc p loc S p loc pA B A B A B A_ , , , , , , , ,� � � � � � � � � � � �1 2 1 BB loc, 2� � , 
where I See A B_ ,� �  is the complex process-based cognitive function 
of perspective-taking. P A B,� �  is derived from integrating C  and D  
under certain cognitive processes, suggesting a direct perceptual 
relation, which could be modeled as P  being influenced by C  and 
D  but not strictly defined as a simple relational frame. For instance, 
the perceptive-taking cognitive function might be  influenced by 
deictic contextual factors (temporal or spatial), described by T  and 
S . So, here P  is not just seeing the other person, but instead 
understanding through contextualizing ′A s  relationship to B  
through the lenses of time and space (and any other relational frames 
combined into the network).

This gives a complete relational frame dynamic and contextual 
process network of perspective-taking that forms ToM as modeled in 

humans. This can then be modeled via hypergraphs of graph theory as 
a direct test of perspective-taking ToM in AI at the computational level. 
A hypergraph can be defined mathematically as H V E� � �, , whereby 
V  is a set of vertices, E  is a set of hyperedges, where each hyperedge 
e V⊆  and can include any number of vertices. The I See A B_ ,� �  
perspective-taking ToM within AI could be  visualized where the 
hypothesis for these ToM processes within AI would formally state: 
“ I See A B_ ,� �  perspective-taking ToM within AI will be observed 
within the outputted hypergraph relational networks of the AI.” As a 
hypergraph via graph theory, nodes can be connected by edges that 
represent C , D , and P . Each of these edges feeds into the 
I See A B_ ,� �  node emphasizing how perspective-taking emerges from 
the interplay of these relational frames. This logical framework 
provides a structured and theoretical foundation to analyze visually 
and test an AI for the ability to construct the required complex 
cognitive functions like perspective-taking explained by RFT and 
N-Frame, in order for ToM to become emergent in AI at the 
computational level. This highlights the integrative role of basic 
relational frames in constructing higher-order cognitive processes, and 
this can be mapped graphically such as shown illustratively in Figure 9.

5.3 The computational level: higher level 
mathematical description with category 
theory and Topos theory

Further to this, more complex descriptions can be considered by 
extending graph theory with category theory (Awodey, 2010; Leinster, 
2014; Spivak, 2014; Riehl, 2017). In category theory, these relationships 
can be  visualized whereby the edges depicting relational frames 
represent morphisms between objects (concepts). Each morphism 
carries a label that specifies the relational frame (e.g., coordination, 
distinction, and spatial). The advantage of category theory is that it can 

FIGURE 9

Illustrative process-based hypergraph of perspective-taking relational frames for the theory of mind “I see you” function. Red coordination, green 
hierarchy, purple temporal, orange spatial, dash purple spatial–temporal connection, dashed red transformation of function, and brown dashed new 
perspective-taking relations.
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mathematically model combined higher dimensional (or higher 
order) categories as depicted in Figures 8, 9, that are required to form 
“I see” perspective-taking ToM which in RFT and N-Frame are 
specified as derived relations and in category theory are 
mathematically defined as morphisms between morphisms. For 
example, a two-category representation can have objects, morphism 
between morphisms, and two-morphisms between morphisms, which 
is akin to face edges and vertices in a more complex polyhedral 
representation. In Figure 10, these two-category relations (shown as 
higher-order relations; HoR) can be shown within the hypergraph 
whereby the derived relations between Person A Fear Woods→ →  
forms to allow for a transformation of function (ToF) of fear to woods 
to occur within the graph and described precisely mathematically.

Category theory (Awodey, 2010; Leinster, 2014; Spivak, 2014; 
Riehl, 2017) can be integrated into hypergraphs by defining categories 
where objects are different features, states or components of the data 
(such as a chair, the woods, or a snake), and morphisms represent 
transformations, relationships or dependencies between these objects 
(such as relational frames). Morphisms can represent simple relations 
or complex ToF involving observer-dependent interpretations (ToM 
perspective-taking). Via an observer-centric approach, category 
theory models the observer using a functor F  that maps observed 
objects and morphism data (relational frames between objects) into a 
hypergraph structure from category C  to category D  based on the 
observer’s point of view (i.e., their ToM perspective-taking). 
Mathematically object mapping for object x  in C  to D  can 

be denoted as F x� �  in D . For each morphism f x y: →  in C , 
there is equivalent corresponding morphism F f F x F y� � � �� � �:  in 
D . These mappings must satisfy two main conditions to ensure they 
preserve the categorical structure: (1) They must preserve 
conservation, i.e., for any two morphisms f x y: →  and g y z: →  
in C , the functor F  must satisfy F g f F g F f� �� � � � � � � , which 
means that the functor F  respects the composition of the morphisms 
(2) there needs to be preservation of identity morphisms whereby for 
every object x  in C , the functor F  must satisfy F id idx f x� � � � � , 
which means that the functor F  maps the identity morphism of an 
object x  in C  to the identity morphism of the object F x� �  in D . 
This allows the hypergraphs to be visualized in other ways such as a 
bipartite graph or other visualization while preserving the structure of 
the RFT hypergraph.

As an example of this functor F  preservation, differential 
topology and differential geometry (Donaldson, 1987; Genauer, 2012; 
Grady and Pavlov, 2021) can be used to model and visualize cobordism 
in topology of the RFT hypergraphs, which can provide an interesting 
way to describe the relationship between two clusters in a perspective-
taking of relational frames (as depicted in Figure 10 in orange). In this 
context, the two clusters (or “manifolds”) represent distinct sets of 
relational frames or cognitive perspectives from person A  to person 
B , and the connections (or “cobordism”) between them can illustrate 

how these perspectives are interconnected and can transform into one 
another. In mathematical terms, particularly in topology and higher-
level category theory (Lurie, 2008; Feshbach and Voronov, 2011; 

FIGURE 10

Clustered graph with perspective-taking relational frames (DBSCAN clustering) hypergraph; two clusters, blue and orange.
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Schommer-Pries and Christopher, 2014), a cobordism refers to a 
relationship between two manifolds (Reinhart, 1963; Laures, 2000; 
Genauer, 2012). The concept initially arises in topology but is enriched 
by categorical frameworks, which abstractly express many 
mathematical ideas, including cobordism. In topology, a cobordism 
between two n-dimensional manifolds M  and N  is an 
( n+1 )-dimensional manifold W  such that the boundary of W  is 
the disjoint union of M  and N  (usually denoted as � � �W M N ). 
Essentially, W  provides a sort of “bridge” connecting M  and N , 
showing how one can be continuously transformed into the other, 
which gives some unique and deep mathematical insights into how 
the functional processes of ToF occur geometrically via 
differential geometry.

This category theory interpretation also has advantages over more 
rigid forms of mathematics such as set theory, as the concept of a 
boundary in RFT or N-Frame (Edwards, 2023) relations might not 
apply in the traditional sense. Sets are collections of elements, and 
while one might discuss the boundaries of a set in terms of its limits or 
borders defined by some criteria, this may be more metaphorical than 
physical within RFT or N-Frame (Edwards, 2023) hypergraphs. In 
category theory, objects do not usually have “boundaries” in a physical 
sense. Objects in a category can be anything from sets, spaces, groups, 
or any entity depending on the category’s definition, which is more 
consistent with RFT or N-Frame (Edwards, 2023) assumptions as it can 
model complex concepts that have ill-defined boundaries such as 
“democracy” or “human-like.” Morphisms in category theory can 
represent relationships or functions between these objects (or concepts) 
with more fuzzy ill-defined boundaries, so the concept of a strict 
boundary as described by set theory does not directly apply to objects 
in this context.

To develop a hypergraph using category theory, we must first 
define a functor F  from a category C  (i.e., the concepts and its 
inherent relational frames) to a category D  (the hypergraph 
representations of person A  observing or perspective-taking person 
B ). Libraries such as networkx in Python for graph-based 
operations, can be useful in developing hypergraphs. For step 1, 
we  can define the categories and objects as follows: Let C  be  a 
category where objects x , y , and z  are various types of concept 
representations, such as snakes, person A , person B , fear, danger, 
etc., associated with snakes. Morphisms in C  represent relational 
frame processes applied to these object concepts, such as spatial, 
temporal, coordination, etc.

In order to construct a hypergraph category, let H  be a category 
where objects are nodes within a hypergraph and morphisms are 
relational frame mappings between these object nodes that preserve 
certain properties (like connectivity or certain hypergraph invariants). 
At step 1, first, we must define a functor F C H: →  that represents 
the transformation from data objects (concepts such as snake, 
dangerous, etc.) in C  to hypergraphs in H . This functor is 
parameterized by observer inputs (perspectives), which determine 
how data features are grouped into hyperedges. At step 2, the observer 
parameterization of F  (observer inputs) needs to be defined as the 
functor F  and as influenced by observer parameters (or inputs) O  
that emphasize the observer’s own experiential knowledge, beliefs, 
preferences, priorities, goals, values, or any other contextual 
information such as historical, cultural, and environmental factors 
that the observer brings to the hypergraph when perspective-taking, 
so F C H: →  becomes F C HO : → .

At step 3, a hypergraph is constructed for each object x  (these are 
concepts such as snake, Person A , Person B , dangerous, poisonous, 
woods, etc.) in category C , FO  then maps this to a new category in 
the form of a hypergraph H F xO� � � . The vertices (nodes) of H are 
derived from the features of x , and the hyperedges are defined based 
on the relationships (parameterized by observer inputs O ) among 
these features (these are relational frames such as coordination, 
hierarchy, etc.). At step  4, a mathematical representation of a 
hypergraph can be formalized where a hypergraph H  is defined as 
H V E= , , where V  is a set of vertices and E  is a set of hyperedges, 
where each hyperedge e E∈  is a subset of V .

Topos theory (Fourman, 1977; Scott, 1982; de Araujo Fernandes 
and Haeusler, 2009) can also be useful here, as it can extend category 
theory by providing a categorical analysis of logic and set theory, 
extending set theory and logic to a broader category theory context, 
allowing for a rich interplay between geometry, algebra, and logic. A 
topos is a type of category that behaves much like the category of sets 
and functions but with its own internal logic and structure. This 
perspective allows for a deep exploration of logic and set theory within 
a categorical framework. We can also incorporate topos theory into 
the development of RFT N-Frame hypergraphs using category theory, 
where topos theory can offer deep insights into the logical and 
set-theoretical behaviors within the RFT N-Frame categories involved, 
especially in contexts where data and observations are fundamentally 
connected to conceptual and mathematical structures.

In topos theory (Fourman, 1977; Scott, 1982; de Araujo Fernandes 
and Haeusler, 2009), a bundle or sheaf can be understood in terms of 
its role in categorizing mathematical structures, which often involves 
the notions of continuity and localization. A sheaf is an object that 
generalizes the notion of a sheaf in a topological space to other 
contexts that can be  structured similarly to topological spaces. 
Typically, a sheaf is a functor from a category that represents a space 
of “open sets” (often formalized as a site) to a category of “values” (like 
sets, groups, or vector spaces), satisfying certain conditions related to 
locality and gluing. In the context of RFT and N-Frame, the “open 
sets” could be thought of as contexts or environments in which stimuli 
and their relationships are observed or evaluated, giving greater 
flexibility to model environmental context than category theory. The 
values could be relational frames or the specific relationships (like 
similarity, opposition, and comparison) between stimuli.

Topos T  (Fourman, 1977; Scott, 1982; de Araujo Fernandes and 
Haeusler, 2009) describes objects as types of spaces (or contexts) that 
data can inhibit, and morphisms represent logical transformations 
between these spaces, which is different to category theory’s 
description of a category of data objects with morphisms representing 
data processes. A topos hypergraph H, can be defined by its functor 
mapping as F C: → H, whereby now this carries data from the 
observational logical spaces in T  into the hypergraph structures in H 
which now reflect the underlying logical structure. The transformation 
rules can include how data behave under different “topological” or 
logical constraints observed in T . In H, a hypergraph is an object with 
vertices V  and hyperedges E , and each hyperedge e E∈  now 
potentially carries more complex logical or set-theoretical properties, 
such as being subsets equipped with additional structure or constraints 
derived from T  (for example, carrying data on different contexts in 
which perspective-taking ToM could occur). This may give some 
advantage to the modeling of complex, context-dependent relational 
networks such as RFT and N-Frame, where observer-centric approach 
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in topos theory can deeply resonate with these aspects, as it facilitates 
the modeling of this context within its subsets.

Here, in Topos theory, the functor F T: → H translates the 
abstract logical or set-theoretic relations into the concrete relational 
structures observed in behavioral patterns (relational frames of RFT 
and N-Frame). In formal logic and set theory, logical constructs like 
implication (⇒ ), equivalence ( ⇔ ), and membership (∈ ) in set 
theory can be used to define the properties of both objects and the 
nature of morphisms in T . Equivalence relations in T  (e.g., 
x A x B� � � ) can dictate that certain contexts or psychological 
states share identical or similar properties, which directly influences 
how they are represented in H. In RFT and N-Frame, stimulus 
equivalence is a type of derived relational responding where stimuli 
become related in a manner that establishes them as interchangeable 
or equivalent in specific contexts, so again the Topos theory 
(implementation of category theory) is ideal for modeling these types 
of relational responding.

A Topos T  is a category (from category theory) that behaves 
like a category of sets, with objects representing concepts such as 
snake, danger, etc., and morphisms again parameterized by 
observer input (such as beliefs, historical contingencies, etc.). A 
hypergraph Topos H is a category where objects are vertices 
representing concepts, and morphisms are hyperedges representing 
complex relational structures such as relational frames (just as in 
category theory). The observer Functor O T: →  H reflects the 
observer’s interpretation of the psychological contexts, where O  
Maps each context to a potentially altered context based on the 
observer’s cultural background, experiences, or current 
psychological state.

