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Simulated dynamical transitions
in a heterogeneous marmoset
pFC cluster

Bernard A. Pailthorpe*

Brain Dynamics Group, School of Physics, University of Sydney, Sydney, NSW, Australia

Network analysis of the marmoset cortical connectivity data indicates a

significant 3D cluster in and around the pre-frontal cortex. A multi-node,

heterogeneous neural mass model of this six-node cluster was constructed.

Its parameters were informed by available experimental and simulation data so

that each neural mass oscillated in a characteristic frequency band. Nodes were

connected with directed, weighted links derived from the marmoset structural

connectivity data. Heterogeneity arose from the di�erent link weights andmodel

parameters for each node. Stimulation of the cluster with an incident pulse train

modulated in the standard frequency bands induced a variety of dynamical state

transitions that lasted in the range of 5–10 s, suggestive of timescales relevant

to short-term memory. A short gamma burst rapidly reset the beta-induced

transition. The theta-induced transition state showed a spontaneous, delayed

reset to the resting state. An additional, continuous gamma wave stimulus

induced a new beating oscillatory state. Longer or repeated gamma bursts

were phase-aligned with the beta oscillation, delivering increasing energy input

and causing shorter transition times. The relevance of these results to working

memory is yet to be established, but they suggest interesting opportunities.
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1 Introduction

Marmoset provides a simpler primate brain (Solomon and Rosa, 2014) for both

experimental and modeling studies. With a subdivided frontal lobe, it offers a valuable

model system for exploring cortical functions. Network analysis (Pailthorpe, 2024) of the

marmoset cortical connectivity data, measured by retrograde tracers (Majka et al., 2016,

2020), identified a significant 3D cluster in and around the pre-frontal cortex (pFC), which

is examined here. The network analysis methods followed those used previously for the

mouse retina (Pailthorpe, 2016) and the mouse brain (Pailthorpe, 2019). Previous studies

of brain networks (Sporns and Kotter, 2004) generally focused on small motifs comprising

2, 3, or at most 4 nodes due to the combinatorial explosion in the number of possible

configurations of larger clusters. Network analysis of the marmoset connectivity data

(Pailthorpe, 2024) identified network hubs in or near the Marmoset pFC, visual cortex,

auditory cortex, and somatosensory areas. These contained the leading hubs for in- or out-

links along with a tight configuration of strong links to nearby nodes. The most striking is

a closely coupled cluster of six anatomical areas in or near the Dorso lateral pFC (DlpFC),

containing one out-hub (A10) and one in-hub (A32V), along with a connector node (A11),

which is a marginal in-hub. Other participating nodes are A32, A9, and A46D.
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The usual mesoscopic models of neural systems follow the

original analysis of Wilson and Cowan (WC) and Jansen and Ritt

(JR) (Wilson and Cowan, 1972, 1973; Jansen and Rit, 1995). A

cortical column or anatomical area is modeled as a composite

neural mass (NM), comprising three neural assemblies of excitatory

or inhibitory neuronal populations. Studies typically employ a

single NM or two identical interacting NMs, e.g., Jansen and Rit

(1995). A number of prior studies form the background to the

present work: David and Friston (2003) showed that a single NM

generated a unimodal spectrum and further explored the influence

of coupling strength and signal delays between twoNMs; andDavid

et al. (2005) explored the neuronal mechanisms underlying evoked

response potentials resulting from impulsive stimuli or system

parameter perturbations of multiple NMs. An extended model,

incorporating fast and slow inhibitory subpopulations (Wendling

et al., 2000), has been used to generate gamma-band oscillations;

this model has been extended to three parallel NMs to model

high-resolution EEG (Zavaglia et al., 2006) that exhibit multi-band

spectra. Combined with an inverse method, this study located

dipolar sources on the cortical surface at six areas of the human

cortex: A46L & R, 5L & R, and areas 6AL & R, associated with

somatosensory and motor functions. That approach focused on a

different network hub region and complements the present work.

Since one- and two-dimensional grids of identical NM (21; 16

× 16, 31 × 31 nodes) were interconnected by homogeneous but

adjustable strength, nearest neighbor links were used (Goodfellow

et al., 2012) to study propagating waves related to epilepsy as a

function of coupling strength.

Here, those earlier studies are extended to multiple, interacting,

unequal NMs. This study introduces three novel concepts: (1)

it identifies an interesting six-node subsystem in the primate

cortex using network theory applied to cortical structural links;

(2) it introduces heterogeneous neural masses by tuning them to

appropriate frequency bands; and (3) it introduces heterogeneous

linkages between those neural masses using available directed,

weighted connectivity data for marmoset cortex. Model outputs are

the time-dependent local field potential (LFP) for each node and

their average for the cluster. The complex overall outputs arise from

constructive and destructive interference of the individual outputs

from the linked oscillators. This six-node cluster exhibits a range

of oscillations and phase plane behavior familiar from numerous

earlier studies of neural masses, with added complexity due to the

varying link weights, signal delays, and node heterogeneity.

The cluster exhibits sustained transitions in oscillatory behavior

when stimulated by pulse trains modulated by oscillatory

waveforms in the standard brain wave frequency bands (Buzsaki

and Draguhn, 2004; Buzsaki, 2006). The output of A32V, the

dominant in-hub, is the most responsive to the stimuli. Sustained

dynamical transitions are observed, lasting up to 5–10 s. Gamma

bursts can control the theta- or beta-induced transitions.

2 Methods

Marmoset cortex structural connectivity data, as measured by

retrograde tracers (Majka et al., 2016, 2020) and available via a data

portal (http://marmosetbrain.org), provide directed link weights

between 116 anatomical areas based on 55 injection sites. That

data are the basis of the present study, and its network properties

have been analyzed (Pailthorpe, 2024) using a renormalization of

the original fractional weight measure to reveal the underlying

in-link weights. The network analyses of both datasets were

compared, with the fractional weight measure predicting no in-

hubs while still identifying A10 as an out-hub. The pFC cluster,

with its two hubs, was only revealed by the inclusion of the

in-link weights. The standard network techniques were applied

to the renormalized data, including modular decomposition by

InfoMap (Rosval and Bergstrom, 2007), motif classification (Sporns

and Kotter, 2004), hub identification via participation coefficients

(Guimerà and Nunes Amaral, 2005), temporal (time-evolving)

network analysis (Holme and Saramarki, 2012), and tracing sensory

pathways (Pailthorpe, 2019). That strategy of network analysis

was arrived at in prior studies of simpler systems: the mouse

retina (Pailthorpe, 2016) and mouse brain (Pailthorpe, 2019).

