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It remains di�cult for mobile robots to continue accurate self-localization when

they are suddenly teleported to a location that is di�erent from their beliefs

during navigation. Incorporating insights from neuroscience into developing

a spatial cognition model for mobile robots may make it possible to acquire

the ability to respond appropriately to changing situations, similar to living

organisms. Recent neuroscience research has shown that during teleportation

in rat navigation, neural populations of place cells in the cornu ammonis-3

region of the hippocampus, which are sparse representations of each other,

switch discretely. In this study, we construct a spatial cognition model using

brain reference architecture-driven development, a method for developing

brain-inspired software that is functionally and structurally consistent with the

brain. The spatial cognition model was realized by integrating the recurrent

state—space model, a world model, with Monte Carlo localization to infer

allocentric self-positions within the framework of neuro-symbol emergence

in the robotics toolkit. The spatial cognition model, which models the cornu

ammonis-1 and -3 regions with each latent variable, demonstrated improved

self-localization performance of mobile robots during teleportation in a

simulation environment. Moreover, it was confirmed that sparse neural activity

could be obtained for the latent variables corresponding to cornu ammonis-3.

These results suggest that spatial cognition models incorporating neuroscience

insights can contribute to improving the self-localization technology for mobile

robots. The project website is https://nakashimatakeshi.github.io/HF-IGL/.

KEYWORDS

allocentric, brain-inspired AI, egocentric, kidnapped robot problem, Monte Carlo

localization, probabilistic generative model, world model

1 Introduction

The intersection of neuroscience and robotics has been re-emphasized as an approach

to advancing artificial intelligence in recent years (Zador et al., 2023). The complex,

uncertain, and dynamic environments in which actual robots operate require the artificial

intelligence embedded in robots to acquire adaptability, even if it involves significant

dynamic changes that have never been experienced before. From the neuroscience
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perspective, the hippocampal formation is involved in the cognitive

map that enables flexible behavior in response to environmental

changes, a concept named by Tolman (1948). Indeed, it has been

revealed that the cornu ammonis-3 (CA3) subregion plays a crucial

role when the hippocampus of rats perceive teleportation, where

the environment surrounding oneself changes dynamically and

suddenly (Jezek et al., 2011). Therefore, this study incorporates

these findings to propose a spatial cognition system for mobile

robots capable of dealing with teleportation, also known as the

kidnapped robot problem.

Models for self-localization referencing the hippocampus

have been proposed but could not consider the hippocampus’s

subregions. RatSLAM is a probabilistic method inspired by the

function of integrating path integration and egocentric local

view in the rat’s hippocampus (Milford et al., 2004). However,

this method did not consider the structure of the hippocampal

subregions. The reason for this lack of consideration is that the roles

and information processing, i.e., functions of the hippocampus’s

subregions have not been fully elucidated even today, and the only

consensus lies in its structure, making it challenging to model them

explicitly. However, with the recent development of deep neural

networks, learning functions and representations from data by

mimicking the structure is possible.

It remains difficult for mobile robots to continue accurate self-

localization when they are suddenly teleported to a location that

is different from their beliefs during navigation. The situation

where a robot undergoes teleportation is called the kidnapped

robot problem. The difficulty of the self-localization problem is

classified according to a combination of the robot’s believed self-

position and its true self-position at the start (Zhang et al., 2009).

Self-localization from a state where the belief and true positions

are the same is called pose tracking or position tracking and is

the simplest task. Self-localization from a state in which there is

no information about the robot’s position and the robot’s belief is

uniform across the environment is called global self-localization.

When a robot believes it is in a specific place, but it is not, the

problem is called the kidnapped robot problem. This scenario,

known as the kidnapped robot problem, is the most challenging

scenario for self-localization. As the name suggests, the kidnapped

robot problem assumes that a robot navigating an environment is

suddenly teleported to a different location.

Conventional methods involve two steps to tackle the

kidnapped robot problem: detecting the kidnapping and proposing

a hypothesis that narrows the search area. Kidnapping detection

uses the entropy of the self-location distribution uncertainty.

Then, the search area can be narrowed using a relatively robust

state estimation method such as the finite impulse response

filter (Pak et al., 2015; Pak and Ahn, 2023) or a multivariate

Gaussian distribution centered on the estimated position when

kidnapping is detected (Meng et al., 2020). Another method uses

sparse topological maps composed of highly distinctive global

features (Choi et al., 2012). The strategy of adding functions

appropriate to the degree of variation can rapidly increase

engineering costs when adapting to changing environments.

Hence, investigating methods based on hippocampal formation has

become essential to adapting to changing situations.

Self-localization is an essential capability of robots for

navigating an environment. Thus, it has been a subject of

engineering research in the field of robotics. Localization is the

task of estimating one’s constantly changing position from the

sequence information of perceptions by the robot’s sensors and a

map of the environment. A probabilistic approach is developed

to address the uncertainty of the environment and the perception

sensors (Thrun, 2002). The probabilistic approach was formulated

using a state-space model that allows sequential computation and is

used in robots that act adaptively over long periods. The probability

distribution of the state is inferred through alternating updates

based on behavior and observation, which is referred to as a Bayes

filter. The method of approximating a probability distribution with

a set of particles is called Monte Carlo localization (MCL) (see

Section 2.1). It is preferred for its capacity to represent complex

distribution shapes and its simplicity in calculating posterior

probabilities (Murphy and Russell, 2001). Ueda et al. (2004)

proposed a Monte Carlo Localization using expansion resetting

(EMCL), which expands the particle set when the likelihood

of sensor values decreases, demonstrating that it enables more

robust self-localization. However, the update function for the state

distribution had to be designed by the engineer beforehand.