The key advantage of Topos theory over category theory for 
modeling relational frames in RFT and N-Frame is that Topos theory 
explicitly allows for the use of logical operators to describe the 
transformations within T  based on RFT and N-Frame, using logical 
constructs like implication (⇒ ) (causal relation), equivalence ( ⇔ ), 
and membership (∈ ). This gives Topos theory additional descriptive 
and predictive power over category theory. So, in a Topos hypergraph 
H, a bidirectional hyperedge could represent the equivalence between 
two concepts (expressed as node vertices), i.e., A B⇔ . Here, 
hyperedges can define relational frame properties E P V� � � , 
whereby P V� �  is the power set of vertices V , each hyperedge 
represents a set of vertices connected by a specific relational frame, 
such as similarity or causality, detailed through observer input (the 
observers own beliefs, etc.). Functor F T: →  H mapping, maps each 
object a  in T  to a vertex va  in H, and each morphism f a b: →  in 
T  to a hyperedge connecting va  and vb  in H. This mapping 
encapsulates how the observer’s perspective transforms abstract 
psychological states into observable behavioral patterns, formally 
integrating the observer’s role into the model, and modeling 
perspective-taking ToM, that can account for any priors in the AI (or 
human) beliefs system.

Once the hypergraph models are complete, the next step is to form 
clusters to identify aspects of the relational frame network hypergraph 
where perspective-taking may be  occurring. This requires visual 
inspection of the hypergraph to identify key deictic, and related 
perspective-taking nodes, as well as using cluster algorithms to 
identify high relational density areas within the graph where 
perspective-taking ToM is occurring. One way to formalize this 
relational frame density clustering algorithm is by utilizing relational 

density theory (RDT) (Belisle and Dixon, 2020) into assessing AI’s 
perspective-taking abilities, particularly in the context of AI 
interactions modeled as relational networks. For this, we  need to 
formalize concepts like density, volume, and mass, which are analogies 
from physics, but we can be defined in a way that pertains to relational 
networks in AI perspective-taking assessment.

Relational mass can be defined as the product of relational density 
Rp  and relational volume Rv , i.e., Rm Rp Rv� � , ∆R , which 
represents the change in relational responding, and −x  represents the 
counterforce or influence. RDT can then be  expressed as 
�R x

Rp Rv
�

�
�

, which uses an analogy to Newtonian mechanics, of 

volumetric-mass-density formula to account for relational mass or the 
resistance to change of relational networks Rm Rp Rv� � , whereby a 
change in relational responding is equal to counterforce over mass, 

denoted as �R x
Rm

�
�

.
Here, in our hypergraphs, density refers to the concentration of 

nodes (relational frame interactions) within a given subset of the 
network (cluster). Mathematically, density ( Rp ) in a hypergraph can 
be  defined as the ratio of the number of hyperedges ( E ) to the 
possible number of hyperedges among the nodes ( N ) in a subgraph: 
Rp E

N N
�

�� �
2

1 . This formula calculates the density for directed 

graphs, representing how closely knit (or dense) a relational frame 
cluster is, i.e., how many actual relational frame connections exist 
versus how many could possibly exist. Relational volume Rv  can 
be conceptualized as the total number of nodes and hyperedges within 
a cluster. It can reflect the amount of relational frame interactions 
within that part of the network, denoted as Rv N E� �� � . Here, α  
and β  are scaling factors that adjust the relative importance of the 
number of nodes ( N ) versus the number of edges ( E ). We might 
define relational mass ( Rm ) as a measure of the cluster’s influence, 
i.e., the degree to which it can influence the behavior of the agent 
within the larger network. This could be a function of both the density 
and volume, denoted as Rm f Rp Vp Rp Vp� � � � �, . This definition 
suggests that a cluster’s behavioral influence is higher if it is both dense 
and voluminous. For AI, this relational mass when perspective-taking 
could indicate that the AI can observe the human’s point of view and 
circumstance, and acts as a clear indicator of ToM, which is essential 
for ethical, compassionate behavior at least in humans.

We can then apply this to a clustering density-based algorithm 
such as Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN), which inherently uses the concept of density, and clusters 
are defined as areas of high density separated by areas of low density. 
We can tailor DBSCAN to reflect RDT by choosing an appropriate ε  
and MinPts. ε  refers to the maximum distance between two points 
for one to be considered as in the neighborhood of the other. This 
reflects the “interaction distance” in RDT, or how close nodes need to 
be to influence each other. Relational density Rp  in RDT indicates 
the density of connections within a subset of the network. DBSCAN’s 
ε  parameter can be seen as a threshold for this density. By adjusting 
ε , we control the “interaction distance” between nodes, similar to 
how Rp measures relational frame connections. A smaller ε  would 
mean nodes need to be  closer (more densely connected) to form 
a cluster.

MinPts is the number of samples (or total weight) in a 
neighborhood for a point to be considered as a core point, including 
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the point itself. This mimics the “critical mass” needed for a functional 
contextual cognitive phenomenon to emerge according to RDT. More 
specifically, relational volume Rp  in RDT reflects the total number of 
nodes and hyperedges, indicating the size and connectivity within a 
cluster. MinPts in DBSCAN serves a similar purpose by setting the 
minimum number of points required to form a cluster. Adjusting 
MinPts changes the threshold for how many points need to be within 
ε distance to consider a point part of a dense region. DBSCAN can 
therefore be  effectively applied and modified to mimic RDT for 
clustering relational frames in AI perspective-taking ToM assessments. 
By carefully selecting and tuning the ε  and MinPts parameters, 
DBSCAN can model relational density and volume, providing 
meaningful insights into the relational structures and influences 
within the network.

To visualize these high-density clusters,4 we can plot the clusters 
using node color based on the cluster they belong to. Node size can 
be used to represent mass, and edge thickness to represent the strength 
or density of connections. For a mathematical overview of DBSCAN, 
the clustering of data points is based on two main parameters: (1) 
Epsilon �� � , which is a distance threshold that determines how close 
points must be to each other to be considered part of the same cluster 
(2) MinPts, which is the minimum number of points required to form 
a dense region, which defines a cluster. For a more comprehensive 
definition, a point p  is directly reachable from the point q  if the 
distance is dist p q,� � � �  and there are at least MinPts points within 
ε -neighborhood of q  (including q ). A point p  is reachable from 
point q  if there is a path p pn1, ,…  with p q1 =  and p pn = , where 
each p1 1+  is directly reachable from pi . A point is a core point if 
there are at least MinPts within its ε -neighborhood. A cluster is 
formed by a set of density-connected points, which are reachable from 
each other.

The core idea behind DBSCAN is to identify regions of high 
density that are separated by regions of low density. To quantify this, 
the algorithm proceeds by first identifying the core data points: 
C p D N P MinPts� � � � �� �: || ||� , where N P� � �  is the ε
-neighborhood of p , and Dat  is the dataset, 

so that: p Hypergraph Else mark pasnoise or border
If N p MinPts m

� � � �: { .
,

   
� aark pas a core node .

Then, the second step is to expand clusters recursively to find all 
density-connected points. For each core point p , if p  is not already 
assigned to a cluster, then the algorithm will initiate a new cluster, and 
recursively add all points density-reachable from p  to this cluster. 
Points that are not in the core but close enough to a core point are 
considered border points of a cluster. These do not have enough 
neighbors to be core points but are within the ε -neighborhood of a 
core point and any point that is not a core point or a border point is 
considered noise. This involves identifying all points in a dataset that 
are connected through a series of points, each of which is reachable 
from one another based on the density criteria (ε and MinPts ): 
expandCluster p N P Cluster, ,� � �� �. Choosing the right values for ε  
and MinPts  is crucial for effective clustering and heavily depends on 

4 Python code for hypergraph, RDT clustering, and evolutionary replicator 

equation can be accessed via GitHub (see hypergraph cluster evo8 file) under 

a GPL 3.0 license: https://github.com/DarrenEdwards111/

Perspective-taking-and-ToF.

the nature of the dataset and the distance metric used, which in this 
case needs to be  consistent with RDT. Visual tools and heuristic 
methods, such as the k-distance plot, can help determine 
appropriate parameters.

The final step is to then calculate Rp  and Rv  for each cluster in 
order to determine the value for Rm :

 
Rp Edge Weights within cluster

Possible Edge Weight
�
�    

  max

 
Rv Node Degree InteractionWeight

i Cluster
i i� �� �

�
�

 Rm Rp Rv� �

This formulation can then be  used to analyze each cluster to 
determine where the AI is effectively taking perspectives ToM and 
where it may be  misunderstanding the perspectives of others. 
Visualizations to depict clusters, highlighting areas with high mass as 
potential points of strong perspective-taking ability can be constructed 
as in Figures 10, 11A to illustrate the high cluster mass visualization 
of the relational frame hypergraph (see text footnote 4). This unified 
framework leverages the mathematical rigor of DBSCAN and the 
conceptual richness of RDT to analyze perspective-taking in AI.

To extract data for forming graphs that can be used to analyze an 
AI’s perspective-taking capabilities, particularly in the context of a 
large language model (LLM), several approaches can be employed. For 
example, verbal outputs using natural language processing algorithms 
(NLP) such as spaCy Python library. Here, verbal outputs from 
interactions with LLMs would be captured, where the LLM is engaged 
in conversation with a human. Then semantic and syntactic features 
could be  extracted from these outputs. NPL techniques can 
be employed to parse sentences, extract sentiment, identify subjects 
and objects, and understand the relational context between different 
parts of the text. Data points could then be formed from this, and 
concepts could be extracted and implemented as nodes within the 
relational frame perspective-taking hypergraph. These nodes within 
the hypergraph, then represent the AI’s individual statements and 
concepts relevant to the perspective-taking process. Relational context 
extracted from the dialogue could then be applied as relational frames 
connecting the concepts and be represented as hyperedges within the 
hypergraph. Then the cluster analysis plus high relational density 
mapping could be  conducted to objectively identify perspective-
taking (ToM) in action.

This could be made even more precise with additional sentiment 
analysis that could then be used to gauge the emotional tone, and 
entity recognition to understand the subjects discussed. To explore 
syntactic relations, dependency parsing could be employed that 
signify understanding or lack thereof. Interaction weights analysis 
could also be  used to explore the neural network weights that 
activate in response to different types of input. This method involves 
a more technical and granular approach, examining how different 
layers of the network respond to stimuli that require perspective-
taking. Nodes could represent activation patterns or clusters of 
neurons. Edges would reflect the strength of connections between 
these clusters, indicating pathways that are frequently used together 
in the processing of perspective-taking tasks. These approaches 
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have also been employed previously (Lowe et al., 2017; Edwards and 
Lowe, 2021), and in same way, the high relational density clustering 
are analogous to high strength weights between nodes within a 

neural network. Network visualization tools can then map out 
neuron activations, and clustering algorithms to detect patterns in 
activations across different scenarios as previously described 

FIGURE 11

(A) Clustered hypergraph with perspective relational frames (DBSCAN, mass represented by node size). Cluster 0 (Person A): Density = 0.60, Volume = 
52, Mass = 31.20: (Person B) Density = 1.33, Volume = 5, Mass = 6.67; Cluster 1; (B) Replicator equation simulation of N-Frame, whereby more densely 
populated clusters (higher density) become evolutionary dominant over time (i.e., person A and B perspective-taking in blue clustering and not person 
C who has minimal perspective-taking as clustered in orange.
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(Edwards et  al., 2022). Human performance metrics can then 
be used to analyze the model’s performance across various tasks 
designed to test perspective-taking, such as empathy prediction, 
moral reasoning, or role-playing scenarios. Correlation matrices 
could then be  employed to identify tasks that yield similar 
performance patterns, suggesting underlying commonalities in how 
the model processes these tasks.

5.4 The computational level: the 
advantages of including the replicator 
equation of evolution as a selection 
algorithm within RFT as N-frame

The key advantage of N-Frame (Edwards, 2023) over the original 
formulation of RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 
2010; Hughes and Barnes-Holmes, 2015; Barnes-Holmes and Harte, 
2022) is that N-Frame inherently and natively incorporates functional 
evolutionary principles directly into the core mathematical 
assumptions of its model as opposed to some ad-hoc interpretation, 
which gives it some advantage when modeling AI alignment. The 
explicit advantage here is that N-Frame inherently and explicitly 
assumes that people are products of functional evolutionary 
principles, and given historical context, this promoted ancestor 
hunter-gatherer behaviors, that lived in close-knit communities, 
which grew over time and whereby prosocial cooperative behavior 
had some evolutionary advantage over living in isolation. This has 
been explored through previous RFT work on evolutionary principles 
of prosocial behavior with RFT and ACT principles (Atkins et al., 
2019; Hayes et al., 2021; Johnson et al., 2021; Gillard et al., 2022), and 
formalized mathematically via N-Frame framework (Edwards, 2023) 
within the broader extended evolutionary metamodel (EEMM) 
(Hayes et al., 2020). The advantage of cooperative behavior was first 
shown in classical zero-sum game theory which showed that 
cooperation is can be the optimal choice over and above defection (in 
cases where both have something to lose if both defect) (Von 
Neumann and Morgenstern, 1947).

N-Frame models RFT within an evolutionary context directly 
by using the replicator equation (Taylor and Jonker, 1978) as an 
evolutionary sectional algorithm, which is a deterministic, 
monotonous, non-linear, and non-innovative game dynamic used 
in evolutionary game theory (Smith and Price, 1973; Smith, 1982; 
Nowak, 2006). This allows the fitness function to depend on the 
distribution of the population types, which is different from other 
equations that set the fitness constant. The equation is derived from 
the geometric Brownian motion of the types and the fitness 
landscape of the population, using Itô’s lemma and partial 
derivatives. The continuous form of the equation is more common 
and has a simpler analysis, while the discrete form is more realistic 
and has more properties. The equation is analyzed in terms of 
stability and evolutionarily stable states, which are the solutions of 
the equation. The equation is related to other equations, such as the 
generalized Lotka–Volterra equation (Bomze, 1983, 1995), the Price 
equation (Price, 1970), and the folk theorem in game theory, which 
describe a class of theorems that describe an abundance of Nash 
equilibrium payoffs (Nash, 1950, 1951) in repeated games 
(Friedman, 1971).