Several modular decomposition algorithms were considered, with

the InfoMap algorithm preferred since it is conceptually based

on network traffic, i.e., multiple random walkers on the network,

and has been shown to yield good results in a variety of networks

(Fortunato, 2010). Limitations of these methods have been studied

on a large collection of networks (Ghasemian et al., 2019) and reveal

that InfoMap tends to over-fit the data, which provides good link

description but poor link prediction. Neuron density and cortical

thickness were reported by Atapour et al. (2019). The volume

of each anatomical area was calculated by counting 3D voxels

corresponding to each labeled area in the Marmoset brain atlas

(Paxinos et al., 2012). Those quantities were required to calculate

the number of neurons in each anatomical area. The calculated

center of mass (centroid) of each area’s voxels was taken to be the

node coordinates and used to calculate inter-node distances.

2.1 Model and simulation equations

The WC/JR neural mass models have been widely studied

from varying perspectives, as discussed above. Even so, it is worth

reiterating that the differential equations in NM models have the

form of a driven simple harmonic oscillator (Halliday et al., 1997):

d2y

dt2
+ k

dy

dt
+

1

τ 2
y (t) = Fext(t) (1)

Where y(t) is a time-dependent state variable (e.g., voltage), k

is a damping coefficient that measures energy dissipation in the

system, τ is the time constant characterizing system dynamics (e.g.,

decay) and Fext is an external driving force. In an undamped system

(k = 0), the oscillation frequency is ω = 1/τ . Non-linearities in

suchmodels enter via Fext. Equation (1) has been widely used and is

well-characterized; in particular, the system’s oscillation frequency

is Halliday et al. (1997):

w =

[

1

τ 2
+

〈

k

2

〉2
]

1
2

(2)

When k= 2/τ , Equation (2) takes the form used in NMmodels,

as in Equations (3)–(5). Then, ω = 0 and the system has no

characteristic frequency and is a critically damped oscillator. Such
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a system is a “one shot oscillator” that quickly reverts to its initial

state and thus does not sustain oscillations on its own—much like

a well-tuned door closer. Its sustained activity only appears when

driven by external inputs, such as external noise or stimuli, and by

the outputs of linked nodes. Those inputs have a non-linear form,

generally sigmoidal in shape, and generate non-linear dynamics.

Overall, this is reminiscent of a neuron generating an action

potential, followed by a refractory period. The neuron responds

to external stimuli but, by itself, does not oscillate. Yet, collections

of interacting neurons do. The origins of network oscillations in

spiking (Wallace et al., 2011) and other systems have been reviewed

(Brunel and Wang, 2003; Wang, 2010).

Casting the NM model in the form of Equation (1) provides

intuition to guide the tuning of model parameters. The terms

on the left are acceleration, damping force, and restoring force,

while those on the right are the driving forces (stimuli and

interactions). For stable oscillation, a reasonable balance of these

terms is required; otherwise, the oscillation rapidly dies out, as

it does for many parameter choices. Realizing the simplicity of

Equation (1) invites the further analogy of coupled oscillators

and the resulting frequency shifts caused by the coupling

strengths. Extensions of Equations (1), (2) interacting oscillators

have been well-studied for standard oscillator models, with explicit

expressions for the resulting frequency shifts and amplitudes

available (Jothimurugan et al., 2016). Such studies provide insight

into tuning the frequency of each neural mass in the present study

(cf. Supplementary material 2.5).

Each anatomical area in the cluster is a node modeled as three

neural assemblies, or neural masses (NM), containing excitatory

or inhibitory neurons, following WC (Wilson and Cowan, 1972,

1973) and JR (Jansen and Rit, 1995), originally formulated as

models of a cortical column (Mountcastle, 1997; Molnar, 2013).

Themodels used ameasure of neuronal activity, such as the fraction

of excited neurons or firing rate, and have also been interpreted

using voltage, as adopted herein. The two views are equivalent given

the monotonic relationship between the firing rate and voltage,

noting that the signaling rate plateaus, or saturates, as voltage

increases. The dynamics of each NM were originally described by

two signal processing blocks that accumulate pulses to generate a

post-synaptic potential and transform the voltage to a firing rate

(Jansen and Rit, 1995). The resulting differential equation is just

that of a critically damped linear oscillator. Its sustained activity

only appears when driven by external inputs, from external noise

or stimuli, and by the outputs of linked nodes. Those inputs have

a non-linear form, generally sigmoidal in shape, and generate non-

linear dynamics. The resulting coupled differential equations, when

cast in the standard form (derivatives on the left and driving terms

on the right), are as follows:

d2ye

dt2
+

2

τe

dye

d t
+

1

τ 2e
ye (t) =

A

τe
C2 S

[

C1y0(t)
]

+
A

τe
p (t) +

∑

j

akj
A

τe
S
[

dyj(t)
]

(3)

d2yi

dt2
+

2

τi

dyi

d t
+

1

τ 2i
yi (t) =

B

τi
C4 S

[

C3y0(t)
]

(4)

d2y0

dt2
+

2

τe

dy0

d t
+

1

τ 2e
y0 (t) =

A

τe
S
[

ye (t) − yi (t)
]

(5)

Where ye and yi are the potentials associated with the excitatory

and inhibitory neural populations, respectively, y
′

is its first-time

derivative, and y" is the second derivative. Each equation is for

a single node k (= 1–6), and the sum in Equation (3) is over

linked nodes j. y0 is the potential of the subpopulation of excitatory

neurons that are driven by the difference dy = ye – yi. The

time constants τe and τi (∼ 10ms) represent the joint effects of

“delays associated with the membrane resistance and distributed

delays in the dendritic network” (Jansen and Rit, 1995) in the

excitatory and inhibitory neural populations. The units throughout

Equations (1)–(3) are V/s2, although mV/s2 is used in practice. The

presence on the left of coefficients 2/τe and 1/τ 2e indicates that

the oscillator is critically damped, as discussed above. The terms

on the right are the non-linear feedback and driving inputs; the

latter are applied only to the excitatory population. These internal

and external driving forces are what cause the system to produce

sustained oscillations, overcoming the critical damping. Casting the

model in the form of Equations (1), (3)–(5) aids in the tuning of

the parameters. It also makes clear the balance of driving forces,

particularly between the excitatory and inhibitory sub-populations.