Methods have been proposed that utilize deep neural networks

to directly learn the update functions based on behavior and

observation in state-space models from sequence data, among

which models capable of predicting the dynamics of the external

world are called world models. The recurrent state-space model

(RSSM), a sequential variational autoencoder (VAE) for state

representation learning, acquires robust representations from

sequences of raw images by incorporating both deterministic and

stochastic transition components into the dynamics model (Hafner

et al., 2019b) (see Section 2.2). Furthermore, the Multimodal RSSM

(MRSSM), which enables the learning of state representations

from multimodal information by adopting a Multimodal VAE, has

been proposed (Komura et al., 2023). These techniques enable

the learning of dynamics from data by pre-defining the network’s

structure.

In addition, efforts have been made to consolidate the

extensive field of neuroscience with reference architectures to

model the brain structure. Yamakawa (2021) introduced brain

reference architecture (BRA)-driven development (see Section 2.3),

a software development approach that enables the construction

of software architectures inspired by the structure and function

of the brain. Similarly, Taniguchi T. et al. (2022) and Taniguchi

et al. (2020) proposed a method called the whole brain probabilistic

generative model (WB-PGM), which aims to realize a cognitive

architecture by integrating modules constructed with probabilistic

generative models through the neuro-symbol emergence in the

robotics toolkit (Neuro-SERKET). These techniques enable the

construction of brain-inspired computational models, which is

sought after in the field of machine learning.

Based on the above, the problem statement, hypotheses, and

research questions of this study are as follows:

1.1 Problem statement

Neuroscience insights are necessary to address the issue that

current machine learning systems are designed solely to realize

functions. The kidnapped robot problem requires mobile robots

to have a wide range of adaptability. Conventional engineering
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FIGURE 1

BIF and graphical models: (A) ROI of this study and its BIF. DG, dentate gyrus; CA3, and CA1, cornu ammonis-3 and -1; LEC and MEC, lateral and

medial entorhinal cortex; PER, perirhinal cortex; POR, postrhinal cortex; (B) RSSM without rewards; (C) MCL; (D) Model 1, which models the

hippocampal DG, CA3, and CA1 with a single random variable ht; (E) Model 2, which models the hippocampal DG and CA3 with the random variable

ht and CA1 with st. In graphical models, gray circles indicate observable variables. Circles represent stochastic variables, and squares represent

deterministic variables. Solid arrows represent the generative process, and dashed arrows represent the inference process. 1t indicates dependence

on the next time step.

approaches to this problem involve adding functions during

the design phase. In the case of mobile robots, this involves

adding effective self-localization methods against the kidnapped

robot problem and switching methods upon detecting kidnapping.

However, this design philosophy cannot handle situations that

designers do not anticipate. This study aimed to achieve

adaptability within a single spatial cognition model by referencing

the brains of biological organisms.

1.2 Hypothesis

This study hypothesized that the brain’s structure is closely

related to its function. In particular, this study was based on

the hypothesis that the distinctive structure of the hippocampus

(see Section 2.4) supports spatial cognition. Therefore, we tested

whether a self-localization model emulating the structure of the

hippocampus could improve the self-localization performance in

the kidnapped robot problem.

1.3 Research question

The research question of this study aimed to elucidate the

mechanisms of spatial cognition in organisms by constructing

computational models that mimic the structure of the

hippocampus. How do organisms adapt to changes in situations

that they have never experienced based on their learning?

1.4 Approach

In this study, we construct a global self-localization model that

is consistent with the structure and function of the hippocampus,

using the BRA-driven development methodology. The proposed

method integrates two modules, MCL and RSSM, within the

Neuro-SERKET framework. The medial entorhinal cortex (MEC),

which processes allocentric information, is modeled with the

MCL module to infer positions in the map coordinate system. In

contrast, the hippocampus, which integrates two different types

of information state representations, and the lateral entorhinal

cortex (LEC), which processes egocentric information, are modeled

with the RSSM module that learns state representations from first-

person images. We evaluated and compared the MCL, EMCL and

proposed methods that are integrated in different ways for global

self-localization and the kidnapped robot problem.

The main contributions of this study are as follows:

1. We realize a self-localization estimation model that is

functionally and structurally consistent with the hippocampal

formation using the methodology of BRA-driven development.

2. We showed that the self-localization performance in the

kidnapped robot problem is improved through a simulation

experiment.

The remainder of this article is organized as follows: Section 2

describes the self-localization method and RSSM that are the basis

of this research and describes the BRA-driven development, which

is the development methodology for brain reference software,

and the neuroscientific knowledge of hippocampal formation.

Section 3 describes the architecture of the proposed model and

self-localization method. Section 4 describes the experimental

setup and the results. Section 5 discusses the relationships in the

hippocampus. Finally, Section 6 provides a conclusion.

2 Background

In this section, we describe MCL, a conventional self-

localization method, and RSSM, a type of world model. Both are

employed as modules in the hippocampus-referencing global self-

localization model proposed in this study. We then discuss the

BRA-driven development methodology that guided the design of
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our model. Finally, we elaborate on the neuroscientific knowledge

of hippocampal formation that our model references.

2.1 Self-localization in robots

The problem of a robot estimating its position using its sensory

information is called self-localization. When an environmental

map is not provided, the problem is called simultaneous

localization and mapping (SLAM) (Thrun, 2002). Robots often

have two types of sensors: external sensors, such as cameras and

laser scanners, to observe the external environment, and internal

sensors, such as odometry and inertial measurement units, to

perceive and control their movements. This problem has two

approaches: an optimization approach and a Bayes filter approach.

The optimization approach calculates the entire trajectory by

optimizing the pose graph of the self-pose constraints constructed

from observation and motion information. Note that the term pose

includes information on both position and orientation. The Bayes

filter approach is a state-spacemodel that sequentially calculates the

states (self-position distribution) by assuming a Markov property.

The latter is a type of probabilistic generative model (PGM) that

represents the dependence of random variables as a graphical

model (Figure 1C). In the following section, we describe the Bayes

filter approach in detail.