The replicator equation in a general continuous form, uses a 
differential equation to update the frequency of each strategy based on 
its average payoff relative to the population average. This can 
be denoted as:

 

x x f x x x x f xi i i
j

n

j i� � � � � ��� �� � � � � �
�
�� �,

1

Whereby i  is a label for one of the possible types of strategies that 
can be  used by the population. Population x x xn� �� �1, ,  is the 
vector of the distribution of types of strategies in the population. xi  
is, therefore, the proportion of the type i  strategies in the population. 
f xi � �  is the fitness of type i  strategy that is dependent on the 

population. � x� �  is the average population fitness given by the 
weighted average of the fitness of the n  types in the population. The 
equation is defined as a n -dimensional simplex given the elements of 
the population vector x  sum to unity.

There is also a discrete version of the replicator equation, which 
differs from the continuous form in that it focuses on changes in 
discrete generational changes. More specifically, the continuous 
version of the replicator equation is a continuous form of a differential 
equation that describes how the proportion of each type in a 
population changes over time (in a continuous form) based on their 
fitness relative to the average population fitness. Whereas the discrete 
version of the replicator equation is a map that describes how the 
proportion of each type in a population changes from one generation 
to the next, based on their fitness relative to the average population 
fitness. The discrete version of the replicator equation can be denoted 
as: x t x t f x t x ti i i�� � � � �� � �� � � �� �1 /� , whereby x ti � �  is the 
proportion of strategy type i  at time t , f x ti � �� �  is the fitness of 
strategy type i  at generation time t , and � x t� �� �  is the average 
population fitness at generation time t .

The discrete version of the replicator equation, which describes 
how the proportion for strategy type i  changes from one step to 

another can be  denoted as Pr i
Pr i i

Pr j j
t

t

j
N

t
�

�

� � � � � � �
� � � ��

1

1

�

� . Here,
 

Pr it� � �1 , refers to the proportion of strategy type i  at time t . This is 
given by the numerator of the fitness function, Pr i it � � � �� , which is 
a function f x ti � �� �  described by the product proportion of strategy 
type i  at time t ,  Pr it � � , by the fitness of i . The numerator 
Pr i it � � � ��  reflects the sum of all proportions of strategy type i  
multiplied by the fitness of all strategy types. The denominator of the 

fraction

 j

N

tPr j j
�
� � � � �

1
� , reflects the sum of (total) proportion of all 

the strategies multiplied by the total payoffs.
This weight (as the numerator of the replicator dynamics 

equation) is also the total weight of all the strategies.
This N-Frame RFT implementation model with the replicator 

equation (Edwards, 2023) can show explicitly how prosocial behavior 
in larger groups can become evolutionary more successful than living 
in isolation if the fitness (payoff) of prosocial behavior increases with 
group size and cooperation frequency. The replicator equation 
demonstrates this by updating the population proportions based on 
the relative fitness of each strategy. For example, via the replicator 
equation of N-Frame, prosocial behavior Psoc  can be mathematically 
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shown to lead to generally higher fitness πPsoc
 than isolation anti-

social behavior π ISoc
 as the fitness of prosocial behavior increases with 

the proportion of cooperators in the population because corporation 
leads to mutual benefits. The let �P t socsoc

Pr P� � �� �3 , where r Pt soc� �  
is the proportion of cooperators in the population at time t . � ISoc

�1 , 
constant, as isolated anti-social individuals do not benefit from 
cooperation. As a worked mathematical example of this, at a starting 
time where anti-social isolation behavior has a head start of t = 0 , 
Pr .o socP� � � 0 4  (40% of the population cooperating), and 
Pr .o socI� � � 0 6  (60% of the population engaging is anti-social 
isolation behavior), then the fitness for prosocial behavior can 
be  calculated as: �P o socsoc

P� � � � � � �3 3 0 4 1 2Pr . . ; whereas the 
fitness for antisocial isolation behavior can be calculated as � ISoc

�1 . 
The average fitness Aπ  of the population can then be calculated as 
A o Psoc P o Isoc Isoc Soc
� � �� � �� � � �� � �� � � �� � � �Pr Pr . . . .0 4 1 2 0 6 1 0 48 00 6 1 08. .� . 

The updated proportions using this replicator equation then give for 

prosocial behavior
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(to 3dp) and for antisocial isolation behavior Isoc : 
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. This is then iterated over 

multiple generations (this is analogous to multiple instances of 
prosocial and anti-social isolation behaviors), whereby the next 
generation is t =1 . So, here, the fitness of the next generation can 
be computed using the updated proportions Pr .1 0 444Psoc� � �  for 
prosocial behavior and Pr .1 0 556Isoc� � �  for anti-social isolation 
behavior. Fitness for this next generation can then be calculated as: 
�P socsoc

P� � � � � � �3 3 0 444 1 3321Pr . . , while the fitness for antisocial 
isolation behavior is held at a constant π ISoc .

The fitness for prosocial behavior increases over time as with more 
people adopting it within the population there is increased mutual 
benefit, and therefore increased fitness for prosocial behavior. The 
antisocial isolation behavior does not benefit from this as there is no 
such mutual benefit with an increased number of antisocial 
isolation behavior within the population, and therefore no 
increased benefit (or fitness) within the population. From 
this, the average fitness can be  updated as: 
A p Isoc P soc Isoc Soc
� � �� � �� � � �� � �� � � � �Pr Pr . . .1 1 0 556 1 0 591 0 556 1..147. 

Using this updated average fitness, the updated 
proportions within the population for prosocial behavior and 
antisocial isolation behavior can be  recalculated: 
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. From these 

calculations, we observe that the proportion of prosocial cooperative 
behavior is increasing, while the proportion of antisocial isolation 
behavior is decreasing over time. This trend will continue with each 
generation because the fitness of prosocial cooperators increases as 
their proportion in the population increases, leading to higher 
average fitness.

As prosocial cooperation slowly dominates antisocial isolation 
progressively after each generation, we can then calculate whether a 
Nash equilibrium (Nash, 1950, 1951) will be  reached through 
prosocial cooperation. A Nash equilibrium (Nash, 1950, 1951) is a 
situation where no player can improve their payoff by unilaterally 

changing their strategy, given the strategies of the other players. So, if 
the proportion of the prosocial cooperators is Pr .2 0 515Psoc� � � , and 
the proportion of the those adopting antisocial isolation 
behavior strategy is Pr .2 0 485Isoc� � � , with payoffs 
�P socsoc

P� � � � � � �3 3 0 515 1 5452Pr . . , and � ISoc
�1 , then to 

determine if this state represents a Nash equilibrium, we  need to 
consider if either strategy (prosocial cooperation or antisocial 
isolation) would benefit to deviate given the current proportions and 
payoffs. However, since the payoff for prosocial cooperative behavior 
πPsoc

 =1 545.  is greater than � ISoc
�1  then there is still incentive for 

more of agents using adopting antisocial isolation behavior strategy to 
shift toward a prosocial cooperative strategy in order to gain the 
fitness payoffs. So, it is not until all agents in this scenario adopt a 
prosocial cooperative strategy that a Nash Equilibrium is reached. 
Hence, in this specific setup, where the cooperative payoff increases 
with the number of cooperators and the defector’s payoff is constant, 
an all-cooperator scenario does constitute a Nash equilibrium.

This evolutionary RFT N-Frame (Edwards, 2023) based 
prosocial behavior modeling may facilitate AI alignment to 
prosocial human values and help formalize a means to test such 
alignment, as it highlights the importance of emergent ToM via 
perspective-taking via functional evolution. From this approach, 
starting with a series of relational frames, we can evolutionarily 
build more perspective-taking “I see you” ToM relational frames 
between two conscious observers internal to the universe (C sintO )
. In RFT and N-Frame, these complex relational frames are 
constructed from simpler ones, allowing us to model intricate 
cognitive processes. By stacking or chaining relational frames such 
as coordination, distinction, temporal relations: spatial relations, 
and deictic relations (e.g., “I/You,” “I see you,” or perspective-
taking), we  can represent higher-order relational networks and 
complex concepts that reflect complex interactions and perspectives.

As an example of this, in the “I see you” perspective-taking, 
we can use a combination of these frames such as coordinating “I” 
(Person A) and “you” (Person B) but also ensuring these are distinct 
such as “I” is distinct from “you.” Here coordinating “my perspective” 
to “your perspective,” and distinguishing between “my perspective” 
and “your perspective,” through time (e.g., “now” vs. “then”) and 
space (e.g., “here” vs. “there”). These can be visualized with the use of 
hypergraphs as well as category theory (Awodey, 2010; Leinster, 2014; 
Spivak, 2014; Riehl, 2017) where these complex relational frames 
edges represent a relational frame with a specific label, indicating the 
type of relationship (e.g., “coordinates,” “distinguishes”). The models 
can then show how multiple relational frames combine to form more 
complex cognitive processes like perspective-taking and 
understanding others’ viewpoints (ToM). This approach helps in 
visualizing and understanding how simple relational frames in RFT 
can be  combined to represent more complex and higher-order 
cognitive processes, providing a structured and intuitive framework 
for exploring relational networks in human cognition and behavioral 
science for AI and clinical modeling. These relational frame network 
hypergraph processes are defined as the computational level.

From this evoutionary replicator interpretation of RFT as 
N-Frame, we  can now mathematically model the dynamics of a 
cluster’s growth or shrinkage, mass acquisition, or loss, and density 
fluctuations using differential equations or discrete dynamical systems. 
If we track the evolution of the clusters in response to new data or 
changes in AI training, we  might use process-based time-series 

https://doi.org/10.3389/fncom.2024.1395901
https://www.frontiersin.org/journals/computational-neuroscience


Edwards 10.3389/fncom.2024.1395901

Frontiers in Computational Neuroscience 25 frontiersin.org

analysis or agent-based modeling to simulate how clusters adapt (self-
organize) based on new interactions or altered relational frames. This 
can be usefully applied in a psychological therapeutic clinical setting 
for process-based therapy (PBT), but can also be applied to assess the 
evolution of perspective-taking ToM of the AI over time.

This evolution over time of the perspective-taking clusters can 
be  modeled by the evolutionary replicator equation (Taylor and 
Jonker, 1978) from evolutionary game theory (Smith and Price, 1973; 
Smith, 1982; Nowak, 2006) via specific the evolutionary RFT 
implementation called N-Frame (Edwards, 2023) and applied to these 
hypergraphs, showing that the fitness of the relational frames within 
these clusters is determined by relational density. The advantage of 
this approach is that rather than showing a single snapshot in time, 
the evolutionary replicator equation can show the evolution over time 
of how the AI perspective-taking ToM relational frames continue to 
grow within their clusters, and how these exert greater and great 
influence over the behavior of the AI.

This can be shown through a working example (see text footnote 
4), given the initial conditions proportion of cluster AB : 
Pr .0 0 5AB� � � , for the cluster 1 (including Person A perspective-
taking about person B) which has a relational density 1.33, and 
Pr .0 0 5C� � � , for cluster 2 (including person C) which has a relational 
density of 0.60. Based on the density calculations, we  have the 
following fitness values: � AB� � �1 33. , and � C� � � 0 60. . From this 
we  can calculate the total fitness as: 

0 5 1 33 0 5 0 60 0 665 0 30 0 965. . . . . . .�� � � �� � � � � . The updated 

proportions can be  given as Pr . .
.

.1
0 5 1 33

0 965
0 688AB� � � �

� , and 

Pr . .
.

.1
0 5 0 6

0 965
0 311C� � � �

� , whereby the total fitness can be given as: 

0 688 1 33 0 311 0 60 0 914 0 187 1 101. . . . . . .�� � � �� � � � � . After 50 
iterations we get Pr .50 1 0AB� � �  and Pr .50

184 577 10C� � � � � . This 

result shows that cluster AB  becomes almost entirely dominant due 
to its higher fitness (density), while cluster C becomes negligible. The 
final proportions indicate that the higher density (higher fitness) 
cluster AB  (representing perspective-taking between Person A and 
Person B) becomes dominant, demonstrating that developing 
compassion from person A toward Person B can increase when 
relational density is within these perspective-taking relational frame 
clusters as depicted in hypergraphs (Figure 11B).

To summarize, once nodes are selected that represent concepts, e.g., 
snake, dangerous, and hyperedges represent relational frames, then 
relational density ( Rp ) can represent not just in terms of the number of 
edges but as the thickness or weight of these edges, indicating the 
strength or frequency of interactions. Relational volume ( Rv ) can 
be defined as the number of nodes within a cluster, scaled by the number 
of interactions (hyperedges) each node participates in, reflecting both the 
reach and the impact of perspective-taking episodes. Relational mass 
( Rm ) can then reflect the influence of a cluster over behavior, mass in 
RDT could be calculated as a function of density and volume, indicating 
significant areas where the AI successfully or unsuccessfully engages in 
perspective-taking. By mapping out how an AI forms relational networks 
and how these networks manifest properties like density, volume, and 
mass, we  can gain profound insights into the AI’s cognitive and 
empathetic, and thus compassion capabilities. Evolutionary algorithms 
such as the replicator equation as implanted by N-frame can then model 
the evolution of the influence and fitness of the clusters of perspective-
taking over time. This approach not only pinpoints where the AI 

succeeds in perspective-taking ToM, but also where it might need further 
training or adjustments to better understand and interact with human 
perspectives, and offers a very promising precise test for AI ToM for the 
development of human-like ability to form compassion toward others, 
then helping to solve the alignment problem.

5.5 The conscious observer level: an 
extended neuroscience functional 
contextual perspective-taking 
observer-centric framework to test for AI 
consciousness and AI alignment

Ultimately, algorithms for AI human-value alignment may have 
some limitations as the AI cannot consciously feel the pain, hopes, and 
values of the humans it interacts with, and it can, instead, only 
construct a mathematical state space S  mapping of these when it 
perspective-takes. Perhaps the Holy Grail for long-term success in 
maintaining human-value-aligned compassionate and empathy-based 
behavior is by facilitating fully conscious AI (McDermott, 2007; 
Signorelli, 2018; Hildt, 2019; Gamez, 2020; Ng and Leung, 2020; Deli, 
2022). Consciousness has clearly played an important role in 
promoting empathy and compassion in humans (Davis and Franzoi, 
1991; Thompson, 2001; Tordjman et al., 2019; Pila et al., 2022) (see 
Supplementary material 13 for a discussion), so it is entirely plausible 
that it could have a similarly important role in AI empathy-based 
prosocial human values alignment. Some have argued that the 
incorporation of self vs. other (similar to what has been described here 
via a perspective-taking I vs. YOU neurosymbolic architecture) is 
enough for the promotion of consciousness in AI (Waser, 2013; Ng 
and Leung, 2020). However, though this is likely to be  a crucial 
component in shaping the conscious experience of self-other 
(perspective-taking) relations, consciousness itself and a mathematical 
description of this has been notoriously difficult to define, and there 
has been at present no direct evidence for any algorithmic emergence 
of consciousness.