The input p(t) is the background noise due to local cortical

activity. The final term in Equation (1) is the summed inputs

to the current node (k) from linked nodes (j), weighted by the

adjacency, or connectivity, matrix elements akj. Numerous authors

have discussed the adjacency matrix and its use in neuroscience;

that literature is best captured by reviews by Bullmore and Sporns

(2009) and Bassett and Sporns (2017) and textbooks by Sporns

(2011). In Equation (3), dyj = ye – yi is the output of each linked

node j (in mV) and is the difference in voltage outputs of the

excitatory and inhibitory neural subpopulations that are presented

to the pyramidal subpopulation in each node. Following Jansen

and Rit (1995) and Goodfellow et al. (2012), the model output,

dyj, is taken to be a local field potential for that anatomical area.

LFP for the cluster is taken as the average of the six contributions.

Signal delays can be introduced in this term by using instead a

time-delayed dyj (t – dij/v), where dij is the inter-node distance,

available from atlas coordinates, and here v is the local signal

velocity. Local signals were assumed to travel along axonal or other

pathways at 1 m/s (Muller et al., 2014), assuming short-range

links may be unmyelinated. The coefficients A and B, originally

the maximum post-synaptic potential amplitude, also quantify

the feed-forward synaptic strengths, while C1-C4 describe the

feedback strengths to the excitatory and inhibitory populations (cf.

Supplementary material 2.2). The function S (units Hz or s−1) is the

voltage to firing rate transformation, described below. Parameter

values are discussed below and are taken to be broadly consistent

with those used in previous studies (Wilson and Cowan, 1972, 1973;

Jansen and Rit, 1995; David and Friston, 2003). Derivation of the

average synaptic weightswav from available data is discussed below.

Note that there can be a separate wav for in and out links, so the

function S may vary.

2.2 Numerical methods

These equations were solved numerically by a 4th order Runga

Kutta method (Press et al., 2007), with a timestep of 0.1ms, using
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MATLAB codes. Recasting each 2nd order differential equation

as two 1st order equations improves numerical stability. Small

background noise (Gaussian random) was applied; alternatively,

the use of uniform or no noise did not affect the results. Signal

delays mean that Equations (3)–(5) become delay differential

equations (cf. MATLAB Help Menu). They are of a simple type

since delays only appear in the driving terms on the rights of

Equations (3)–(5), so they are straightforward to solve. Transients

died out within 2–3 s of simulation; stimuli were initiated at

4 s, and the simulation ran for a total of 20 s. Longer duration

responses were simulated out to 30 or 40 s as a check. Fast

Fourier Transforms of model outputs (voltage dy), using the

MATLAB Signal Processing Toolbox, were used to find the spectral

density distribution of each NM’s output to identify prominent

spectral peaks (MATLAB findpeaks function) and to quantify the

distribution of power across frequency bands.

2.3 Voltage transformation to signaling rate

The voltage-to-rate transformation function S is usually

approximated by the convenient sigmoid function, which can

be derived from the distribution over voltage thresholds for

firing in a neural population of fixed synaptic weight (Wilson

and Cowan, 1972). However, measured firing thresholds vary

by only 10s% (Henze and Buszki, 2001; Yu et al., 2008), while

connectivity data of link number and link weights can vary by 2–

3 orders of magnitude, as with the present data. In that case, a

distribution of synaptic weights in a neural population with the

same threshold, v0, is appropriate, as originally noted (Wilson and

Cowan, 1972). That derivation (Supplementary material 2.1) yields

a new transformation function:

S(v(t)) = qm erfc

(

−r

(

v0

v (t)
− wav

))

(6)

Where qm is the maximum rate, v0 is the mid-point (50% firing

rate) of the sigmoid curve,wav is the average synaptic weight in each

neural population, and r is the inverse of its standard deviation,

and also the steepness of the sigmoid. The function erfc is the

complementary error function (Arfken, 1970).1 This is a steeper

curve than the usual sigmoidal form (cf. Supplementary Figure S2).

2.4 Heterogeneous nodes

Many simulations use identical neural masses, in which model

parameters are identical for each node. Neural masses are used to

model cortical areas or columns, so it is evident from anatomical

and other observations that the neural masses need to differ. That

can be captured in the internal model parameters described above.

An evident variation between anatomical areas is in volume V and

number N of neurons in each area, followed by the varying number

and weights of the in- and out-links, here captured by wav. All of

those are available from the marmoset data used here. The internal

time constants, τe and τi, are not known but generally fall in the

1 MATLAB, Mathworks Inc. Waltham, Mass.

range of 10–25ms in keeping with known neural time constants

(Koch et al., 1996). The values of N, wav−in, and wav−out vary

significantly across the six nodes of the cluster studied here, so it

is likely that the emergent dynamics of those nodes may vary.

2.4.1 Link weights
The rich detail in the marmoset connectivity data facilitated the

estimation of the parameters of the synaptic weight distribution

wav and r (reciprocal of the standard deviation). Details are

presented in Supplementary material 2.4. The cluster is compact

and almost fully linked, compared to the sparse linkage of the

cortex overall (26%). Links of the six areas, along with all other

areas of the cortex, comprise 15% of all links detected in the

cortex. A summary of link weight data internal to the cluster is

presented in Supplementary Tables S1, S2, and external link data

are summarized in Supplementary Table S3.