Self-localization using the Bayes filter approach is the problem

of estimating the conditional probability (belief) of the self-pose

given perceptual sequence information, as shown in the following

Equation (1):

Bel(t) = p(x1 : t|z1 : t , u1 : t)

∝ p(zt|x1 : t , z1 : t−1, u1 : t)
︸ ︷︷ ︸

likelihood

p(x1 : t|z1 : t−1, u1 : t)
︸ ︷︷ ︸

prior

(Bayes’ theorem)

= p(zt|x1 : t , z1 : t−1, u1 : t)p(xt|x1 : t−1, z1 : t−1, u1 : t)p(x1 : t−1|z1 : t−1, u1 : t)

= p(zt|xt)p(xt|xt−1, ut)p(x1 : t−1|z1 : t−1, u1 : t−1) (Markov property)

= p(zt|xt)
︸ ︷︷ ︸

measurement update

p(xt|xt−1, ut)
︸ ︷︷ ︸

prediction

Bel(t − 1)

(1)

Here, x1 : t is the trajectory of the self-pose, z1 : t−1 and u1 : t
are the measurement values of the external and internal sensors,

respectively. Belief is updated by predicting the prior through

control update and calculating the posterior through measurement

update (i.e., Bayes filter). Since the state x assumes the Markov

property, and state xt is not influenced by the state before xt−1,

belief updates are calculated sequentially.

The map format used in this study was a two-dimensional

occupancy grid map. An occupancy grid map discretizes the space

into a grid, and each grid cell represents the locations occupied

by obstacles and unoccupied free locations as binary information

(Figure 6). When a pose x on the occupied grid map is given,

the likelihood of measurement p(zt|xt) can be calculated from the

relative relationship between the occupied cell and its pose. Note

that the notation for map m is often explicitly stated as p(zt|xt ,m),

but it is omitted for brevity.

MCL is a method for approximately estimating the probability

distribution of self-pose using a particle set sampled using the

Monte Carlo method. The implementation becomes simpler, even

when the observation model or transition model is nonlinear

by representing the distribution of particles. However, the

performance of self-localization depends on the number of

particles, and the larger the environment, the more particles are

required; however, this becomes a trade-off with computational

resources.

Self-localization technology is used in autonomous driving and

service robotics and is necessary for developing agents that act in

the real world.

2.2 Recurrent state-space model: one of
the world models

A world model refers to a model of the external world that an

agent maintains internally and is used for perceptual prediction

and behavior generation. Early mobile-robot research sometimes

referred to environmental maps as occupancy grid maps (Thrun,

2002). In recent years, deep learning has been used to predict future

perceptions by learning representations and their dynamics in the

state-space (Ha and Schmidhuber, 2018).

The RSSM, a world model, can learn policies with high sample

efficiency compared to end-to-end methods (Hafner et al., 2019b).

This efficiency is accomplished by leveraging episodes imagined

by the learned world model for reinforcement learning (Hafner

et al., 2019a, 2020, 2023; Wu et al., 2023). RSSM is a type of

probabilistic generative model that illustrates the dependence of

random variables as a graphical model in Figure 1B. A stable

state can be maintained over multiple steps from a noisy, high-

dimensional observed image ot using both deterministic variable

ht and stochastic variable st as latent variables. Circles indicate

probabilistic variables, squares indicate deterministic variables,

solid lines indicate generative models and dotted lines indicate

inference models. The RSSM generation and inference models are

expressed as following Equation (2):

Generative model: ht = f GRU (ht−1, st−1, at−1)

st ∼ p(st|ht)

ot ∼ p(ot|ht , st)

Inference model: st ∼ q(st|ot , ht)

. (2)

RSSM is a deep generative model approximating probabilistic

dependencies between latent variables using a deep neural network.

In machine learning, the top-down prediction generation and

bottom-up model updating are called inferences. In the RSSM, the

state ht is predicted from the states and action at the previous

time step by a gated recurrent unit (GRU) responsible for the
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deterministic dynamics in state-space, followed by the prediction

of the probabilistic distribution of st . Subsequently, the inference

model, which is trained within the framework of VAE, infers the

latent variables from observations. The parameters of each model

were optimized by backpropagation to maximize the log marginal

likelihood, as shown in the following Equation (3):

ln p(o1 :T |a1 :T)

≥
∑T

t=1(Eq(st |o≤t ,a<t)[ln p(ot|st)]
︸ ︷︷ ︸

reconstruction

−Eq(st |o≤t ,a<t)[KL[q(st|o≤t , a<t)‖p(st|st−1, at−1]
︸ ︷︷ ︸

complexity

) (3)

The evidence lower bound (ELBO) is the right side derived

using Jensen’s inequality. The first term is called reconstruction,

in which the prediction error of observation ot is minimized.

The second term is called complexity because it penalizes the

complexity of the model that minimizes the prediction error of

states st in the state space.

2.3 Brain reference architecture-driven
development

BRA-driven development is a methodology for building

software based on brain architecture (Yamakawa, 2021). It accepts

that neuroscience knowledge is still insufficient to elucidate the

whole picture and hypothetically construct a software architecture

using anatomical structures as constraints. A structure-constrained

interface decomposition (SCID) method was used to design

software that was consistent with the structure and function of the

brain obtained through neuroscience. The software consisted of the

following three steps.

Step 1: BIF construction

Step 2: Consistent determination of ROI and TLF

Step 3: HCD creation

Step 3-A: Enumeration of candidate HDCs

Step 3-B: Rejection of HCDs that are inconsistent with

scientific knowledge

In Step 1, brain information flow (BIF), a graph representing

the anatomical structure of neural circuits in the brain at the

mesoscopic level, is constructed based on research in mammalian

neuroscience. In Step 2, a specific region of interest (ROI) in

the brain and the top-level function (TLF) to be performed by

the brain region are determined according to the purpose of

each system. In Step 3, hypothetical component diagrams (HCD)

that are decomposed into functional units to satisfy the TLF are

constructed under the structural constraints of the BIF graph.