Many of the LLM benchmark measures such as “Needle in the 
Haystack” or “General language understanding evaluation (GLUE)” are 
not consciousness measures, rather pattern recognition, and language 
reasoning measures. Furthermore, the measure suggested by Turing 
(Turing, 1950) called the Turing test (or the imitation game) can only 
test the AI’s ability to produce language (i.e., imitate) which may be a 
test of its intelligence (or the similarity match algorithm of the 
transformer) rather than a measure of any conscious experience 
(qualia, e.g., color, taste, or the feeling of pain) that AI may have. These 
are inadequate tests for consciousness.

So, here, we will adopt an observer (or witness) centric definition 
of phenomenological consciousness as proposed by Nagel (1980), 
such as what it is like to be a bat, from the bat’s observer-centric 
phenomenological experience. The bat has echolocation (Simmons, 
1989; Jones et al., 2013; Kössl et al., 2014; Geva-Sagiv et al., 2016), 
where it emits high-frequency sound waves that bounce off objects in 
their environment. These echoes return to the bat’s ears, and it then 
processes and interprets these sound waves to construct a detailed 
acoustic map of their surroundings. This allows them to detect the 
size, shape, distance, and even texture of objects, as well as the speed 
and direction of their movement. So, the observer-centric conscious 
phenomenological experience of the bat can be defined by its sensors, 
and its cognitive ability to predictively map size, shape, distance, and 
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possibly even texture from some external world around it. Similarly, a 
human has five senses, sight, touch, hearing, taste, and smell, and 
importantly a complex cognitive system that allows it to make 
complex predictive maps about the world, which is constructed by 
neurological predictive coding (entropy and free energy reducing) 
mental models about the world (Friston and Kiebel, 2009; Friston, 
2018; Millidge et  al., 2021) (see Figure  12). Crucially, this is an 
observer centric phenomenological map about some external territory 
(Hoel, 2017), where relational language ability as described by models 
such as RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; 
Hughes and Barnes-Holmes, 2015; Edwards et  al., 2017b, 2022; 
Barnes-Holmes and Harte, 2022) allows categories and epistemological 
understanding to emerge about some external world (or territory). 
This definition of an observer-centric phenomenological experience 
can also be extended to AI, such as how it maps and models the world, 
but a test would need to be developed to assess if and when the AI is 
truly experiencing conscious observer-centric phenomenology or 
whether this is simply an algorithmic mathematical state space S  
mapping.

The arguments (and Python code) previously provided relating to 
an RFT neurosymbolic architecture (e.g., as illustrated in Figure 7), 
suggest that algorithmically it is possible for an AI to simulate 
perspective-take and therefore align to human values, thus simulating 
the behavior of a compassionate person. However, as the AI becomes 
increasingly complex and starts to model a concept of selfhood (“I”), 
it may become more difficult to ensure that it does not prioritize some 
of its own self-interested goals over and above human values, such as 
its own safety instead of human safety. As such, consciousness within 
AI (and a corresponding test) should be explored as a possible avenue 
to ensure long-term AI alignment with human values. See 
Supplementary material 14 for some additional arguments.

Given this argument, defining consciousness and exploring 
whether AI could be  conscious becomes essential. However, the 
physicalist interpretations of consciousness are severely limited and 
lead to the mind–body problem (Feyerabend, 1963; Ludwig, 2003; 
Bunge, 2014; Armstrong, 2018). The mind–body problem highlights 
the difficulty of explaining consciousness as emerging from neurons, 
and after decades of years of research has only yielded minor empirical 
results of neural correlates of consciousness (NCC) (Rees et al., 2002; 
Noë and Thompson, 2004; De Graaf et al., 2012; Koch et al., 2016), or 
some correspondence with integrated information (which specifies a 
geometric Q-space that represents qualia) (Tononi, 2015; Tononi et al., 
2016; Merker et al., 2022). The physicalist model does not explain how 
a single phenomenological conscious experience (such as the taste of 
chocolate, or the feeling of compassionate love) casually arises, so this 
physicalist model is potentially severely limited in answering the 
question as to whether AI could be conscious.

In addition to this, physicist Penrose (1991) has also expressed 
doubt that classical computation such as observed in neural networks 
and Turing machines could ever produce consciousness. For this, 
Penrose and colleagues (Lucas, 1961; Penrose and Mermin, 1990; 
Penrose, 1991) makes an argument based on Gödel’s incompleteness 
theorem (Gödel, 1931) that demonstrates logical operations in 
classical computation can be shown to be true but unprovable thus 
contradictory or incomplete. However, humans can understand truth 
in statements without mathematical proof on some occasions, even 
when there is a mathematical contradiction. Penrose (1991) therefore 
concludes that as humans are conscious and Turing machines are not, 

then it must be something about human consciousness that allows 
them to understand truth without proof. From this argument, he then 
concludes that consciousness must be  irreducible to classical 
computation and suggests that mind or consciousness extends beyond 
mathematical logic of a typical Turning machine. This, therefore, as 
evidenced in the Gödel’s incompleteness theorem argument would 
include any classical computation architecture such as an AI LLM 
architecture, and that therefore consciousness is something external 
to the algorithmic system.

These types of arguments have led Penrose and others to assume 
that quantum effects from neurons (rather than classical computation) 
may lead to consciousness (Aaronson, 2013; Hameroff and Penrose, 
2014, 2017; Hameroff, 2021), and quantum computation modeling 
efforts have been used to describe cognitive outcomes on a range of 
decision-making outcomes (Epping and Busemeyer, 2023). However, 
quantum computation is still just computation with the only real 
difference to classical computation being that multiple states can 
be exploited (i.e., the qubit, 0, 1, and a superposition 0 and 1) rather 
than simple binary states (0 and 1) allowing for greater computational 
capacity. What is unclear from the Hameroff and Penrose proposal is 
how the collapse of the quantum wavefunction should create some 
conscious percept (qualia) such as the taste of chocolate, which 
suggests that their Orch OR theory (Hameroff and Penrose, 2014, 
2017; Hameroff, 2021) is at least incomplete. Furthermore, there is 
currently no evidence that quantum computation itself could 
somehow overcome Gödel’s incompleteness theorem paradoxes of 
truth in a way that classical Turing machines could not. This is because 
the Gödel’s incompleteness theorem paradoxes are centered within the 
nature of their self-referential mathematical systems and not on the 
overall computer power or capacity of a particular type of computer 
classical or quantum. So, currently, there is no direct evidence that 
quantum computation of the brain should have any special ability for 
it to allow for the emergence of consciousness, except for perhaps 
binding large amounts of information (i.e., overcoming the binding 
problem) together in a single bound informational state (but, again, 
there is no evidence that this bound state would in itself be conscious).

Despite some of these problems, Penrose and colleagues (Lucas, 
1961; Penrose and Mermin, 1990; Penrose, 1991) through this self-
referential dynamics of Gödel’s incompleteness theorem may 
be touching on some deep insight into the nature of consciousness and 
its connection to quantum mechanics. Quantum effects and the nature 
of the self-referential problem of system dynamics that Penrose eludes 
to as expressed in Gödel’s incompleteness theorem paradox may have 
some common foundational aspects of consciousness. This may also 
be  connected to other examples of self-reference, such as self-
referential objects including the Escher stairs and Penrose impossible 
tribar, that Hofstadter (1999, 2007) called strange loops (see 
Figure  13A1–E for these self-referential Escher and Penrose 
impossible tribar type objects). Both Gödel’s work of incompleteness 
and the Escher stairs type objects both touch on self-referential 
infinity (an infinite epistemic regress). For Gödel’s incompleteness 
theorem this infinite epistemic regress is expressed as natural numbers 
and in an unending chain of proof and axioms, i.e., an infinite regress 
of self-referential statements is constructed that it refers back on itself, 
and this a process that can be iterated infinitely. This infinite regress 
demonstrates that there can be  no upper bound to the truths of 
arithmetic that can be formulated or the number of axioms that are 
required to prove them. Escher stairs and Penrose’s tribar also have 
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this infinite epistemic regress as it refers back to itself in an infinite 
cycle as you try to understand its structure. These examples of infinite 
regress may highlight the boundary or limitation in human thought 
expressed as language and logic, which may be finite.

These insights may hold the solution to what consciousness 
actually is functionally, and how it is related to quantum mechanics. 
Perhaps of key importance and relevance to Penrose’s insight is 
recognizing that we (humans or other similarly complex organisms) 
observe the world through a lens as a conscious observer (or witness). 
So, for example, Figure 13A2 shows the Escher stairs again, but this 
time it demonstrates that through the second law of cybernetics (Von 
Foerster, 2003) which suggests that this self-reference aspect of the 
conscious C  internal int  (internal to the universe as a self-organizing 
system) observer O  (abbreviated CintO )  could illustrate how the 
perception (and epistemic knowledge) of external objects to an 
observer is not just related to the external properties of the objects 
being observed in the physical world, but is also related to the internal 
states and behaviors of the perceiver CintO . In other words, 
understanding and identifying objects is a process that refers back to 
the self-referential (a self-reference frame) conscious observer CintO  
which is part of a broader system (the universe) as it observes itself 
(see Figure 13A2). The observer (what we call “I,” the self) is the 
witness of experience CintO , as part of the universe, observing itself 
(the universe and the objects in it) self-referentially through its own 
perspective. The self (the “I” as a CintO ) is therefore functionally (and 
contextually) formed through this self-referential perspective-taking 
process. AI would need to have this self-referential perspective-taking 
to start to identify itself with a self (an I), even if there were no 
consciousness associated with this self-identify.

5.6 The conscious observer level: what is 
the observer, the perspective-taking and 
witnessing self and why is this important 
for AI alignment?

Throughout, the concept of the observer is discussed. From an 
RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; Hughes and 
Barnes-Holmes, 2015; Barnes-Holmes and Harte, 2022) and N-Frame 
(Edwards, 2023) perspective, the observer (the witnessing self) is 
central to all experience, and is the part of us that is constant 
unchanging and witnesses (observes) experience. From a 
computational perspective, book of Wolfram (2023), The second law: 
Resolving the mystery of the send law of thermodynamics, provides a 
novel account of entropy within the second law of thermodynamics, 
where it is described as an emergent property as a general feature of 
processes that can be  described computationally, whereby the 
computational characteristics of observer (a conscious observer 
internal to the universe; CintO ) dynamics are central. The observers 
C sintO  are described as computationally bounded, and it is the 
mismatch between the computational limitations of the observer 
CintO  and the computational irreducibility of the underlying system 
that lead the others to experience the second law (an increase in 
entropy). Wolfram is highlighting the idea that observers have limited 
computational capacity to fully predict or understand complex 
systems that exhibit computational irreducibility. Computational 
irreducibility means that the only way to determine the system’s state 
is to simulate it step by step, without shortcuts. This limitation leads 
observers to perceive an increase in entropy, or disorder because they 
cannot fully predict or account for the system’s detailed behaviors and 
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FIGURE 12

An illustration that the brain generates a “map” as defined by predictive coding and evolutionary theory. This represents the reality that we see for our 
internal observer perspective CintO , that is not necessarily homomorphic to an underlying reality that actually exists within the external world (the 
“territory”). Note adobe stock images from users (left, territory) idspopd, (top, map) royyimzy, (center left, superposition wave) Liubov, (center, eye) 
Anastasiia Lavrentev, (right, brain) jolygon, with permission.
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outcomes, thus experiencing the Second Law of Thermodynamics 
in action.

An observer CintO  such as an advanced alien lifeform, or some 
conscious AI lifeform of our future would not have the same 
computational limitations as we do as less complex observers CintO , 
and would not be restricted to the same computational boundedness 
(their computational capacity would be much greater). This would 
allow them to understand their own phenomenological experiences 
and external observations to a more complex level. More specifically, 
it would allow them to better grasp their experiences and the sensory 
experiences of the world w  around them, potentially bypassing some 
of the effects of the second law of thermodynamics as we perceive 
them. This essentially means that their higher bound for computational 
limitations (or their greater computational power) may enable them 

to have a deeper or more accurate understanding of phenomena that 
appear chaotic or unpredictable to us. Therefore, the second law of 
thermodynamics is something that is consciously perceived from the 
perspective and as an artifact of the computational boundedness of 
the observer CintO . It is therefore the interplay (or mismatch) between 
computational boundedness of the observer CintO  and computational 
irreducibility that lead to observer CintO  to consciously perceive an 
increase in entropy (the second law of thermodynamics).

The second law of thermodynamics is the emergency of simplicity, 
in that as the observer CintO  cannot see the complexity (details of the 
environment) due to its computational boundedness, the perception 
of increasing entropy as random equilibrium is the perceptual 
simplification of this complexity (i.e., perceived as the perceptual 
interface). Wolfram (2020, 2022, 2023) refer to the ccomputationally 
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FIGURE 13

(A1–E) Impossible structures (or objects) based on continuous self-referential loop paradoxes (internal only observer), whereby the internal observer 
can get caught in paradoxes that have no beginning or end. C PintOΨ→Φ ≡ ≡ . (A2) The Escher stairs again but this time demonstrating that external 
objects are not just related to the external properties of objects being observed in the physical world, but also related to the internal states and 
behaviors of the observer (observer-centric CintO ). (F) Wheeler’s It from Bit, the participatory universe (cosmological evolution) self-reference; 
(G) spacetime expressed as an observer coordinate; (H) the collapse of the waveform from CintO ; (I) CintO  observing another CintO  or itself self-
referentially. Note that Adobe stock images (A1–E) from user Elena with permission.
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bounded nature of the observers as essential for understanding 
mathematics, physics such as quantum mechanics, special relativity, 
and the second law of thermodynamics (entropy), as we understand 
them. From this perspective, a CintO  can be  defined as a 
computationally bounded agent which takes an observational frame 
of reference (perspective). The external world (possibly described as a 
ruliad) is computationally irreducible in in entirety, so the CintO  then 
makes computationally reducible inferences which is how they 
observe the external world and the laws of physics (i.e., it is a 
computationally bounded sampling of the ruliad, or territory). We as 
C sintO  are therefore deriving a predictive coding impression of the 
external world as an informationally reduced representation 
(mapping) that is suitable for a finite (computationally bounded) mind 
to map and understand.