2.4.2 LIF model of an NM informs parameter
choice

A Leaky Integrate and Fire (LIF) model of an NM (Mazzoni

et al., 2008, 2011) has been used to characterize LFP. Here, that

model was also used to study the dynamics and characteristic

frequencies as a function of each NM’s internal parameters

and size. Details are presented in Supplementary material 2.6.

LIF simulations showed f increasing with N up to N ∼ 400

neurons and then constant or decreasing slowly with larger N,

out to N =10,000 (Supplementary Figure S5). For comparison,

simulations for the six nodes also indicate that oscillation frequency

increases linearly with size N (Table 1; Supplementary Table S2).

Geometric considerations of the marmoset anatomical areas

(Supplementary Table S7) show consistency with these simulations

in that f increases with N for both. Thus, the LIF model also

provided guidance in tuning frequencies for the 6 NMs used to

model the pFC cluster.

2.4.3 Frequency band assignment
Little appears to be known about the natural frequency

bands associated with NM models of individual anatomical areas.

Presently, multi-electrode electrode arrays (Fukushima et al., 2014),

which have been used in the marmoset parietal cortex (Komatsu

et al., 2015), may yield LFP recording at sufficient spatial resolution

to shed light on that question. Here, frequency band assignment

to the 6 nodes emerged from exploratory simulations of 1,

2, and 4 node clusters and the inclusion of link weight data

(Supplementary Tables S1, S2), along with the LIF simulations of

NM models of varying size. Exploratory simulations, described

in Supplementary material 2.5, provided indicative value of the

parameters, listed in Table 1 and Supplementary Tables S4, S5. The

familiar theta (4–8Hz), alpha (8–12Hz), beta (12–30Hz), and

gamma (30–100Hz) bands consistently appeared during parameter

searches, or no oscillation occurred. This suggests that these

bands are a natural feature of the WC/JR model of an NM.

Together with the LIF simulations, these searches suggested a

possible assignment of frequency bands amongst the six nodes.

Some combinations of parameters were tested, with about 10
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TABLE 1 Parameter values (Equations 3–6) and resultant frequency bands were found for the six nodes in the pFC cluster.

Node Frequency band C r wav τe (ms) τi (ms) f (Hz)

A10 Gamma 220 0.5 3 5 5 32.1

A32V Theta 200 0.5 5 25 25 5.3, 10.7

A32 Beta 250 0.5 3 10 10 16.0

A9 Alpha 220 0.5 1.5 16 17 9.9

A46D Theta 200 0.5 3.5 25 25 5.9

A11 Beta 250 0.5 3 10 10 16.1

Reported wav was the optimum found amongst 10 trials. The dominant frequency f was found from peaks in the power spectral density of LFP for each node; secondary peaks are listed

when significant.

producing viable oscillations in all six nodes. Comparisons of

that simulation wav with weight/link and weight/neuron data for

marmoset (Supplementary Figures S3, S4) suggest the latter is a

better measure of synaptic weight in Equation (6). The optimal

assignment used in subsequent simulations is listed in Table 1.

It was found that r was the least sensitive parameter and

that r = 0.5 sufficed; for simplicity, the constant value was

used throughout. Note that lower r shifted spectral power to

the alpha and beta bands. A32V had dominant (∼80%) theta

power but also had spectral power (10%) in the alpha and

beta bands and sometimes shifted between theta and beta bands

depending on parameters and stimuli. Possibly, this was due to

its strong in-links from A10 and A9 and sensitivity to their

dynamics. Overall, nodes showed no preference for a frequency

band, with the emergent frequencies generally following the

parameter assignment. Typical parameters for each frequency

band are presented in Supplementary Table S1. Other illustrative

calculations are summarized in Supplementary Table S5.

2.5 Stimulus

Random noise (zero mean and unit variance) was used to

model inputs to an NM from surrounding neural regions, as is

usually used. It is also known that wave-like oscillations propagate

across the brain, some associated with cognitive tasks (Bhattacharya

et al., 2022). Neural field theory provides a detailed description of

electromagnetic waves in the brain that manifest as standing waves,

or eigenmodes (Robinson et al., 2016), and traveling waves (Gabay

et al., 2018). Waves communicating between distant brain regions

have been observed in marmoset (Davis et al., 2019). Propagating

beta band LFP waves have been shown to facilitate information

transfer in motor cortical areas of macaque (Rubino et al., 2007)

and to be present in the human motor cortex (Takahashi et al.,

2011). Theta and alpha traveling waves have also been observed

in the human neocortex, correlated with a memory task (Zhang

et al., 2018). In view of this and other evidence, simulated wave-like

stimuli were applied to the pFC cluster.

To simulate a wave like stimulus, a signal comprising a constant

pulse rate, modulated by a sin wave in one of the four bands,

was constructed. The stimulus, being a pulse rate, must be strictly

positive (cf. Supplementary Figure S9). The options to achieve

this are explained in Supplementary material 2.9. The model was

stimulated by pulse train waveforms with amplitude modulated

by an oscillatory waveform in each of the theta to gamma bands.

The frequency was chosen to match the spectral peaks in the

resting state simulation (cf. Table 1). The stimulus was turned

on at 4.0 s, well-after transients had settled down, and generally

applied either for the full simulation run (20 s). When present, a

second stimulus was applied at 10 s. Stimuli were applied to all

nodes or to nodes singly, in pairs, etc. When needed, simulation

runs were extended to 30 or 40 s if further responses persisted. A

pulse function stimulus was also constructed following the original

methods (Jansen et al., 1993), using a pulse density function of

a monophasic exponential form: t7exp(–t/t), with a 4-ms time

constant. Its maximum amplitude of 200Hz matched that of the

wave stimulus and delivered 5.2 “unit pulses” (unitless: Hz ∗ s) as

a proxy measure of energy input. For comparison, a 16-s wave-

modulated stimulus typically delivers ∼1,000 unit pulses over the

duration of the stimulus.

3 Results

The basic network analysis, modular decomposition, and

hub classification of the marmoset cortical connectivity data

have been presented (Pailthorpe, 2024). Modular decomposition

by the InfoMap method (Rosval and Bergstrom, 2007) yielded

eight modules clustered around hub or connector nodes and is

broadly confirmed by the Louvain method (Blondel et al., 2008).