This hypothetical component diagram is repeatedly enumerated

and rejected based on knowledge from various fields, such

as neuroscience, cognitive psychology, evolutionary theory, and

developmental theory.

WB-PGM (Taniguchi T. et al., 2022) proposed a modular

approach to implementing HCD using a probabilistic generative

model. We can integrate the modules of the probabilistic

generative model and enable each module to continue inference

continuously using neuro-symbol emergence in the robotics

toolkit (Neuro-SERKET) (Taniguchi et al., 2020). This framework

enables the integration of different modules, including those

that use different inference methods for approximate posterior

distributions, such as sampling and variational inference.

Generation-Inference Process Allocation (GIPA) is a method

for realizing HCD using a probabilistic generative model. In

GIPA, the components and relationships are assigned to random

variables, generation processes, and inference processes. Based

on these methodologies, Taniguchi A. et al. (2022) proposed the

hippocampal formation-inspired probabilistic generative models.

In this case, loop circuits exist in some of the neural circuits of the

brain; however, in the probabilistic graphical model, they need to

be directed-acyclic graphs. Assuming that there is a time delay in

signal transmission, we express the loop circuit in the brain by

using 1t to represent the transition of the generation process to

the next time step. It should be noted that the graphical model

of the integrated model does not have the strictly same structure

as BIF, and supplementing paths and combining multiple brain

regions into a single latent variable is done hypothetically during

modeling. In the case where the direction of the generative model’s

arrow and the projection of the BIF are in opposite directions, it

can be interpreted that during learning, the error propagates in the

opposite direction of the arrow of the generative model.

2.4 Neuroscientific knowledge of
hippocampal formation

In the field of neuroscience, there has been an accumulation

of knowledge on how the hippocampal formation of organisms

contributes to spatial cognition. Tolman (1948) demonstrated

that rats searching for food within an environment learn

spatial representations that enable flexible behavior in reaction

to blockages of familiar route, rather than in response to

simple stimulus-response associations, and named this spatial

representation a cognitive map. Later, it was reported that various

cells that support the cognitive map, such as place cells, exist in the

hippocampal formation (O’Keefe and Nadel, 1979).

The hippocampal formation is part of the limbic system and

involves episodic memory formation and spatial cognition. The

ROI in this study is shown in Figure 1A. It consists of the

hippocampus, which includes cornu ammonis-1, -3, and dentate

gyrus (CA1, CA3, DG), the LEC and MEC, perirhinal cortex

(PER) and postrhinal cortex (POR). There are two main neural

circuits within this region (Knierim, 2015). One is the trisynaptic

loop, which projects from the entorhinal cortices (EC) to the DG,

CA3, and CA1 through a perforant path, a mossy fiber pathway,

and a Schaffer collateral pathway. The other is a direct pathway

that projects from the EC to CA1, called the temporo-ammonic

pathway. In addition to these neural circuits, CA3 is known to have

a recurrent collateral pathway that projects to its region. The main

output from the hippocampus is the projection from CA1 to the

MEC and LEC.
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Several studies suggest that the subregions of the hippocampus,

particularly CA1, and CA3, possess distinct characteristics and may

serve different functions (Farovik et al., 2010). In CA1, events are

associated with a mechanism in which part of the neural ensemble

is shared (Cai et al., 2016). On the other hand, the representation in

CA3 is sparser (Leutgeb et al., 2004) and more coherent (Lee et al.,

2004) compared to that of CA1, and it supports a distinguishing

function (Kesner and Rolls, 2015). According to Dimsdale-Zucker

et al. (2018), CA1 connects objects in different contexts, whereas

CA2, CA3, and DG may play a role in distinguishing objects in the

same context. Significantly, recent research has shown that, during

the teleportation of rats, sparse representations in the CA3 region

of the hippocampus discretely switch, flickering within the theta

cycle (Jezek et al., 2011).

Inputs to the hippocampus are made through the LEC

and MEC. The LEC and MEC are thought to handle different

information, but the specifics of their classifications may vary.

In early studies, MEC was expressed as spatial information

and LEC as non-spatial information (Hargreaves et al., 2005);

however, later, MEC processed its own operational (path

integration) information, and LEC processed external observation

information (Deshmukh and Knierim, 2011). Wang et al. (2020)

claimed MEC processes allocentric information, while LEC

processes egocentric information.

Computational theories and models of hippocampal formation

have explained its ability to integrate and relate disparate

information. In cognitive map theory (CMT) (O’Keefe and Nadel,

1979), event (item) is associated with spatial and temporal position,

and in the binding of items and contexts (BIC) theory (Eichenbaum

et al., 2007), event(item) is tied to the context.

3 Proposed method

In this study, we constructed global self-localization models

by integrating the following two models. The first is the RSSM,

which extracts features from images and constructs them as

representations of time-series dynamics. The second method is

MCL, which is an engineering-based self-localization method

based on the occupancy grid maps. They were integrated into

the framework of Neuro-SERKET because RSSM and MCL are

both probabilistic generative models. The RSSM is responsible

for processing egocentric visual representations (i.e., LEC) and

integrating egocentric and allocentric information (i.e., CA1,

CA3, DG). MCL is responsible for processing allocentric spatial

representations (i.e., MEC). There is a debate on how allocentric

representations are represented in the brain (Ekstrom et al., 2014).

However, this study assumed that allocentric representations were

robot poses within an occupied grid map.

The method of integrating RSSM and MCL was determined

based on the structure of the hippocampal formation. As

discussed in the SCIDmethod, multiple structures are considerable

(Section 2.3). Thus, two models with varying degrees of granularity

were constructed, and integrated graphical models are shown in

Figures 1D, E. Here, the variables ot , zt , and ut , which are encircled

in gray, are observed variables that represent an image from the

RBG camera, range measurement from the LIDER sensor, and

control values, respectively. The solid and dotted lines in the

graphical model represent the generative and inferential models,

respectively. Model 1 models the hippocampal DG, CA3, and CA1

using one random variable, ht . Model 2 models hippocampal DG

and CA3 with random variables ht and CA1 with st .