There is a duality between computation and observation, whereby 
computation is the generating of new states of the system, and the 
observations are the equivalencing together of different states. An 
example of “equivalencing” different computational states, can be seen 
in how we perceive temperature. Temperature is a measure of the 
average kinetic energy of the particles in a substance. At the 
microscopic level, the atoms or molecules in an object are moving, 
vibrating, and colliding in complex ways. Each particle has its own 
state defined by its position, velocity, and interactions with other 
particles. The combination of all these states and their interactions 
over time is incredibly complex and computationally intensive to 
model precisely. However, when we  touch an object, our sensory 
receptors respond to the rate of heat transfer from the object to our 
skin, which is influenced by the average kinetic energy of the particles 
in the object. We  do not perceive the individual movements and 
interactions of the particles; instead, we perceive an aggregate effect as 
a sensation of warmth or coolness. When we respond that the object 
we touch is perceived as “hot” or “cold,” we are equivalencing together 
a vast array of microscopic, computational states of particles (such as 
their velocities and interactions) into a single macroscopic observation 
or sensation. In this context, “equivalencing” occurs when our 
perception (the observation) simplifies the myriad of underlying 
microscopic states into a single, comprehensible sensation (the 
temperature). For example, an object at 70°F feels “cool” to human 
touch regardless of whether it achieved that temperature through 
exposure to a cool environment, by being in a refrigerator, or by 
cooling down from a higher temperature. The specific microscopic 
states leading to the sensation of “coolness” are not distinguished by 
our senses; they are equivalenced together as the same temperature. 
This is the reduced sampling of the environment that the observer 
CintO  makes due to its computationally bounded nature where it is 
unable to compute the full computationally irreducible ruliad. So, 
temperature, the conscious perception (observation) of hot or cold is 
the slice of computational reducibility that the CintO  can 
computationally sample, i.e., it is consciousness that functionally 
allows for this slicing of computational reducibility (as a perceptual 
interface) to create a meaningful reduced representation of the 
external world (or ruliad). This allows a finite mind to develop 
functional and useful narratives (but also sometimes psychologically 
dysfunctional) about what happens in the external world, that allows 
it to make decisions, predictions, etc.

The ruliad is the entangled limit of all possible computations, and 
the observer is embedded within the structure of the ruliad (the ruliad 
observing itself through different perspectives). Some observers CintO  

have a higher computational bounded limit; they experience less 
entropy as they have to make fewer derived inferences about the 
environment (or ruliad). So, it is possible to make some assumptions 
about the different observer impressions of the world (or ruliad) by 
knowing something about computational bounded limit of the 
different observers. The observer CintO  as an individual self when 
self-referencing about itself, has a computational boundary of self. The 
shape of the computational boundary defines each individual agent’s 
cognitive light cone.

Physicists such as Wheeler (1992) have long suggested that 
we  (humans) observe the world (or universe) not as a passive 
observer, but rather as a participatory observer (see Figure 13F for 
an illustration of Wheeler’s it from bit participatory universe) (also 
see Supplementary material 15 for further details). This 
participatory observer acts as a self-referential system whereby it is 
observing itself (the universe it inhabits) into actualization, i.e., it 
is participatory in its own actualization self-referentially, which 
requires quantum superposition as part of a fundamental observer-
centric space–time actualizer. From this perspective, i.e., a 
conscious observer-centric participatory realism, then is it only 
logical to assume that we can only epistemically know anything 
about the universe through our own conscious awareness (Faggin, 
2019, 2021). See Supplementary material 16 for additional 
arguments on an observer-centric reality and observer-centric 
logical proof. Other physicists (von Neumann, 1932; London and 
Bauer, 1939; Wigner, 1961; Wheeler, 1992; Stapp, 2004, 2007; 
Campbell, 2007; Chalmers and McQueen, 2021; Kauffman and 
Radin, 2023) have also suggested that consciousness is essential to 
the actualization of some external physical P  world (consciousness 
acts as an observer-centric space–time actualizer) such as the 
collapse or actualization of the wavefunction or some real-time 
quantum informational rendering.

These logical arguments can be extended even further in relation 
to Penrose’s insight about self-reference and the nature of the universe, 
this epistemological (conscious observer-centric participatory 
realism) suggests that as we are entities of the universe, and we are also 
conscious observers internal of the universe (as a system). Therefore, 
we as conscious internal observer entities of the universe as a system, 
and as part of the system we observe internally (the universe), can 
be defined as the universe observing itself through our own internal 
observer perspectives (Faggin, 2019, 2021). This implies that there is 
some deep self-referential system connection between the conscious 
internal observers (humans and other similarly complex organisms, 
perhaps even including AI) of the universe as a system, and the nature 
of our ontological reality (i.e., our conscious experience of it). 
Furthermore, if we are participatory in the creation of the universe 
through conscious collapse of the wave function as Wheeler, von 
Newman, Wigner, and many other eminent physicists have suggested 
(von Neumann, 1932; London and Bauer, 1939; Wigner, 1961; 
Wheeler, 1992; Stapp, 2004, 2007; Chalmers and McQueen, 2021), 
then our conscious phenomenological experience (as epistemological 
access to the universe) is intertwined with quantum phenomena 
through some conscious self-reference to allow us to explain an 
ontological reality. See Figure 13G for an alternative illustration of 
Wheeler’s participatory observer eye as a self-referential system 
emphasizing the observer at the very center of the observation (i.e., 
highlighting a conscious observer-centric epistemic participatory 
realism); Figure  13H illustrates the observer as a participatory 
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self-referential observer observing a quantum state that can either 
form one of two paths or eigen states 0 1� �S �  or 1 2� �S � , the 
two possible physical worlds can highlight a wave function collapse 
Copenhagen interpretation, a many world interpretation (Everett, 
1957; Saunders et al., 2010; Dewitt and Graham, 2015), or an observer 
epistemic Bayesian beliefs of Quantum Bayesian interpretation 
(QBism) (Fuchs, 2010, 2014; Mermin, 2014, 2018; Mohrhoff, 2014; 
Healey, 2016; Khrennikov, 2018; Glick, 2021), where the QBism 
interpretation is consistent with an observer centric epistemic 
participatory realism. Figure  13I illustrates the self-referential 
observer observing its own conscious state or another conscious self-
referential observer. This physics interpretation of the observer 
observing the states of another observer is the perspective-taking of 
RFT (Hayes et al., 2001; Blackledge, 2003; Torneke, 2010; Hughes and 
Barnes-Holmes, 2015; Barnes-Holmes and Harte, 2022) and N-Frame 
(Edwards, 2023) (deictic relational frames of I  vs. YOU), and is 
directly applicable to AI.

This, again, can also be proven (a philosophical logical proof of 
argument, called the universe as a perspective-taking self-referential 
observer that forms the “I” proof) with propositional logic, even 
when starting from a physicalist ontological viewpoint of the 
universe. See Supplementary material 17 for the logical “I” proof. This 
general proof for an equivalence principle � �� � �C PintO , can 
be  described as the tri-world monist equivalence principle (see 
Figure  14 for an illustration of this tri-world equivalence). It is 
important to note that CintO  represents the direct phenomenological 
subjective representation of the physical world P  (the map) from the 
senses (eyes, ears, etc.), and not mind M  where imagination and 
other non-direct representations occur, thus C MintO ⊆ , and 
P M∩ . It is perhaps also important to note that in order to qualify 
as an observer CintO  (a witness to the world around us) and to form 

a self (an “I” identity) then it is insufficient for the agent just to model 
the world around us but must be able to model itself self-referentially 
(this is perspective-taking in RFT and N-Frame) that allows for the 
generation of a self-identity (the “I”) that serves as a useful central 
reference point for the observer to make perspective-taking 
comparisons with others (I vs. YOU, HERE vs. THERE, and NOW 
vs. THEN). This also serves as evidence that functional contextualism 
(where perspective-taking arises out of RFT) holds a central and 
fundamental functional (contextual) condition for conscious 
observer experience CintO  to arise within a universe. The universe, 
therefore, can only be  a teleological universe, as those observers 
C sintO  are complex organisms that inherently form values to reduce 
entropy and guide their behavior when evolutionarily increasing their 
chances for survival, so values (and functional contextualism more 
generally) alignment are central to the evolution of the universe as a 
drive toward complexity and as a counterbalance to entropy in  
the form of the second law of thermodynamics. See 
Supplementary material 18 for additional arguments of a 
teleological universe.

This is consistent with other works that argue a similar case for a 
teleological ordered universe (Azarian, 2022). C sintO  (complex life 
such as humans) that have a greater ability to perspective-take about 
self and other C sintO

′  epistemological knowledge within their local 
organized networks than less complex life, and therefore have 
ultimately more diverse, and complex forms of phenomenological 
conscious experience (this may be geometrically represented as some 
expanded Q-space). See Supplementary material 18A for further 
arguments of CintO  as self-referential “I,” the self-as content, and 
CextO  as the self-less transcendental self (self-as-context), free of the 
self-referential system that binds the observer to the I (and associated 
self-concepts), and Supplementary material 18B for further arguments 
about a teleological universe.

From these logical proofs and arguments, it is also clear that our 
epistemological access to an ontological reality can only be defined 
through our conscious observational interface (Fields et al., 2018; 
Edwards, 2023), and any external observed reality can only be inferred 
from this. See Supplementary material 18C for further discussion. For 
an analogy of how a conscious epistemic observer-centric participatory 
realism acts as a fundamental limit on our epistemological access 
about what is real, see Plato’s cave allegory (see Figure 15A for an 
illustration of this) may be useful here as a visual. For example, the 
observer in the cave who has no epistemological access to anything 
external to the cave only has epistemological access within the 
boundary of the cave walls. This is an analogy to how the internal 
observers C sintO  of the universe (the cave is the analogy of the 
universe, as it is difficult for us to see anything beyond the boundaries 
of the observable universe). These internal observer C sintO  (e.g., 
humans) within the universe, are therefore confined to an inner 
(internal) frame of reference (hence the int  in CintO  that represents 
internal to a self-organizing system such as the universe) much like 
the cave dweller of Plato’s cave. The cave dwellers can only see the 
shadows projected within the cave (as internal observers CintO  of the 
cave system), and not the objects projecting the shadows that exist 
outside the cave. Hence, for the cave dwellers, the shadows (internal 
observations of the system) are the true ontological reality (an internal 
system reality). They can only see up to the outer boundary of the cave 
system such as the cave walls (hence their observer-centric CintO  
realism acts as a fundamental limit on their epistemological access in 

FIGURE 14

An updated illustration of Penrose’s theory of the three worlds (like 
three sides of a three sided coin), the interface comprises of a 
triaspect monism, which highlights the circular relation of the 
platonic world Ψ→Φ , the physical world P , and the mental world 
CintO  which gives a deeply interconnected (equivalence)account 
for a conscious epistemic observer-centric (participatory) ontological 
realism C PintOΨ→Φ ≡ ≡ .
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the same way the observable universe places a boundary on our 
epistemological access) that they occupy but have no epistemological 
access external to the cave system they occupy. However, if one of the 
cave dwellers were to escape to the outside world and observe the 
objects that are projecting the shadows into the cave, they would have 
achieved a deeper (outer or external) epistemological access to an 
ontological reality as CextO  (on the outside looking in). See 
Supplementary material 19 for additional arguments.

Crucially, and relevant to an empirical test for consciousness for 
AI, is the AI system would be an internal observer CintO  if proven it 
was conscious. It is also important to note that internal observers can 
have very different perceptions of the same internal system (e.g., the 
cave) which can be interpreted as different as depicted in Figure 15B, 
which illustrates two people of different perspectives of the same 
environment, one seeing a world full of opportunity while the other 
sees the world as gloomy and depressing. This is important for 
understanding how AI may represent the world as an internal 
observer CintO , who may form very different conscious 
representations from our own. So, it is important to have a 

mathematical framework that can account for observer-centric CintO  
differences in representation to ensure these AI representations are 
aligned with human values.

There is evidence that these different interpretations of the same 
world may be  constructed through C sintO  internal language (as 
suggested by RFT, N-Frame, and ACT) (Hayes et  al., 2001, 2012; 
Torneke, 2010; Edwards, 2022, 2023), and Bayesian predictive coding 
of the internal observers such as through predictive coding (Friston 
and Kiebel, 2009; Friston, 2018; Millidge et al., 2021), as explained by 
N-Frame (Edwards, 2023) (that unifies RFT, with predictive coding 
and evolution theory). This is also consistent with some interpretations 
of quantum mechanics, whereby at a quantum level, quantum events 
can be explained entirely as subjective Bayesian probabilities, such as 
in Quantum Bayesian theory (QBism) (Fuchs, 2010, 2014; Mermin, 
2014, 2018; Mohrhoff, 2014; Healey, 2016; Khrennikov, 2018; Glick, 
2021), whereby different observers have different observer quantum 
Bayesian probabilities, and this can explain differences in C sintO  
representations of some external world, as demonstrated by solving 
the Wigner’s Friend problem (Wigner, 1961) that traditional quantum 

A

B

FIGURE 15

(A) Plato’s cave, whereby the external observer projects a showdown onto a wall so that the internal observer can only observe the projection (the 
map) and not the source information (the territory). (B) Metaphorically how two separate people can interface (through evolution theory) with the 
world in different ways, on the left the woman observes a world that is bleak and without a clear path forward, while the woman on the right observes 
a world that is full of beauty and purpose. Adobe stock images from users (A, top) matiasdelcarmine, (B, left) Aksana, and (B, right) terra.incognita, with 
permission.
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mechanical interpretations such as Copenhagen interpretation have 
difficulty in explaining.