The module associated with pFC was the third in significance

as measured by probability flow. Motif analysis (Sporns and

Kotter, 2004) showed a widespread prevalence of triangles with

motif #8, a counterclockwise triangle comprising 51% of the

triangles in pFC. Motif analysis alone would not have identified

the six-node cluster studied herein; which was only found after

detailed network searches, particularly time-evolving network

tracing and visualization.

Through this, hubs in pFC, sensory areas, and association areas

were identified, with the pFC hubs being the most prominent. The

six-node cluster studied here comprises areas A10, A32V, A11,

A32, A9, and A46D. Three of the nodes are in DlpFC, and three

are in the nearby orbital or medial lobes. Some 60% of the total

weight of all cluster links is internal to the cluster, indicating the

prevalence of internal links. Separately, parcellation-free, column

scale connectivity data, including also anterograde tracers, for

marmoset has become available (Watakabe et al., 2023) but has not

yet been analyzed.
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The six-node cluster is geometrically pyramidal shape in three-

dimensional (3D) space, centered around the dominant out-hub

A10, and is topologically compact, as shown in Figure 1. The other

five nodes are within 3.4mm of the central node A10 and, with

an assumed local conduction velocity of 1 m/s, can signal within

3.4ms. The two next nearest nodes (A8aD and A8b) are within

5mm and have only five weaker links with the core cluster, along

with the 13 next closet nodes (each within 3.4mm of any cluster

node) that have only one or two links each to the cluster. All

116 nodes are plotted and color coded according to Table 1. Only

links with the cluster are plotted. The distance scale is indicated

by the background grid and the scale bar (cf. Caption). The cluster

is an almost fully connected sub-network. The internal links are

quite strong: one-third have weight >1,000 and are amongst the

strongest links in the cortex, and another quarter have weight>500.

The next closest node with a link weight>78 (i.e., top 40% of links)

is at 11.3mm, with a few lower-weight links present. Together,

these features suggest a soft boundary and that the six nodes form

a structurally distinct cluster. A model of an eight-node cluster,

including areas A8aD and A8b, was also studied (not reported) and

exhibited generally similar behavior. The six-node cluster and its

nearest in- and out-links are shown in Figure 1, with internal link

distances<3.5mm. The six nodes are more densely interconnected

and have 93% of the total link weight present in the figure, with the

balance to the additional 13 nodes nearby, as shown in Figure 1.

The maximum link distance, 3.4mm, is taken as a distance scale to

characterize the cluster. The set of neighboring nodes within that

distance was also explored to better understand the boundary of the

cluster, which necessarily is poorly defined. Those 13 external nodes

have weaker in-links (Figure 1B) to the cluster and few out-links

(Figure 1A).

3.1 Comparison of models

The original NM model, which uses the sigmoid voltage-

rate transformation function (Supplementary Equation S2),

produces LFP outputs that are combinations of simple sinusoidal

functions, as illustrated in Supplementary Figure S5. Some

heterogeneity is available via the nodes’ internal parameters.

Furthermore, mild heterogeneity can be introduced by

modifying the sigmoid to include average synaptic weights,

wav (Supplementary Equation S3), yielding similar results.

These simple models did not produce dynamic transitions in

response to stimuli. The extended NM model, used herein, uses

integration over a normal distribution of synaptic weights to yield

a steeper, shifted voltage-rate transformation function (Equation 6;

Supplementary Equation S4; Supplementary Figure S2) that is

more sensitive to wav and is the focus of the present study. This

wav can be estimated from available linkage data for the marmoset

cortex (Supplementary material 2.4; Supplementary Tables S1, S2).

Searching parameter combinations produced both simple and

complex dynamics. Two (#2, #6 out of 10) trials yielded sustained

transitions in the dynamical state following wave-like stimuli of

selected nodes in the cluster. The results presented here are for a

single set of parameters (trial #6) using the parameters listed in

Table 1. A typical output of the model in a resting state, driven only

FIGURE 1

Perspective view of the six-node cluster around pFC in marmoset,

forming an approximate square pyramid in 3D; (A) (top) showing all

out-links and (B) (bottom) all in-links within 3.5mm of any of the

cluster nodes. The 13 external nodes are within the size scale of the

cluster. View from the anterior, left side. Stronger links are shown by

thicker lines. Centroid of the cluster is denoted by the green dot.

The mid-horizontal plane image is a slice from the marmoset cortex

volume image (Paxinos et al., 2012; http://marmosetbrain.org) to aid

perspective; that volume image has 0.04 × 0.04 × 0.5mm sized

voxels, as evident in the image. The background grid is 2mm

squares and the A-P scale bar is 5mm, here seen in perspective

view. Nodes and links are color coded by Infomap module

membership (Pailthorpe, 2024), as listed in Table 1.

by noise, is shown in Supplementary Figure S7. The LFP for the

cluster has spectral power distribution: 63% theta, 14% alpha, 21%

beta, and 1.7% gamma bands. A representative Fourier spectrum

is shown in Supplementary Figure S8 and is compared to available

data, which shows strong beta peaks.

3.2 Response to wave stimuli

Stimuli were applied to all nodes and selectively to single and

pairs of nodes. Node 2 (A32V) showed a distinctive response,

presented below, while the other target nodes showed a small

(∼2mV) step up in potential with an unchanged waveform. Other

nodes, not targeted, showed no response. A gamma (32.1Hz)

stimulus to both A32V and A11 caused the responses shown in

Figure 2. The biased full wave and the half wave stimulus caused
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identical responses, with varying delays in onset. The half wave

stimulus (Supplementary Figure S9B) induced a complex, ramped,

beating waveform after a 1.6-s transition (Figure 2A), repeating

after 6.6 s; while the full wave stimulus induced a simple beat

(Figure 2B) after a 2.6 s transition. Note that the full wave stimulus

(Supplementary Figure S9A) is effectively oscillating at twice the

input frequency (i.e., 64.2Hz) while still in the gamma band. A

check, by applying a double frequency (64.2Hz) half wave stimulus

to both A32V and A11, confirmed a response (not shown) similar

to that presented in Figure 2B, but with a longer repeat time of 8.6 s.