From the perspective of a state-space model, Model 1 associates

xt as the input and ot as the output via the state-space. Treating

signals related to control as inputs is a straightforward approach

to conventional state-space models. In contrast, in Model 2,

xt and ot both correspond to outputs (observations) and use

Multimodal RSSM (MRSSM) (Komura et al., 2023) to obtain the

latent representation shared by the two modalities. Here, the latent

variable st corresponds to the CA1 region, and the mechanism for

linking events is similar to each other.

The generative and inference models are expressed as Models 1

and 2, respectively, as shown in Equation (4).

Model 1 Model 2
Generative model: ht = fGRU

(

ht−1, st−1, xt−1
)

ht = fGRU
(

ht−1, st−1
)

st ∼ p
(

st |ht
)

st ∼ p
(

st |ht
)

ot ∼ p (ot |st) ot ∼ p
(

ot |ht , st
)

xt ∼ p
(

xt |ht
)

xt ∼ p
(

xt |ht , st
)

zt ∼ p (zt |xt) zt ∼ p (zt |xt)

xt ∼ p
(

xt |xt−1, ut
)

xt ∼ p
(

xt |xt−1, ut
)

Inference model: st ∼ q(st |ot , ht) st ∼ q(st |ot , xt , ht)

(4)

Model 1 treats xt as input information for the state-

space model. Since conventional state-space models do not

include a model that predicts input xt from the state, the

generative model p(xt|ht) is added to Model 1. Since a direct

connection from the hippocampus to the PER is not assumed,

ht cannot be given to the generative model p(ot|st) in Model

1. The MCL observation model p(zt|xt) and transition model

p(xt|xt−1, ut) were modeled in advance using an inductive bias;

hence, training was not necessary. However, the generation

and inference models of the RSSM and MRSSM modules

are approximated by neural networks, and it is necessary

to train the neural network parameters from the training

data. Therefore, the RSSM and MRSSM modules are trained

independently. In the next section, we describe the RSSM and

MRSSMmodules.

3.1 Architecture

Figure 2 shows the RSSM architecture diagram of Model

1. In Model 1, pose x inferred by MCL is input to GRU,

which is responsible for the state transition model of RSSM.

Here õt is the reconstructed image information. s
p
t is a prior

distribution sampled from probability distribution p(st|ht). s
q
t is

the posterior distribution sampled from the probability distribution

q(st|ht , ot). The parameters of these models were trained in a self-

supervised learning framework based on the sequence data of

the image and pose estimated by MCL. The objective function

is the maximization of the log marginal likelihood of the joint

distribution ln p(o1 :T , x1 :T). Here, T denotes the length of the

training data sequence. This formula, divided into reconstruction,

complexity, and prediction terms using Jensen’s inequality, is

shown in Equation (5).
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FIGURE 2

The RSSM architecture of Model 1. Dotted arrows indicate loss during training. xt−1 is input to GRU unit. The terms reconstruction, complexity, and

prediction indicate training loss function.

FIGURE 3

The MRSSM architecture of Model 2. Gray areas indicate the integration of multimodal observation by the MoPoE scheme.
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Model 1:

ln p(o1 :T , x1 :T) , ln Eq(h1 :T ,s1 :T |x1 :T )

[
T

∏

t=1

p(ot|st)p(xt|ht)

]

≥

T
∑

t=1

(

Eq(ht ,st |o≤t ,x<t)
[

ln p(ot|st)
]

︸ ︷︷ ︸

reconstruction

+Eq(ht ,st |o≤t ,x<t)
[

ln p(xt|ht)
]

︸ ︷︷ ︸

prediction

− E
[

KL
[

q(st|o≤t , x<t)||p(st|ht−1, st−1, xt−1)
]]

q(ht−1 ,st−1|o≤t−1 ,x<t−1)
︸ ︷︷ ︸

complexity

)

(5)

Figure 3 shows the MRSSM architecture of Model 2. Details

of the architecture are provided in Table S1. In Model 2, pose

x inferred by MCL is input to the encoder as a multimodal

observation of the images and poses. The latent representation

shared by the multimodal observations was approximated by

integrating each expert using MoPoE (Komura et al., 2023). The

et embedding vector is calculated by the following Equation (6).

et ∼
1

2M

∑

Ot∈P(Ot)

q (et|Ot) (6)

Here, Ot is a subset of {∅, ot , xt} and M = 2 is the number

of modalities. A latent variable integrating both modalities allows

cross-modal inference from ot to xt and vice versa. Similarly to

Model 1, the objective function, which maximizes the log marginal

likelihood of the joint distribution, is represented by the following

Equation (7).

Model 2:

ln p(o1 :T , x1 :T) , ln Eq(h1 :T ,s1 :T )

[
T

∏

t=1

p(ot|ht , st)p(xt|ht , st)

]

≥

T
∑

t=1

(

Eq(ht ,st |o≤t ,x≤t)
[

ln p(ot|ht , st)
]

+ Eq(ht ,st |o≤t ,x≤t)
[

ln p(xt|ht , st)
]

︸ ︷︷ ︸

reconstruction

− E
[

KL
[

q(st|o≤t , x≤t)||p(st|ht−1, st−1)
]]

q(ht−1 ,st−1|o≤t−1 ,x≤t−1)
︸ ︷︷ ︸

complexity

)

(7)

3.2 Self position estimation

In this section, we describe the method for sequentially

inferring self-pose xt in Models 1 and 2. The distribution of all the

latent variables Bel(t) = p(x1 : t , h1 : t , s1 : t|o1 : t , z1 : t , u1 : t) is called

a belief. It can be represented by the sequential update formulas

shown in Equations (8, 9), using Bayes’ theorem and the Markov

property.