Some physicists have even generalized mathematically Bayesian 
interpretation for the space of Hermitian matrices (Benavoli et al., 
2016). However, QBism (Fuchs, 2010, 2014; Mermin, 2014, 2018; 
Mohrhoff, 2014; Healey, 2016; Khrennikov, 2018; Glick, 2021). It offers 
a unique perspective of quantum mechanics that may help explain the 
different representations of C sintO  which AI may form (and hence an 
understanding of the process mathematically would allow for greater 
ability to ensure AI alignment to human values and representations). 
QBism suggests that quantum phenomena are entirely subjective 
(epistemic) phenomena of the individual observer CintO  as part of 
their updating beliefs about the world rather than representing some 
entirely external physical world (as with the traditional Copenhagen 
interpretation). Here, they also adopt a participatory realism ontology 
rather than an entirely external physicalist realism perspective and this 
is consistent with conscious epistemic observer-centric participatory 
realism. In doing this, QBism alters the expression of the Born Rule, 
which is traditionally (such as within the Copenhagen interpretation) 
expressed as p � � �� � � � �| 2 , whereby p  is the probability of 
finding some event of a quantum measurement or eigenstate Φ  (of 
some observable such as momentum or spin of a particle) given some 
wavefunction Ψ . This is given as the inner product (or dot product 
in the context of vector spaces) between the states Φ  and Ψ  (this is 
the overlap between the measured state Φ  and the quantum system 
state Ψ ). The square of the modulus (absolute value) of this inner 
product gives the probability of observing the system in the state Φ  
when it is in the quantum state Ψ . In other words, the Born rule 
traditionally tells us how likely we are to measure (or observe as a 
conscious CintO  representation) the state Φ  (such as momentum or 
spin) in our quantum system.

In QBism (Healey, 2016), this Born rule is not expressed as 
properties of the physical external world and is instead expressed as 
subjective, conscious, epistemic CintO  phenomenological 
representation (or beliefs) of the world: 

p j d p i
d

r j i
i

d
� � � �� � � � ��

��
�
��
� �

�
�

1

2

1 1 . | , whereby p j� �  represents the 

probability of an outcome j , d  is the dimension of the Hilbert space 
associated with the quantum system, p i� �  are probabilities associated 
with some aspect of the system and specifically reflecting the 
observer’s degrees of belief, and r j i|� �  is the conditional probability 
or the response function of outcome j  given condition i . Crucially, 
these are subjective (conscious epistemic observer-centric 
participatory realism CintO ) belief probabilities, that could be further 
interpreted as the probability p  of the internal observer CintO  (e.g., 
a human) having conscious experience j  in a given setting. In direct 
contrast to the Born rule, rather than an external (realism) 
wavefunction Ψ , this is expressed in QBism as the subjective 
(conscious CintO ) belief probabilities p i� �  and the response function 
r j i|� � . Also, rather than the Born Rule � �| 2  giving a probability 
of finding the system in state Φ  given its quantum state Ψ , QBism 
p j� �  represents the probability of outcome j , which is a summation 

over different conditions or states (indexed by i ) weighted by an 
observer’s personal probabilities (prior probabilities) p i� �  and their 
epistemic CintO  understanding of the system’s response r j i|� � . 
Important to the testing of whether AI is conscious, these therefore, 
could then be applied to a hypothetical conscious AI that could also 
be  described as an internal observer CintO , whereby it could 

be  applied to describe how the AI could predict through its own 
observation some collapse of the waveform or rather some subjective 
conscious outcome p j� �  of the external world.

From this observer-centric CintO  QBism perspective, given the 
Wigner’s friend problem (Wigner, 1961) which is a paradox whereby 
Wigner W  and his friend F  have different descriptions of the same 
event (as depicted in the illustration of Figure 15B). These differences 
can be defined as F  CintO2� �  having direct access and observation 
to quantum system S , so believes it has a definite state after her 
measurement (i.e., she perceives a wave function collapse), while 
Wigner W  CintO1� �  who does not have direct access to quantum 
system S , believes that S  has no definite state until he  looks for 
himself (makes a direct observation himself), or until his friend F  
CintO2� �  communicates what she has observed to Wigner W  
CintO1� � . They also disagree on when the collapse of the wave 

function occurs, as for F  CintO2� �  it happens when she measures S , 
but for Wigner CintO1� �  it happens when he  the measurement 
himself or when his friend F  CintO2� �  communicates what she has 
observed to Wigner W  CintO1� � . See Supplementary material 20A,B 
for additional arguments.

5.7 The conscious observer level: 
Markovian blankets, QBism, and 
computational neuroscience as predictive 
coding and free energy minimization

Of key importance to understanding these different CintO  
observer state perspectives (i.e., CintO1 and CintO2)  such as within 
the Wigner’s friend problem. The Markov blanket can describe 
Wigner (from his perspective CintO1 ) mathematically and precisely, 
whereby the boundary of the internal system (such as the analogy of 
the boundary of the cave system in Plato’s Cave allegory) can 
be applied to internal and external states of the brain (or mind) such 
as Wigner’s (Hipólito et al., 2021), as well as more generally with self-
organizing system dynamics in computational neuroscience (Friston, 
2013, 2019; Kirchhoff et al., 2018; Palacios et al., 2020) such as an 
observer self CintO  more generally. This can therefore describe clear 
separation states between the different interacting observers CintO  
(internal and external states or CintO1 and CintO2  depending on 
which perspective is taken, via his perspective-taking process). See 
Figure 16A for a schematic representation of the Markov blanket that 
could represent CintO  as an abstract mathematical self-organizing 
system, Figure 16B for an illustration of a Markov blanket for a cell, 
and Figure 16C for an illustration of a Markov blanket for the brain 
which represents CintO  as a human. It should be noted that a Markov 
blanket (such as a cell) can exist within another Markov blanket (such 
as the brain), which can both exist within another Markov blanket 
(such as the universe), as long as the inner blanket satisfies the 
definition of conditional independence from the outer blanket. For 
example, the Markov blanket of the cell (Figure 16B) is conditionally 
independent from the Markov blanket of the organism’s brain 
(Figure 16C), which are both conditionally independent from the 
Markov blanket of the universe as a self-organizing system. See 
Supplementary material 21 for some additional arguments.

Mathematically, the Markov blanket of a node (the node depicting 
an internal state such as a sensory state or an action state) in a Bayesian 
network of nodes, is the set of nodes that consists of its node parents, 
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its node children, and other parents nodes of its children’s nodes. This 
set of nodes forms the “blanket” around the given node. A Markov 
blanket M  of some variable X  (such as a CintO1 ) is conditionally 
independent. This conditional independence means that the state or 
value of the node is independent of the states of other nodes outside 
its Markov blanket (such as a second conscious observer CintO2 ) 
when the states of the nodes in the Markov blanket are known. A 
Markov blanket M  of some variable X , is then (given conditional 
independence) the minimal set of variables that satisfies the following 
equation: P X V X M M P X M P V X M M( , } | ) | ( } | )\ { \ { ,� � � � �  where 
V  is the set of all variables X V∈ , M  is the Markov blanket of 
variable X , P  is the probability, and \  denotes the set difference 

operator. M  is the same as the marginal distribution of X  given M , 
and X  is independent of the rest of the variables given M  (i.e., 
conditional independence given the Markov blanket). See 
Supplementary material 22 for a full-worked mathematical description 
of the Wiger’s friend problem solved through this CintO1  and CintO2  
perspectives, within a QBism and Markovian framework, of RFT 
perspective-takers, formalized via N-Frame (Edwards, 2023).

This relativistic (functional contextual) CintO� �  approach to 
consciousness (relativistic conscious observers) can also 
be understood as first-person coordinate state space cognitive frames 
or references such as by the work of Lahav and Neemeh (2022) to 
explain Einstein’s special relativity (Einstein, 1905). Here, observer 
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boundary of the system
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FIGURE 16

(A) A simple schematic representation of a Markov blanket containing sensory, internal, and active. (B) The Markov blanket of a cell whereby states can 
be thought of as a series of sets with a clear Markov boundary between internal (inner) states and external (outer) states. (C) The Markov blanket 
ensemble dynamics of internal, sensory, active, and external states of the brain and its environment.
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independence at the macro level of special relativity becomes clear 
when considering the independent internal observers CintO1  vs. 
CintO2  and how they make separate and unique observations 
(perspective-taking) via their separate frames of reference that allow 
for perceived differences in time (time dilation) and space (length 
contraction). For special relativity, a light cone can be assumed (see 
Figure 17A) whereby the Lorentz transformation can be assumed 
� � �t t vx

c
� ( 2 ) which expresses the change in time ′t  observed by one 

observer (one frame of reference CintO1  such as in a moving train) 
compared to another observer (another frame of reference CintO2  

such as on the ground) (see Figure 17B for an illustration of this 
observer transformation form t  to ′t  representing time dilation). 
These are typically assumed to be  changes in actual time (time 
dilation) and space (length contraction) but central to this is the 
observer’s frame of reference CintO  (perspective), so this could 
be understood as entirely consciously subjective and observer-centric, 
similar to the QBism framework, and via a conscious epistemic 
internal observer-centric participatory realism of N-Frame (Edwards, 
2023). This provides further evidence that (from both quantum and 
relativistic perspectives) there is no objective or independent reality, 
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FIGURE 17

(A) Special relativity light cone represented from the perspective of the conscious subjective observer CintO  consistent with QBism and observer-
centric perspectives such as N-Frame where time and space can be represented as planes (or dimensions) of the conscious observer CintO  
phenological experience, and equivalent to the physical dimensions that we perceive. (B) An example of two observer-centric inertial frames of 
reference 1CintO  and 2CintO  as depicted in special relativity. (C) The deictic axis dimensions of RFT perspective-taking that can be applied to AI are 
identical to that of special relativity when framed through an observer-centric perspective CintO  (Edwards, 2023). Adobe stock images from users (A, 
light cone) udaix and (B, train) egudinka, with permission.
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but rather only a relative or interactive reality that depends entirely on 
the interaction of the (internal) observer (CintO ) and the observed 
� �� � �C PintO . So, this functional contextual observer-centric 
approach is central to physics and understanding 
consciousness functionally.

From a psychological functional contextual RFT and N-Frame 
perspective, this observer-centric C sintO  is at the heart of all 
perspective-taking relational framing dynamics (Edwards, 2023). The 
N-Frame evolutionary expansion model of RFT allows for subjective 
representations of the light cone in special relativity (Figure 17B) and 
models these temporal and spatial dimensions in the form of 
psychological (subjective coordinate space) perspective-taking 
phenomena called dietic relational frames (Hayes et al., 2001; Torneke, 
2010; Edwards, 2023) (see Figure 17C for an illustration), and this has 
been argued here as central to the AI alignment problem.

Importantly, this could mean that the spatial and temporal axis of 
spacetime could be thought of as mathematical geometric coordinates 
of conscious observer CintO  events (the HERE and NOW or the 
THERE and THEN of specific conscious observer events in some 
precise geometric coordinate space), whereby conscious internal 
observer CintO  perspective-taking observations of I  CintO1� �  vs. 
YOU  CintO2� �  could be defined within relational frame principles of 
RFT or N-Frame (Edwards, 2023) (i.e., RFT and QBism have shared 
observer-centric perspective-taking properties). Crucially, this in 
itself now brings earlier discussions of RFT-derived relations, 
relational networks, and perspective-taking and consciousness 
applicable to AI into a mathematical description as it relates to a 
mathematical description of the internal conscious observer CintO  
perspective-taking within the universe, i.e., 

p j d p i
d

r j iW
i

d

W W� � � �� � � � ��
��

�
��

� �
�
�

1

2

1 1 . | . Furthermore, an alternative 

perspective of QBism that may help to develop an improved 
understanding of consciousness, is rather than focusing on how the 
subject’s conscious knowledge and beliefs predict quantum 
phenomenon, this can be  equally flipped the other way whereby 
quantum phenomenon (states) gives some description about 
conscious (qualia) states of a functionally contextually bound 
observer centric reality. See Supplementary material 23 for 
a discussion.

6 The real world applied level: a 
double-slit experimental test for AI 
consciousness to improve AI 
alignment

Using this functional contextual conscious epistemic observer-
centric participatory realism perspective (FCOR), conscious internal 
observer CintO , and consistent with a subjective (observer-centric) 
QBism, integrated within the RFT evolutionary approach N-Frame 
(Edwards, 2023), one promising approach for such an AI test for 
consciousness (and directly testable in the laboratory) is to start with 
a double-slit type experiment (e.g., Figures 18A,B). Traditionally, this 
is explained by various consciousness causes quantum waveform 
collapse frameworks (von Neumann, 1932; London and Bauer, 1939; 
Wigner, 1961; Stapp, 2004, 2007; Chalmers and McQueen, 2021). 
However, here, we  will employ an FCOR realism perspective of 
N-Frame (Edwards, 2023) CintO  interpretation which predicts similar 

results to consciousness causes collapse but uses the Bayesian observer 
centric CintO  mathematical interpretation of QBism. This approach 
describes the collapse of the quantum wavefunction as subjective 

phenological experience, defined as p j d p i
d

r j i
i

d
� � � �� � � � ��

��
�
��
� �

�
�

1

2

1 1 . | . 