A full-wave gamma stimulus applied only to A32V caused

a negligible response, while that stimulus only to A11 rapidly

(in 0.86 s) induced a different beat pattern (not shown),

repeating at 8.6 s. The response of A32V is dominated by the

response of the inhibitory subpopulation oscillation, shown in

Supplementary Figure S10. All subsequent results are in response

to half-wave stimuli (Supplementary Figure S9B). A comparison

of responses in A32V to stimuli to both A32V and A11 in the

four standard frequency bands is shown in Figure 3. The stimulus

frequency in each band is chosen to match the fundamental

resonances listed in Table 1.

The A32V waveform transitions to a lower amplitude steady

state after varying transition times, with a long delay of 12.5 s

for a beta-modulated stimulus (Figure 3C) but only 1.6 s for

gamma (Figure 3D). The gamma stimulus induces an additional

long period, ramped pattern, repeating after 6.6 s (0.15Hz), which

is discussed below (Section 3.3). The theta stimulus, possibly

modeling the multiple inputs of neighboring theta oscillators in

the dominant spectral band, induces a long-lasting, low state

that eventually (after 17 s) relaxes back to the resting state (cf.

Supplementary Figure S11). The alpha stimulus appears to induce

a disordered state (Figure 3B) of uncertain interest. Note that

the theta stimulus was tuned to the resonance of A32V (5.3Hz);

the other theta resonance, for A46D (5.9Hz), results in a fast

(0.28 s) transition to a multi-beat waveform (not shown), possibly

suggesting a different modulating role for A46D. Many tests

indicated that consistent results were obtained when stimuli were

applied simultaneously to both the in-hub, A32V, and to the in-

connector, A11, suggesting a local circuit functioning as an AND

logic gate. Network analysis and path tracing (Pailthorpe, 2024)

also showed that both these nodes are the ultimate target of

many sensory pathways. Stimulus to a single node was tested,

e.g., application of the beta wave to A32V only induced a fast

(1.8 s) transition to a smaller (by 8mV) amplitude beat, while

beta stimulus to A11 only produced a negligible response (∼1mV

change). Generally, the average LFP for the cluster exhibited only

small changes. The prominent response was for the local potential

at A32V. As a final check, switching off the stimulus wave generally

caused the oscillation to revert to its original state.

3.3 Response to reset stimuli

For the resting state cluster (cf. Supplementary Figures S7, S8),

the dominant spectral power is in the theta band (63%) and

then in the beta (21%) and alpha (14%) bands. Current pFC

reviews (Lundqvist et al., 2018a,b) suggest that transients in beta

and gamma bands have a role in working memory readout. Beta

traveling waves have been observed to originate from pFC during

task performance in macaques (Bhattacharya et al., 2022). To

prove this, a beta wave was applied to A32V and A11 at 4 s, and

then a second stimulus was applied 6 s later. The reset stimulus

was applied to all nodes. Sensitivity was tested by also applying

it selectively to single and pairs of nodes. Beta emissions from

the cluster were not sought nor observed. The first beta stimulus

(Figure 3C) appears to induce a latent switch that, after 12.5 s,

transitions to a “low” amplitude state that can be interrupted

within 0.1 s by switching off the beta wave at an intermediate

time (e.g., 10 s), inducing a return to the original oscillation mode

(not shown). That transition also is inhibited by a second, short

stimulus, as shown in Figure 4. This transition is affected by a 100-

ms gamma burst to the single nodes A32V, A10, or A46D but not

by the stimulus of A11 alone.

A 100-ms gamma burst (Figure 4A) applied at 10 s (i.e.,

before the anticipated transition at 12.6 s) rapidly (∼0.1 s) induces

a reversion, within 1.0 s, to the initial state (overlaid in gray

in Figure 4A). This short stimulus delivers little energy to the

oscillators, so it needs to be close to in-phase with the excitatory

potential ye (of A32V) of the responding node to effect the

transition; if it is out of phase, a proportionally reduced effect

follows. By contrast, a simple pulse function stimulus, given by

Equation (3) of Jansen et al. (1993) (reproduced in Section 3.5),

interrupts the intermediate oscillation and initiates (within 0.1 s)

the transition to the low state (Figure 4B), which then slowly relaxes

to the original oscillation. These two stimuli have quite different

energy content since a 100-ms gamma burst contains up to 6

positive peaks, each of which is approximately equivalent to a

single pulse.

Since the theta band dominates the power spectrum in the

resting state, comparison simulations were run: a sustained and

a short gamma burst were also applied after the theta-induced

transition (Figure 3A). A continuous gamma wave applied at 10 s,

after the theta wave induced low state had stabilized, induces a new

oscillatory mode that repeated at ∼6.7 s, as shown in Figure 5. By

contrast, a 100-ms gamma burst had only a small effect on the theta-

induced oscillation, even when care was taken to ensure that the

stimulus was in phase with the ye (A32V) oscillation.

Given the interest in gamma bursts, the results were

investigated further. The system is a set of physical oscillators, and

these transitions are likely to require sufficient energy input to drive

them into a new state. Thus, longer gamma bursts and repeated

short bursts that were phase-aligned to the positive parts of the

theta oscillation were simulated. Recall that the theta-modulated

dynamics spontaneously revert to the high amplitude state after

17 s (cf. Supplementary Figure S11). A single 500-ms gamma burst

induced that reversion after 14 s, and a double amplitude 500ms

burst reduced that wait time to 12.3 s (figure not shown). Such

a longer burst drives the oscillators with, and then against, the

original theta-induced driving force. To avoid that, three 100-ms

gamma bursts were constructed to phase align with only positive

cycles of the theta oscillation that induced the transition after 13.9 s.

This illustrates how gamma bursts, properly phase aligned, can

deliver more efficient energy transfer and deliver a faster dynamical

state transition of the cluster.
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FIGURE 2

Response of node 2 (A32V) to a gamma band (32.1Hz) modulated 200Hz stimulus applied to both nodes 2 and 6 (A32V and A11) at 4 s; (A) response

to half-wave stimulus, and (B) response to full-wave stimulus.