Model 1: Bel(t) ≈ p(zt|xt)p(xt|xt−1, ut)
︸ ︷︷ ︸

MCL

p(xt|ht)q(st|ot , ht)f
GRU (ht−1, st−1, xt−1)

︸ ︷︷ ︸

RSSM

Bel(t − 1) (8)

Model 2: Bel(t) ≈ p(zt|xt)p(xt|xt−1, ut)
︸ ︷︷ ︸

MCL

p(xt|st , ht)q(st|ot , ht)f
GRU (ht−1, st−1)

︸ ︷︷ ︸

MRSSM

Bel(t − 1) (9)

The detailed calculation formulas are shown in Equations (S2)

and (S3), respectively. The computation flow diagrams for pose xt
in Models 1 and 2 are shown in Figure 4. The area surrounded

by the red dotted line is the MCL module, and the blue dotted

line is the RSSM or MRSSM. Through integration using Neuro-

SERKET, the probabilistic variable pose x is shared with MCL and

RSSM or MRSSM modules. The pose x is inferred in each module

and eventually integrated. The MCL operation is the same for

both Models 1 and 2. The operation of MCL involves prediction

through the motionmodel followed by observation update through

the observation model. However, RSSM and MRSSM differ for

Models 1 and 2. In RSSM for Model 1, the pose at the previous

time step xt−1 is input into the GRU, progressively predicting the

latent variable of ht and st . Contrarily, in MRSSM for Model 2, xt−1

is used to infer st−1 serving as input to the GRU. Subsequently,

utilizing the predicted ht by the GRU, cross-modal inference is

employed to infer the pose through the stochastic latent variable

s
q(o)
t , which is inferred from the observed image ot without using

the pose xt . The stochastic latent variable at time t is recalculated

in the next time step using both modal information from the

image and the pose. Finally, in both Model 1 and 2, the integrated

distribution of the pose at time t xt is represented by a particle set

sampled at 75% from the MCL and the remaining 25% from RSSM

or MRSSM.
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FIGURE 4

Flow diagram of estimation of next time posext for each model. Both models integrate the RSSM (blue dotted line) and the MCL (red dotted line) by

sharing the latent variable x in the Neuro-SERKET framework. In Model 1, previous time pose xt−1 is input to the GRU modeling the transition, and the

latent variable ht at the next time is predicted. Then, xt is predicted from ht (Left). In Model 2, using an inference model, xt−1 is used to infer the latent

variable st−1. The transition model then predicts the latent variable ht for the next time step, and xt is predicted by cross-modal inference using ot via

latent variables st and ht (Right).

FIGURE 5

Bird view of experiment environment. (Left) Environment 1 and (Right) Environment 2.

4 Experiment

Experiments were conducted in a simulation environment to

evaluate the global self-localization performance, including the

kidnapped robot problem.

4.1 Conditions

The experiments were conducted using a robot operating

system (ROS) (Quigley et al., 2009)/Gazebo environment. Two

home environments with different wallpaper designs and layouts

are shown in Figure 5. Environment 1 is an AWS small house1

environment with a size of∼11× 19m. Environment 2 was created

using the interior design application SeetHome 3D and is∼10× 12

m in size.

The robot is a Turtlebot3 Waffle Pi equipped with a 360◦

LiDAR sensor with a detection distance of 3.5 m and an RGB

camera with a horizontal field of view (FOV) of 1.085 at a height

of 1 m. Turtlebot3 is a two-wheeled robot with wheels driven by

servomotors that can obtain odometry data calculated from the

rotation data of each wheel. An environmental occupancy grid map

is created for each environment in advance.

1 https://github.com/aws-robotics/aws-robomaker-small-house-world
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FIGURE 6

Trajectory of evaluation episodes written on the occupancy grid map. (Left) Environment1. (Right) Environment2. The top row shows that the

episodes do not include kidnapping. The bottom row shows the episodes that include kidnapping. S, G, AK, and BK denote the starting point, the goal

point, and the point before and after the kidnapping occurred in each episode, respectively. Solid and dotted lines indicate the trajectory before and

after the kidnapping, respectively. The occupied grid map shows white areas as free, black areas as occupied, and gray areas as unobserved.

4.1.1 Training
The training data for the RSSM and MRSSM modules consist

of a sequence of two types of information: the observed image ot
captured by the RGB camera and the pose xt estimated by MCL.

The ROS AMCL (Adaptive Monte Carlo localization) package was

used to implementMCL. The image was resized to 256× 256 pixels

after clipping the 480 × 640 pixel data obtained from the RGB

camera to 480 × 480 pixels. The pose is that of the particle with

the largest cumulative weight of MCL during the environmental

exploration, and the ROSAMCL package publishes it. In the default

settings of the ROS AMCL package, a translational movement

of at least 0.25 m is required before performing a filter update.

Additionally, the maximum speed of the Turtlebot3 is 0.26 m/s.

Therefore, during the robot’s translational movement, the particles

are updated at ∼1.3 Hz. The robot explored the environment by

following human operations, and the training data were sampled

at 1 Hz to approximately match the order of intervals between

MCL particle updates. In other words, the state transition model

of the RSSM or MRSSM model trained with these data is trained

to predict the state one second later. We collected learning data

for 365 and 186 min in Environments 1 and 2, respectively. The

episodes in the training data do not include a kidnapped robot

problem. We trained each model with the training data from

each environment. This approach means that we independently

conducted four trainings, corresponding to the combination

of two models and two environments. Network training was

performed under the following conditions: Using Adam, we trained

for 3 k iterations at a learning rate of 10−3. The number of

dimensions of the latent variables h and s was set to 200 and

30, respectively.

4.1.2 Evaluation
Separate from the training data, short exploration episodes

were created for evaluation. Figure 6 illustrates the trajectory of

an evaluation episode on an occupancy grid map. In Environment

1, episodes 1 and 2 start from the center (origin) of the

environment, while episodes 3–9 start from different locations to

evaluate global localization performance. Episodes 10 and 11 are

designed specifically to address the kidnapped robot problem. In

Environment 2, episodes 1 to 3 start from the center, episodes 4 and

5 start from different locations, and episodes 6 and 7 are designed

for the kidnapped robot problem.
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TABLE 1 Results of RMSE in evaluation episodes.