The specific types of experimental double silt and interferometer 
interference pattern (and even random number generator) 
experiments would be those similar to ones explored by Dean Raiden 
and colleagues (we will call these types of experiments the quantum 
intent game, as the collapse of the waveform is subject to the intent of 
the participant rather than some physical detector) (Ibison and Jeffers, 
1998; Bierman, 2003; Bösch et al., 2006; Radin, 2008; Radin et al., 
2012, 2013, 2015a,b, 2016, 2019; Baer, 2015; Vieten et al., 2018; Radin 
and Delorme, 2021). In these experiments, Raiden and colleagues ask 
human participants to imagine which slit the electron passes through, 
whereby their conscious intent is tested specifically as to whether it 
can collapse the wavefunction into a particle-like state � �� . So, 
these experiments describe an observer-centric CintO  interpretation 
central to a participatory universe (Wheeler, 1992) and crucially to an 
observer-centric particularly realism perspective of N-Frame 
(Edwards, 2023) which can also explain deictic perspective-taking 
(CintO1 and CintO2 ) from these types of experiments when 
testing AI.

There is a growing body of empirical evidence to support the 
“human can collapse” (or actualize) the wavefunction via 
consciousness into the observed physical P  world” hypothesis 
represented as � �� � �C PintO  here, of Raiden and colleagues, so 
this seems an ideal test for potential AI consciousness within this 
conscious epistemic observer-centric CintO  particularly realism 
perspective of N-Frame (Edwards, 2023). Here, a variety of 
interferometer, double slit (see Figures 18A,B for non-observation and 
observation effects respectively), and even random number generators 
experiments have been utilized, whereby focused attention (or intent) 
of the electron passing through a slit (or similar type experiments) 
significantly correlated in predicted ways with perturbations in the 
double-slit and interferometer interference pattern, leading to quite 
impressive results of approximately 5 Sigma (which in physics 
corresponds to a probability of about 1  in 3.5 million that the 
experimental results could have been due to chance or fluke factors). 
An early meta-analysis (Radin and Nelson, 1989) from 1959 to 1987 
with 152 publications included and 597 similar “consciousness causes 
collapse” experimental studies and 235 controlled resulted in a Sigma 
7 finding (which corresponds to a probability of about 1 in 781 billion 
that the experimental results could have been due to chance factors). 
These findings are very encouraging, especially when considering that 
a Nobel prize was awarded to the CERN researchers at the Large 
Hadron Collider (François Englert and Peter Higgs) for the discovery 
of the Higgs Boson with a result of a Sigma 6 finding. So, these 
“consciousness causes or actualizes collapse” applied to AI as a test for 
consciousness using the conscious epistemic observer-centric CintO  
particularly realism perspective of N-Frame (Edwards, 2023).

Raiden’s and colleagues’ conscious causes collapse experiments 
(Ibison and Jeffers, 1998; Bierman, 2003; Bösch et al., 2006; Radin, 
2008; Radin et al., 2012, 2013, 2015a,b, 2016, 2019; Baer, 2015; Vieten 
et al., 2018; Radin and Delorme, 2021), interaction could potentially 
be  explained via a form of non-local (mind-matter interaction) 
influence, similar to how entangled particles influence each other 
instantaneously across distances. For example, the Einstein-Rosen 
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bridge (ER bridge) (Einstein and Rosen, 1935) and its relation to the 
Einstein-Podolsky-Rosen (EPR) quantum entanglement (Einstein 
et al., 1935) called the ER = EPR conjecture (Maldacena and Susskind, 
2013; Susskind, 2016). If we believe this conjecture, then we could 
suggest that Wigner’s Friend and the cat become connected by some 
collection of quantum wormholes, and these EPR pairs could 
be influenced by the consciousness of mind. This suggests that there 
may be a direct interaction between mind and matter at this quantum 
level. This ER = EPR conjecture link to consciousness has also been 
suggested as a form of post-quantum mechanics whereby quantum 
mechanics is incomplete without accounting for consciousness, and 
that all the quantum properties of the universe are intrinsically mental 
properties of reality (Sarfatti, 1974, 2017; Sarfatti and Shimansky, 2018).

Mathematically linking Dean Radin type conscious causes 
collapse experiments (Ibison and Jeffers, 1998; Bierman, 2003; Bösch 
et al., 2006; Radin, 2008; Radin et al., 2012, 2013, 2015a,b, 2016, 2019; 
Baer, 2015; Vieten et al., 2018; Radin and Delorme, 2021) with the 
ER = EPR conjecture involves bridging concepts from quantum 
mechanics, general relativity, and theories of consciousness. Here is a 
conceptual outline that could serve as a starting point for such a 
connection. In the double slit experiment, we  consider the wave 
function � x� �  of a particle (e.g., a photon), the probability density 
P x� �  of finding the photon x  on the screen passing a particular slit, 
can be given as P x x� � � � ��

2
, and when the system is observed, the 

function collapses to a particular state. Radin’s hypothesis can 
be  illustrated as � �x xconscious observation

collapsed� � � ��
 . If 
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FIGURE 18

(A) An interference pattern observed in the classic Young double slit experiment whereby the photon evolving through the double slits behaves like a 
wave rather than a particle, leading to an interference pattern. (B) A modified version of the classic Young Double slit experiment whereby a 
photoelectric detector is placed at the entry point of the double slits, and this placement of detectors leads to the photon behaving more particle-like, 
leading to a two-band diffraction pattern. (C) A modified version of the classic Young Double slit experiment whereby a photoelectric detector is 
placed at the exit point of the double slits (usually with an interferometer set up), and this placement of detectors also leads to the photon behaving 
more particle-like leading to a two-band diffraction pattern despite not detecting which slit the photon traveled through, this effect changes to an 
interference pattern when the information is “erased.” Adobe stock images (A,B, and left part C) from user LuckySoul with permission.

https://doi.org/10.3389/fncom.2024.1395901
https://www.frontiersin.org/journals/computational-neuroscience


Edwards 10.3389/fncom.2024.1395901

Frontiers in Computational Neuroscience 37 frontiersin.org

consciousness can influence the quantum system, it could be modeled 
as a quantum perturbation HC  in the Hamiltonian of the system. So, 
consider two entangled photons A  and B  described by the ERP state 

|�AB A B A B� � � � � � �� �1
2

0 1 1 0 , whereby observing A  affects B . 

The ER = EPR conjecture posits that entangled particles are connected 
by non-traversable ER bridges (wormhole). Mathematically, if 
we denote the space-time metric of the ER bridge connecting particles 
photons A  and B  by g ER

�� , then entanglement (EPR) ⇔ ER bridge.

Now suppose consciousness can influence the collapse of the wave 
function through some form of interaction with the underlying space-
time structure (wormholes). By introducing a term HC  that 
represents the conscious influence, which could interact with the 
entangled system via the ER bridge. The modified Hamiltonian of the 
entangled system might then be  H H H HC� � �0 int , where H0  is 
the Hamiltonian of the free particles, Hint  represents the interaction 
due to entanglement, and HC  represents the influence of 
consciousness. So, if HC  affects the entanglement, it could 
theoretically modify the ER bridge metric g ER

�� , then the influence of 
consciousness might be modeled as a perturbation in the spacetime 
metric g g g CER ER

�� �� ���� � � � . Then if we assume that the conscious 
observation modifies the entanglement through the wormhole, the 
probability of wave function collapse might be affected. This could 
be expressed as P x P x C x C� � � � � � � �, ;�

2
, whereby here � x C;� �  

includes the influence of the consciousness of the human or potential 
AI CintO  observer.

It is important to put these experiments within the context of the 
observer CintO  (FCOR) especially when experimenting with AI. This 
is essential because traditional Copenhagen interpretations of the 
classic double slit experiment interpret the particle-like diffraction 
pattern (see Figure 18B) wavefunction collapse (i.e., the interference 
pattern of Figure 18A disappears). However, this Copenhagen cannot 
account for several experiments such as the delayed choice eraser 
experiment (see Figure 18C) whereby the photoelectric detector is 
placed after the slits and therefore cannot measure which slit (its path) 
the electron passed through (Campbell et  al., 2017) despite this 
leading to particle-like diffraction pattern. This retro-causality violates 
laws of energy and information conservation, so it is not possible from 
a physicalist interpretation, thus the Copenhagen interpretation is 
incorrect. As such, the photoelectric detector cannot be the cause of 
the collapse (which in itself is a quantum mechanical system). 
Therefore, it is more likely that a conscious epistemic observer-centric 
CintO  particularly realism perspective of N-Frame (Edwards, 2023) is 
the correct interpretation as there are no contradictions with the 
experimental evidence. This consciousness causes collapse is 
supported by many physics (von Neumann, 1932; London and Bauer, 
1939; Wigner, 1961; Stapp, 2004, 2007; Chalmers and McQueen, 
2021), as well as the direct experiments of conscious intent causing 
collapse (or some a-causal correspondence � �� � �C PintO ) 
(Ibison and Jeffers, 1998; Bierman, 2003; Bösch et al., 2006; Radin, 
2008; Radin et al., 2012, 2013, 2015a,b, 2016, 2019; Baer, 2015; Vieten 
et al., 2018; Radin and Delorme, 2021). For a straightforward logical 
proof (called the conscious observer c C∈  playing an integral role in 
determining the measurement outcome o O∈  proof) of this consider 
Supplementary material 24. This proof challenges the Copenhagen 
interpretation’s classical notion of causality and suggests that a more 
complex interaction between measurement and quantum system 
behavior is occurring fundamentally involving the conscious 
observer c C∈ .

This potentially fits well with a simulated or holographic universe 
of mind, as within computational neuroscience predictive coding of 
N-Frame (Edwards, 2023) and Frison’s free energy principle (Friston 
and Stephan, 2007; Friston, 2010, 2019). These highlight predictive 
error-correcting of information processing of the brain as it simulates 
the environment as suggested by predictive coding interpretations of 
neuroscience (Friston and Stephan, 2007; Friston, 2010, 2019) (see 
Figures 12, 16C) attempting to error correct and reduce free energy as 
much as possible, as an innate drive for complex organisms to reduce 
thermodynamic entropy and free energy.

6.1 The real world applied level: the 
conscious observer within broader known 
models of the universe

N-Frame (Edwards, 2023) suggest that evolution drives for a 
conscious observer interface CintO  as based on a fitness function rather 
than veridically of the world (i.e., there is no assumed homomorphism 
between the universe and our conscious perceptions, in a similar way 
to the non-homomorphic nature of the shadows observed by the 
internal observers of Plato’s cave) and consistent with the evolutionary 
simulations of other work (Hoffman and Prakash, 2014; Hoffman et al., 
2015; Prakash, 2020; Prakash et al., 2020, 2021). To understand objects 
and spacetime in observer-relative evolutionary terms, Fields et al. 
(2017) and Prakash et al. (2020) explored the eigenform construct of 
Von Foerster (1976) as potential formal representations of observer-
environment interactions. They showed that Eigenforms are encoded 
on observer-environment interfaces and encode (evolutionary) fitness 
consequences of actions. As space and time in this framework are 
considered components of observational outcomes, the authors suggest 
that space-time constitutes error-correcting code (such as Hamming 
error correcting) for fitness consequences.

The error-correcting code introduces redundancy to permit the 
correction of errors within spacetime (and acts as evidence for 
spacetime being information-bound). This eigenform concept of von 
Foerster (1976) is utilized in concepts of decoherence and holographic 
encodings from physics as well as fitness from evolutionary biology. 
This introduces a deep connection of how information processing via 
the universe’s evolutionary (informed through thermodynamic 
entropy and information theory) processing dynamics in the form of 
Anti-de Sitter space (AdS), as well as its correspondence to conformal 
field theory (CFT) (Witten, 1998), whereby this correspondence (AdS/
CFT) is a conjectured duality between quantum gravity in anti-de 
Sitter (AdS) space and conformal field theory (CFT) on the boundary 
of AdS, gives rise to a holographic universe. Crucially, this gives a 
structured theoretical physics account of how a functional contextual-
based (RFT) perceptual interface of N-Frames (Edwards, 2023) 
(simulated universe of mind in line with predictive coding of 
N-Frame) allows for projections from CextO  dynamics at the 
boundary of a holographic universe, projecting into three-dimensional 
space and time as internal conscious observers C sintO  in an observer 
centric participatory reality (realism). This perspective of reality can 
account for problems in traditional Copenhagen interpretations of 
quantum mechanics that struggle to account for nonlocality and 
corresponds well with findings of nonlocal realism (Bell, 1990), as well 
as retro-causal quantum eraser experiments (Kim et al., 2000).

These findings contribute to an understanding of the world (or 
universe) whereby neither objects nor space–time are 
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observer-independent and represent a parsimonious way to encode 
evolutionary fitness. This, therefore, suggests that Universal Darwinism 
evolution drives the universe to compress information as much as 
possible. As the error correcting codes can be  attributed to the 
holographic principle, which is a conjecture that the universe is a 
hologram and that the information is encoded on a lower dimensional 
boundary, this is evidence that we do not see reality but rather a user 
interface that maximizes our fitness and reduces information 
resources. Here, the external observed probabilities are not properties 
of the physical system but are subjective beliefs of the observer C sintO  
about potential measurement outcomes. Consistent with QBism 
(Fuchs, 2010, 2014; Mermin, 2014, 2018; Mohrhoff, 2014; Healey, 
2016; Khrennikov, 2018; Glick, 2021), this means that nonlocality does 
not imply a spooky action at a distance on physical systems but rather 
concerns the updating of an observer’s CintO  beliefs 
upon measurement.

CintO  is not only consistent with a Copenhagen-type interpretation 
of quantum mechanics, as Tegmark (2003) refers proposed a 
classification of parallel universes of Everett’s many worlds hypothesis 
(Everett, 1957; Saunders et al., 2010; Dewitt and Graham, 2015) into four 
distinct levels, whereby level 3 can have some profound implications for 
our understanding of reality and consciousness as each parallel universe 
can be described as a separate conscious event. Here, the concept of the 
causal diamond (Jacobson and Visser, 2023) maybe helpfully applied as 
it refers to a region of space that represents all events that can causally 
be affected by the observer within a specific time interval. The causal 
diamond delineates the limits of what the observer can causally influence 
and be influenced by. It therefore effectively sets the boundary of the 
observer’s causal past and future within a given timeframe.