4 Discussion

Network analysis of themarmoset cortex structural linkage data

identified a novel 6-node cluster in and around pFC. This is the

dominant cluster in the marmoset cortex. In summary, this study

implements a suggestion noted in the original study (Wilson and

Cowan, 1972) to extend the classical WC/JR neural mass model

to include a distribution of synaptic weights. The new voltage-

to-rate transformation function is sharper than the usual sigmoid

function. Available structural connectivity data for the marmoset

cortex provides estimates of required parameters and guides the

tuning of nodes to the standard frequency bands. Heterogeneity

enters via linkage weights and the tuning of each node to a natural

oscillation frequency. With synaptic weights and heterogeneity

added, the NM model exhibits a variety of interesting dynamical

responses and transitions. The results presented are for one set of

parameters (Table 1). The simulations produced a balanced spectral

density distribution (Supplementary Figure S8) dominated by the

theta band and exhibited dynamical transitions in response to

wave-like stimuli.

The resting state LFP of the cluster

(Supplementary Figure S7A) is a composite of the component

oscillations of the individual nodes (Supplementary Figure S7B)

and exhibits a complex pattern of multiple beating oscillations.

Wave-like stimuli were applied to the system to characterize

its responses: the model produced sustained transitions in

the dynamical state of A32V (Figure 3), with some new states

lasting ∼5–10 s, before relaxing. The new states comprised

lower amplitude oscillations with variable beating patterns.

Consistent with the observed role of beta waves in suppressing

information (Lundqvist et al., 2018b), the simulated stimulus

delayed the switch to a low amplitude state (Figure 3C).

By contrast, gamma induced a new, repeating, ramped

dynamical state (Figure 3D), possibly related to the observation:

“gamma ramp-up coincides with working memory readout”

(Lundqvist et al., 2018b).
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FIGURE 3

Response of node 2 (A32V) to a 200Hz stimulus modulated by each of (A) theta (5.3Hz); (B) alpha (9.9Hz); (C) beta (16.0Hz); and (D) gamma band

(32.1Hz). Stimuli applied to both nodes 2 (A32V) and 6 (A11) at 4 s.

To probe the system, further stimuli, based on experimental

observations in the cortex, were applied to the model cluster. First

is the observation of traveling waves in the visual cortex of an awake

marmoset (Davis et al., 2019) during a task of visual detection

of a moving target. The waves were in the low beta range (12 ±

4Hz) traveling at slow speeds (.1 m/s), representing unmyelinated

axons. Their phase alignment was observed to be predictive of an

excitable state during evoked responses. Second are observations

of traveling waves in macaque pFC during a delayed match-to-

sample workingmemory task (Bhattacharya et al., 2022). Alpha and

beta power was observed to decrease during sample presentation,

while beta and gamma power increased. Third, observations of

beta and gamma bursts during working memory tasks in rhesus

monkeys (Lundqvist et al., 2018b) suggested their control roles, as

discussed above.

Together, these observations prompted simulations in which

a wave stimulus was first applied, followed by a 100-ms gamma

bust, which caused further dynamical transitions (Figures 4, 5).

Theta and beta waves were chosen as the basic stimulus, with

theta representative of a resting state environment due to inputs

from neighboring areas and beta of the other possible control

inputs. Beta wave stimulus followed by a subsequent gamma

burst exerted control by interrupting the previously induced

transition (Figure 4A). This is consistent with the suggested role

of beta in suppressing information (Lundqvist et al., 2018b) and

of gamma exerting further control on that process. The theta

stimulus followed by a gamma burst induced a new dynamical

state (Figure 5), illustrating how gamma bursts can control

transitions between high- and low-amplitude oscillatory states.

The importance of the simulations of the brief stimulus being

phase-aligned with the base oscillation was noted above.

The current level of the NMmodel appears to only allow a small

degree of heterogeneity, as illustrated by the parameter range in

Table 1. Even so, themodel can generate oscillations in the standard

frequency bands and interesting transitions. Further refinements of

the model are required to accommodate the range of the empirical

synaptic weights. This could be incorporated via the gain constants,

A and B (Equations 3–5), which reflect local synaptic weights in

the neural feed-forward subpopulations, and via the feedback gain

constants, C.

4.1 Other clusters in the marmoset cortex

A number of structural clusters in the marmoset cortex are

described in my earlier study (Pailthorpe, 2024), with the pFC

cluster being the most distinctive. It is compact and almost fully
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FIGURE 4

Response of A32V to beta band (16.0Hz) modulated stimulus at 4 s applied to A32V and A11, followed by short reset stimuli applied at 10 s applied to

all nodes: (A) 100ms gamma burst; and (B) standard pulse function (cf. Section 2.5). In (A), the original theta-induced transition at 16.5 s (cf.

Figure 3C) is overlaid in yellow/gray for reference.

linked, with 29 of 30 possible internal links present; one-third of

those have strong weights. Other clusters were also investigated

amongst the remaining hubs and prominent connector nodes in the

cortical network. Two candidates were an auditory group (AuA1,

AuCPB, and AuRT) and a visual group (V3, V4, and V6). A motor-

somatosensory group [cf. Supplementary Table S2 of Pailthorpe

(2024)] was found to be more spatially dispersed and less tightly

interlinked; another in-hub, TEO, was linked with the visual group.

These clusters were weak, longer range, and less fully interlinked.

Their linkage patterns were more tree-like rather than the tight,

star-shaped patterns found in the pFC cluster. All these other

clusters warrant further investigation.

4.2 Sensory inputs to and motor links with
the cluster

All six nodes in the cluster received inputs from the visual

cortex, mostly from V2 via TPO. Other links, via MST or Opt or

direct from V2 or V4, are weaker. The strongest weight pathways

from the auditory cortex are from AuA1 and AuCPB via TPO to

A32V and A11, consistent with the observations of Dorsal and

Ventral auditory pathways (Schreiner and Winer, 2007) and the

sensitivity of A32V and A11 to stimuli in the simulations. The

somatosensory areas (cf. Section 4.1, above) have direct links to

A10 and A11. There are reciprocal links between A10 (the out

hub) and the pre-motor area A6DR, which has a strong input to

A46D in the pFC cluster. The strong links to A46D, along with its

simulated responses, suggest it may have a role in modulating pFC

cluster responses.