Type Episodes MCL EMCL Model 1 Model 2

Environment 1

No kidnapping 1 1.55± 1.11 0.23± 0.50 0.21 ± 0.01 0.92± 0.45

2 1.23± 0.73 0.10± 0.00 0.09 ± 0.01 1.04± 0.62

3 1.62± 1.21 0.82 ± 1.39 1.28± 0.66 1.45± 1.30

4 1.48± 1.54 0.13 ± 0.06 1.88± 0.43 1.25± 0.42

5 3.24± 1.53 3.29± 2.21 3.68± 0.96 2.67 ± 0.89

6 1.34± 0.91 2.15± 1.83 2.51± 0.61 0.92 ± 0.26

7 1.26± 0.86 1.93± 2.42 2.71± 0.94 0.30 ± 0.11

8 1.06± 0.75 1.65± 2.18 2.18± 0.33 0.62 ± 0.20

9 1.21± 1.12 0.49± 1.14 0.71± 0.23 0.30 ± 0.14

Kidnapping 10 2.46± 0.90 2.12± 0.91 1.10± 0.02 1.01 ± 0.26

11 3.79± 0.39 3.76± 0.43 3.11± 0.02 1.14 ± 0.13

Environment 2

No kidnapping 1 1.26± 1.08 0.78± 1.13 0.26 ± 0.05 0.37± 0.04

2 1.16± 1.01 0.53± 0.91 0.22 ± 0.05 0.26± 0.03

3 0.66± 0.80 0.49± 0.77 0.20 ± 0.02 0.41± 0.05

4 1.60± 1.33 0.35 ± 0.76 2.11± 0.66 0.55± 0.06

5 1.01± 1.19 0.38 ± 0.74 1.73± 0.66 0.42± 0.14

Kidnapping 6 2.16± 0.44 2.13± 0.47 1.57± 0.07 0.40 ± 0.04

7 1.57± 0.33 1.31± 0.41 1.57± 0.19 0.31 ± 0.02

MCL, EMCL, Model 1, and Model 2. Bold and underline means the best value. Underline means the second best value.

4.2 Result

4.2.1 Localization performance
We evaluated the global self-localization performance of the

trained model using the evaluation episodes. For each episode,

we compared the performance of MCL, EMCL2, Models 1 and

2. Initially, the robot was assumed to have no information

regarding its position. In other words, particles that approximate

the initial self-pose are sampled from a uniform distribution

in the environment. A total of 20 trials were conducted for

each episode. In this study, the number of particles is fixed

at 2,000.

Self-localization performance was evaluated using the root

mean square error (RMSE), as shown in Equation (10). Here,

xt , yt , θt is the pose of the particle with the largest cumulative weight

value among the particles that the model infers. x̄t , ȳt , θ̄t is the

ground truth pose.

et =

√

(x̄t−xt)2 + (ȳt−yt)2 + (cos θ̄t− cos θt)2 + (sin θ̄t− sin θt)

(10)

Table 1 lists the average et values of 20 trials for each episode

in both environments. The error is the standard deviation that

represents the variation in each trial. In episodes without the

2 https://github.com/ryuichiueda/emcl2

kidnapped robot problem, Model 1 outperformed other methods

in episodes 1 and 2 of Environment 1 and episodes 1 to 3 of

Environment 2, which started from the center of the environment,

while in other episodes, EMCL and Model 2 showed the best

values depending on the episode. Model 2 showed the best

values for episodes 10 and 11 in environment 1 and episodes

6 and 7 in environment 2, including the kidnapped robot

problem. There were no episodes in which MCL exhibited the

best performance.

To evaluate recovery performance from the kidnapped robot

problem, Table 2 displays the average number of steps required for

recovery and the success rates across 20 trials. A dash indicates

that there was no success, and the values in parentheses represent

the success rates. Recovery is defined as successful if the difference

between the true pose and the estimated pose is within 0.5 meters

and 0.1 radians at least once. Throughout all episodes, Model

2 recovered quickly and maintained a high success rate. As a

specific example of the history of RSME, we show an example

of episode 7 in Environment 2, which includes the kidnapped

robot problem. The trajectory of this episode is indicated by the

purple color in the bottom right figure of Figure 6. S, BK, AK,

and G represent the start point, the point before kidnapping,

the point after kidnapping, and the goal point, respectively.

Figure 7 shows the trend of et . Step 132 corresponds to the timing

of the kidnapped robot problem. When kidnapping occurred,

the RMSE of all models increased; however, Model 2 quickly
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TABLE 2 The average number of steps taken to recover and success rate in kidnapping episodes.

Environment Episodes MCL EMCL Model 1 Model 2

1 10 – – – 18.4± 4.2 (0.45)

1 11 – – – 33.2± 2.4 (1.00)

2 6 – 132 (0.05) – 36.1± 8.1 (1.00)

2 7 100 (0.05) 101.2± 0.4 (0.65) 101.0± 19.0 (0.45) 17.7± 3.0 (1.00)

reduced the error and recovered quickly from the kidnapped

robot problem.

4.2.2 Representation of latent variables
Place cells have a high firing rate at specific locations in the

environment and have been discovered in the rat CA3. In this study,

we confirmed the representation obtained for the latent variable ht
corresponding to the region of CA1, CA3, and DG (Model 1) or

CA3 and DG (Model 2). This finding indicates that each of the

200 dimensions of the latent variable corresponds to a cell in the

corresponding region.