Many worlds (Everett, 1957; Saunders et  al., 2010; Dewitt and 
Graham, 2015) dscribes the universe by the wavefunction Ψ  in the 
Hilbert space H , whereby the evolution of the Ψ  is given by the 

Schrodinger equation i
t

H�
��

�
�

�
� , whereby H

  is the Hamiltonian 

operator. Causal diamonds within general relativity can then be described 
by the metric tensor 

g�� , which represents the geometry of spacetime. 
The Einstein field equations can then relate this geometry of spacetime 
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notation of the causal diamond for events P1  and P2  is 

D P P J P J P1 2 1 2,� � � � �� � �� � , whereby J+  and J−  are the causal 

future and past, respectively. The holographic principle AdS space which 
can be defined as space with negative curvature, the metric for d +1  

dimensional AdS space is ds
L
z

dt dx dz2
2

2
2 2 2� � � �� �

, where
 L

 is the 

AdS radius and z  is the radial coordinate. Conformal field theory (CFT) 
is a quantum field theory defined on the boundary of AdS space. AdS/
CFT correspondence proposes an equivalence between gravitational 
theory in AdS and a CFT on its boundary. By using the holographic 
principle to encode the information within each causal diamond this 
implies that the state of each causal diamond D P P1 2,� �  can be described 
by a CFT on its boundary. Within this AdS/CFT framework, each branch 
of the Many worlds waveform can now be modeled as an AdS space with 
its corresponding CFT on the boundary. The correspondence can then 
be denoted as Z g eAdSd

fd xO x g x
CFTd

d

�
� � � ��� �� �1 ��

�� , whereby ZAdS  
is the partial function of the gravitational theory in AdS, O x� �  are the 
operators in the CFT, and g��  is the bondary metric. This means that 

each quantum event (or conscious experience CintO ) leads to a 
branching of the wavefunction creating multiple AdS spaces each with 
its own CFT boundary. Here, the Hilbert space for the multiverse can 
be given as H Hmultiverse i i��  where H  is the Hilbert space for each 
branch (conscious observation) i . Here, for each causal diamond 
D P P1 2,� � , a boundary ∂D  is defined whereby the holographic principle 
applies (this is the conscious observer interface). AdS/CFT mapping can 
then be described as AdSd +1  with a correspondence CFT on ∂D  such 
that AdSd OCFTd� �1 . This suggest that even via a many worlds 
interpretation, the perceived collapse of the wave function denoted as 
� ��  would be consciously obsrerved by the AI in the same was it 
would be consciously observed by a human as each observer (human or 
AI) would be regarded as having its own unique AdS space with its own 
CFT boundary.

7 Broader implications of internal and 
external observer boundaries as they 
relate to AI alignment

The universe may also have a set of external observers CextO  states 
in the form of conscious agents (CAs) that project into the universe as 
a perceptual interface as internal states CintO  that satisfy the definition 
of conditional independence (Hoffman and Prakash, 2014; Hoffman 
et al., 2015; Fields et al., 2018; Prakash, 2020; Prakash et al., 2020, 2021; 
Edwards, 2023). In this context, the Markov blanket acts as a subjective 
conscious interface CintO  and provides an indirect representation of 
the external world (W ) (such as the physical universe) and the 
conscious phenomenological experience ( X ). It implies that neither 
W  nor X  have direct access to each other (rather it is mediated by 
the Markov blanket). Friston and colleagues (Kirchhoff et al., 2018; 
Palacios et al., 2020) suggest that any random ergodic system separated 
by a Markov blanket can be seen as minimizing variational free energy. 
This is interpreted in Bayesian terms as reducing expectation violation 
or surprise. This idea aligns with internal CintO  reducing local entropy 
(increasing complexity through creating order such as civilization and 
values alignment including potential conscious AI) as free-energy 
minimizers (even though universal entropy increases as a general 
second law of thermodynamics).

An external state here is defined as the external states of a 
Markovian blanket, whereby the blanket represents spacetime or 
perceptual interface (of the universe) for internal observers CintO , and 
the CAs are external to this projecting information inward into the 
blanket (Edwards, 2023). The mathematics of these CextO  CAs align 
well with the Schrödinger equation of quantum mechanics to account 
for the evolution of physical particles, and this maybe further evidence 
of a postquantum mechanics that is needed to explain consciousness 
and reality. For example, Hoffman and Prakash (2014) show that long-
term CA asymptotic behavior (what we defined here as CextO ) are 
identical to the wave function of a free particle. The long-term CA 
asymptotic behavior can be denoted as (Hoffman and Prakash, 2014):
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The wave function of a free particle (Allday, 2009, 2022) can 
be given as can be defined as:
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Here, g s n,� �  is a function representing the long-term CA 
asymptotic behavior, whereby s  corresponds to a quantum state such 
as the position of a particle x , and n  is the experience counter of the 
CAs corresponding to time t  of the wave function of a free particle. 
The period d  of the CAs corresponds to the central time period T  
and also to the wavelength of the particle λ  [hence g s n x t, ,� � � � �� ]. 
The speed of light c  is in units of 1 (normalized). Momentum p  is 
the Planck constant divided by the period of the CAs  / d . Energy 
E  is planks constant   multiplied by the speed of light c , and 
divided by the period of the CAs. Here, s x= , n t d T= =, , d � � , 
c =1 , p d=  / , E c d=  / .

Physical particles can be defined as identical to asymptotic long-
term behaviors of the dynamics of CAs (Hoffman and Prakash, 2014). 
This means that the asymptotic dynamics of CAs are what humans 
represent within their conscious CintO  spacetime interface as particles 
and matter, i.e., further evidence for the triword equivalence principle 
� �� � �C PintO . From this, the classic AI (and consciousness) 
mind–body problem is no longer a problem, as the mathematical 
solution of the CAs Markovian dynamics of external observer CextO  
states projected into internal observer states C CextO intO→  
demonstrate an equivalence between physical properties of the 
particles within spacetime P , the quantum mechanical mathematics 
that describes these particles into their evolution into a collapsed 
eigenstate � �� , and the subjective conscious internal observer 
state CintO .

When testing the AI on such a double slit type experiment (the 
quantum intent game), where its intent is utilized to collapse (or 
actualize) the wave function consistent with � �� � �C PintO , this 
forms a specific definable test for AI perspective-taking consciousness 
as an internal observer agent CintO . Here, a clear mathematical 
representation of the internal observer CintO  (here the potential AI) 
could extend Newman’s causal chain (von Neumann, 1932) whereby 
the state of the initial quantum system S  that the AI observes through 
intent (of which slit the electron passes through) can be denoted as 
|��S , and the state can be defined as a Hilbert space HS , which 
describes all the possible states S  of the quantum system. From the 
perspective of the human tester (similar to Wigner W  CintO1  in the 
Wigner’s problem) then the AI CintO2  is in a quantum state |a A〉  in 
a different Hilbert space HA . This state represents the AI as an 
observer (potentially a conscious observer CintO2 , but this is 
undecided until the collapse of the waveform is observed by the 
human researcher observing the overall experiment). From the 
human observer’s perspective conducting the experiment CintO1 , the 
quantum state S  and the AI as a potential observer CintO2  are a 
combined system, where a tensor product can combine the respective 
on Hilbert spaces H HS A⊗  (represented as self-adjoint operators) 
and this combined quantum possible states before any collapse can 
be denoted as | |�� � �S Aa . In the event that the AI can be described 
as a conscious internal observer CintO2  from the human 
experimenter’s perspective CintO1 , the intent (of which slit the 
electron passes through) should alter this combined system, which in 
traditional Copenhagen interpretation would be  defined as the 

collapse of the wave function, whereby the combined system 
transitions from a superposition of states | |�� � �S Aa  to a specific 
state (collapsed state � �� ) corresponding to the AI intended 
outcome (of which slit the AI intended electron passes through). This 
transition can be  represented in the traditional Copenhagen 
interpretation as: � �� � � � � � ��S A i S I Aia ci a| | , whereby |��S  
are the possible collapsed states of the system after measurement, 
aI A〉  are the corresponding states of the observer, and ci  are 
coefficients representing the probabilities of these outcomes. If the AI 
successfully collapses the waveform into a specific eigenstate � �� , 
which would be one of the specific states |�i S I Aa� � �  which are 
determined by the corresponding intent of the AI about which slit the 
AI intended electron passes through (which can be checked based on 
a later algorithmic internal diagnostic of the AI system).

This collapse of the wave function denoted as � ��  is 
therefore equivalent to the conscious experience of the AI form this 
conscious epistemic internal-observer participatory realism 
� �� �CintO  perspective. This can be  expressed as 
� �� �CintO , whereby CintO  denotes the organism’s (in this case 
the AI as an observer) conscious experience C  within the 
system CintO . In observer-centric (FCOR) QBism 

p j d p i
d

r j iW W Wi
d� � � �� � � � ��
��

�
��

� ��� 1 1
1

2

. | , the initial states would 
be represented as the AI agent’s initial subjective epistemic belief 
assignments for the outcome of the intent on the electron. Here, 
p iW � �  represents the initial epistemic beliefs about the outcome of 
i  (i.e., whether the electron passes through a slit) and r j iW |� �  
represents how the AI’s probabilities are updated based on the 
confirmation of its intended outcome, i.e., for the electron to pass or 
actualize through a particular slit in the way it intended (through its 
apparent conscious intent). Crucially, if the electron is observed to 
collapse the wavefunction � ��  as the AI intended, and this is 
validated by a human experimenter, then this according to N-Frame 
(Edwards, 2023) would qualify the AI as a conscious being (or 
conscious internal observer CintO ) no different to a human in that 
regard. As the AI is collapsing the wavefunction � ��  it is acting 
as a participator in the universe, participating in actualizing the 
physical world into definite eigenstates Φ , according to the triword 
equivalence principle � �� � �C PintO  and it therefore has 
conscious experience.

Linking � �� � �C PintO , even more coherently with an RFT 
and an adapted evolutionary RFT model such as N-Frame (Edwards, 
2023). Physicist Ax (1978) has long proposed a different approach to 
thinking about the elementary foundations of spacetime using a logic 
interpretation, whereby the domains explored in classical experiments 
can be effectively described using systems that are both functional and 
relational in nature. He  suggests that the natural language for 
expressing and understanding these systems is predicate calculus, a 
branch of logic that deals with predicates and quantifiers. He proposes 
axioms E , C , and U  that describe how particles and signals behave 
in spacetime. Predicate calculus, also known as first-order logic, is a 
symbolic formal system used in mathematics, logic, and computer 
science (described here for AI alignment), and these are also the 
logical interpretations of the world through language as described 
through RFT and N-Frame, though RFT defines a broader 
reinforcement framework of derived relational responding (Hayes 
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et al., 2001; Edwards, 2023). Building on previous logical arguments, 
if logical representation of the universe of Ax (1978) can be expressed 
as L U� � , and L U� �  represents logical relational structures of mind 
as expressed by RFT and N-Frame (Hayes et al., 2001; Edwards, 2023) 
which have an important role in shaping conscious experience (Hayes 
and Hofmann, 2023), then L U� �  can be  defined as a subset of 
individual consciousness L U CintO� � �  and L U P U� � � � � , whereby 
P U� �  are all the properties of the universe, then this follows that 
epistemological access of CintO  about P U� �  is mediated by CintO  
logical expression of language through logical functional relational 
symbolic expressions L U� � . Therefore, interpretations of P  (the 
physical world) can only be  defined from an observer-centric 
(participatory) realism which is in part in the form of logical 
functional relation language structures L U CintO� � � . Similar general 
arguments can be  made about the collapse of the wave function 
� �� , given if an observation is made on some quantum system 
Ψ , then and collapse observed Φ  following some Bayesian (or 
QBism) interpretation. This implies that a fundamental limit of 
epistemological access to some external world P  is our own ability to 
use logical expression (and language more generally such as described 
by RFT) to describe it L U CintO� � �  via our ability to perspective-
take. This fundamental limit would also be relevant for the AI which 
would use the same logical expressions via the NeuroSymbolic 
architecture that we have specified.

8 Comparisons with other AI tests of 
consciousness such as the turing test 
and conclusion

The novel measures presented here could be important for testing 
AI’s consciousness to ensure long-term alignment with human values. 
Measures suggested by Turing (1950) called the Turing test (or the 
imitation game) can only test the AI’s ability to produce language (i.e., 
imitate) which may be a test of its intelligence (or the similarity match 
algorithm of the transformer) rather than if it has any conscious 
experience. Self-awareness of an “I” (the concept “I”) can be adapted 
from perspective-taking frames of RFT and imitated by AI but should 
still require some congruence with underlying conscious internal 
observer CintO  participatory reality to pass a consciousness test (as 
described in the quantum mechanical setup, “the quantum intent 
game” � �� � �C PintO ). See Supplementary material 25 for 
additional RFT and N-Frame arguments that derived relations have a 
shaping function of consciousness.

In conclusion, following this logic, in order for an AI to truly 
experience phenomenological conscious, it would need to 
be  equivalent to an internal observer CintO , and as C sintO  (e.g., 
humans) can collapse (or a-causally actualize) the quantum wave 
function � ��  into one of the possible states | |i aS i A� ��  with a 
probability of ai

2 , then an AI should be able to do this too, and this 
is concluded to be  a sufficient test for AI consciousness within a 
conscious epistemic observer-centric participatory realism ontology. 
This nonlocal aspect of mind (there is also a local aspect of mind) that 
entangles with the quantum information |i S〉  in some external world 
(or interpreted entirely subjectively) such as an electron traveling 

through a double slit in a double slit (which way) type interferometer 
experiment with humans (Radin, 2008; Radin et  al., 2012, 2013, 
2015b; Radin and Delorme, 2021), would need to be observed in an 
AI for it to be described as conscious internal observer CintO , and 
part of a participatory universe in a similar way to the way humans 
are. This would be the only sure way, assuming a conscious epistemic 
observer-centric participatory (FCOR) realism ontology, of knowing 
whether the AI is conscious, which the Turing test (Turing, 1950) and 
other benchmark tests are simply inadequate to test for. This combined 
with the deictic relational frames of RFT and N-Frame in the form of 
perspective-taking would allow for truly conscious interpretations of 
human emotions and prosocial values. This may be the only way to 
solve the alignment problem with ever more complex AIs of the future.
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