First, using the trainedmodel, the latent variable ht was inferred

at each step of the training data, and all latent variables were

associated with the pose estimated by MCL. Then, The area of

Environment 2 (10 × 12 m) was divided into 0.25 m square

bins, and Figure 8 shows a plot of the average values in each bin

for a part of cells. All 200 cells are shown in Figure S1. All the

cells obtained with Model 1 had different firing rates at different

positions. In contrast, in Model 2, some cells fired at a constant rate

regardless of location(i.e., Indistinguishable location cells). In other

words, a sparse representation was obtained overall. This sparse

representation obtained in CA3 is consistent with the findings of

neuroscience.

5 Discussion

In this section, we discuss how our findings, particularly the

results of Model 2, relate to neuroscience, specifically to the

structure and function of the hippocampus.

The results of the localization experiment suggest that Model 1

tends to be more influenced by preconceived beliefs than Model 2.

In global self-localization tasks, episodes starting near the center

of the environment tend to perform better with Model 1. The

reason is thought to be that, in the implementation, the initial

value of h0 is set to correspond to the center of the environment.

Moreover, in episodes including the kidnapped robot problem,

Model 2 demonstrated better performance than Model 1. These

results indicate that Model 1 is more susceptible to inheriting the

state from a previous time compared to Model 2 (i.e., tends to be

influenced by preconceived beliefs). Moreover, in comparison with

EMCL, Model2 demonstrated superior performance, especially in

scenarios involving the kidnapped robot problem. EMCL performs

expansion resetting when the integral of the weighted likelihood

of observations falls below a threshold. This method expands the

current belief distribution in the pose space to search for solutions

and assumes the inductive bias that the robot remains nearby

FIGURE 7

The RMSE of Episode 7 in Environment 2. The blue, orange, green,

and red lines represent Model 2, Model 1, MCL, and EMCL,

respectively. The dashed line indicates kidnapping at step 132.

even after a kidnapping. However, in environments where similar

observations can be made at multiple locations, there is a bias

toward solutions close to the current belief distribution in pose

space, which can lead to convergence to local optima.

From the perspective of state-space models, the main difference

betweenModels 1 and 2 lies in whether the information about robot

pose xt is given as input (action) or output (observation) to the

state-space model. As many state-space models assume that self-

behavior directly and predictably impacts the environmental state,

in RSSM, actions deterministically influence the state at the next

moment through the dynamics of the state-space learned by GRU.

In Model 1, the input xt deterministically affects the subsequent

state ht+1, whereas in Model 2, the observation xt influences the

state ht through the inference model along with image ot by using

a multimodal VAE. The multimodal VAE is capable of learning

robust representations that are shared across multiple modalities,

even when some modalities are partially available. Therefore, in

Model 2, even if the self-location suddenly becomes incorrect (i.e.,

teleportation), the robot can quickly recover from the kidnapped

robot problem.

This scenario raises the question of when there is a difference

between the allocentric self-location belief and the images currently

being seen, which is concluded to be correct. One possibility

is the theory that CA3’s recurrent collateral pathway learns

an attractor network from past experiences and draws it in
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FIGURE 8

Part of ht cells. (Left) All cells obtained in Model 1 yielded di�erent firing rates in di�erent locations. In other words, location-distinguishable cells

were obtained. (Right) However, in Model 2, some cells remain constant regardless of location and are not location-distinguishable cells. In other

words, a sparse representation was obtained in total.

by obtaining a sparse representation (Kesner and Rolls, 2015).

We showed that the variable ht , corresponding to CA3 and

DG, distinguished locations using fewer dimensions (cells) and

found that its sparse representation (Figure 8) was consistent with

neuroscientific findings (Jezek et al., 2011). From the perspective

of predictive coding, considering the function of top-down

predictions, the region integrating information necessitates dense

information to forecast lower-level complex multimodal inputs,

thereby complicating the acquisition of sparse representations

(e.g., Model 1). However, structuring the model to separate the

variable updated recursively with GRU from the variable that

integrates information automatically enables the acquisition of

sparse representations, which automatically facilitates adaptation to

unprecedented teleportation events by leveraging past experiences

(e.g., Model 2).

The discussion thus far indicates that the functions and

structure of the hippocampal formation are closely related. In

Model 2, the architecture was designed such that the multimodal

VAE and the GRU correspond, respectively, to the temporo-

ammonic pathway of CA1 and the recurrent collateral pathway of

CA3, characteristic hippocampus structures. Despite the absence of

manual design of relations between variables, the self-supervised

method enables the GRU hidden layer to reproduce features known

as representations of CA3, such as place cell and sparsity. It also

demonstrates the capability of adapting self-localization functions,

even in the kidnapped robot problem. This observation indicates

that the structure of the hippocampal formation is a primary factor

affecting its recognized features and functions.

6 Conclusion

In this study, we created a computational model of spatial

cognition inspired by hippocampal formation by integrating RSSM

or MRSSM and MCL, which are two types of probabilistic

generative models, using Neuro-SERKET. We compared the

localization performance of two hypothetical integrated models

with different granularities of hippocampal modeling. We found

that the calculation model that distinguishes the CA1 and CA3

of the hippocampus has better self-localization performance when

teleportation occurs. We also showed that a sparse representation

is obtained for random variables corresponding to CA3 in the

computational model, which is thought to be due to the structural

factors in the computational model. These results suggest that

machine learning models incorporating insights into the brain’s

structural information offer robustness in situations not anticipated

during learning or design phases, such as the kidnapped robot

problem.

The limitations of this study were as follows: The allocentric

representation is assumed to be the pose on the occupancy grid

map and is given in advance. When an engineer provides a map to

a computation model, its format and the relationship between the

sensors and map information are fixed based on prior knowledge.

Therefore, as a future challenge, it will be necessary to construct

a representation of the environment from the robot’s sensor

information without the aid of map information, that is, to perform

SLAM. Additionally, it may be possible to generate behavior from a

robust representation. In this study, we showed that beliefs were

appropriately updated in the kidnapped robot problem, but no

actions were generated. The ability to estimate one’s state robustly,

even when a situation changes dynamically, is necessary for robust

navigation in such a dynamic environment.
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