4.3 Bursts, avalanches, coherence, and
transitions

The present study demonstrates dynamical transitions in

localized clusters of cortical areas modeled as simple oscillators.

On a larger scale, two studies shed light on bursts, transitions,

and synchronization and are accompanied by significant literature.

The first was an experimental investigation of spontaneous LFP

oscillations in rat somatosensory cortex measured by micro-

electrode arrays (Giresch and Plenz, 2008), which observed beta

and gamma bursts nested within theta oscillations. The oscillations

were coherent between nearby areas, with the synchronization

following a power law across distances up to 1.6mm, and the nested

oscillations being organized as avalanches. In the present study,
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FIGURE 5

Response of A32V to theta band (5.3Hz) modulated stimulus at 4 s, applied to both nodes 2 and 6 (A32V and A11) at 4 s, followed by a gamma wave

applied at 10 s to all nodes.

higher frequency, brief stimuli needed to be phase-aligned with

the basic oscillation if they were to effect a dynamical transition.

Thus, 4–5 gamma peaks could fit within a single theta positive

oscillation, enhancing the underlying oscillation and producing the

complex waveform consistent with the experimentally observed

beta-gamma/theta nesting.

The second study was a theoretical and computational study

of a modified Wilson-Cowan model applied to a 2D lattice of

diffusively interacting nodes driven by noise (Di Santo et al., 2008).

The lattice was rewired to allow a small fraction of long-range

connections. It included a model of synaptic plasticity and some

heterogeneity via modified node activity levels. A critical point

in the cortical dynamics, indicative of a phase transition in the

synchronization, was observed by tuning the baseline level of a

synaptic resource parameter. Such a global transition is in contrast

to the more localized up-down state transitions found herein. That

study also predicts avalanches, as observed experimentally. The

synchronization transition was observed in an extended system

of size 642-5122 oscillators. Another relevant study is of a system

of 80 identical NMs, each connected to 20 neighbors connected

in a Watts–Strogatz network, with a specified interaction strength

(Kazemi and Jamali, 2022). The system exhibits a synchronization

transition as coupling strength is increased, and the transition point

shifts with noise stimulus strength.

In each of those studies, the system has a large number of

interacting entities, and the transition is driven by interaction

strength, while the present study was of a local cluster of six

oscillators coupled by the fixed experimentally specified interaction

weights and driven by wave-like stimuli. The small size is far

removed from the thermodynamic limit of large systems where

phase transitions and critical phenomena are usually observed.

The transitions observed herein are between up-down states of

high and lower amplitude. It would be worth searching for

suitable measures of synchronization and their transitions in small

groups of NM oscillators and in the pFC cluster. Small groups

of oscillators are known to synchronize, thus encouraging such

a search. For example, the synchronization of two pendulum

clocks has been known for centuries [reported by Huygens

in February 1665 (Strogatz, 2003, p. 106)], suggesting that

synchronization may be possible in small clusters of oscillators.

Whether transitions occur is less certain. The roles of localized

up-down states, larger scale synchronization transitions, and the

interplay between system size, variability of interactions, and

stimuli, all warrant further investigation. The global model of

di Santo et al., drawing on the statistical physics of critical

phenomena, is more sophisticated than the localized clusters of

simple oscillators and so provides a larger perspective on the

present study.
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4.4 Strengths and limitations

The classic WC/JR model has been extended to

incorporate the distribution of synaptic weights, leading to

a sharper voltage-rate transformation function (Equation 6;

Supplementary Equation S5). Heterogeneity has been included via

experimentally available linkage weights. Together, these induce

interesting dynamical behavior.

The heart of the WC/JR model is a simple, critically

damped oscillator wholly driven by external inputs, so it is

amenable to intuitive physics to guide its further development and

interpretation. This makes clear that brief stimuli, such as gamma

bursts, need to be phase-aligned with the underlying oscillations

for the stimulus to deliver sufficient energy to drive the oscillations

to a new dynamical state. Such phase alignment is reminiscent of

the observed nesting of beta/gamma-theta oscillations (Giresch and

Plenz, 2008).

A key limitation of NM models is that a number of scales

are unclear (cf. Supplementary material 2.7): the spatial extent

of a neural mass, the relationship between linkage weights and

the synaptic weights, and the relationship of voltage output to

measured LFP. The model developed herein can benefit from the

inclusion of a model of synaptic plasticity (Tsodyks and Markham,

1997; Di Santo et al., 2008), e.g., via a generalization of the feed-

forward and feedback constants A, B, and C (cf. Equations 1–

5, Supplementary material 2.2). A biologically plausible way of

incorporating synaptic plasticity in the WC/JR model, that

avoids arbitrary parameterization,may yield informative dynamical

responses. It is unclear if small clusters of NMs can produce

synchronization transitions (cf. Section 4.3); more work would be

required to establish the cluster size that can produce such.

4.5 Future work

This study highlights several areas in and near pFC that

have interesting roles in local dynamics. Area A32V, the major

network in-hub in the marmoset cortex, has a distinctive response

to stimuli that warrants further investigation. A11, a connector

node and marginal in-hub, is a target of numerous sensory

inputs. A46D was sensitive to reset stimuli, indicating a possible

role in modulating pFC function; it receives medium-strength

inputs from the auditory cortex. The availability of high-density

electrode arrays that may be able to probe LFP at the single area

level offers an opportunity to study these areas in detail. The

new structural data for marmosets at a finer spatial resolution

(Watakabe et al., 2023) provides an opportunity to extend the

present study.

5 Conclusion

Themodel constructed herein emerged from a network analysis

of the experimentally observed marmoset connectivity data, in

contrast to being assembled to address specific observations. The

simulations map out some basic dynamical transitions in a cluster

of areas around marmoset pFC in response to wave-like stimuli.

The dominant transitions were found in area A32V, the major

network in-hub in the marmoset cortex. While all nodes showed

some response, the prominent transitions occurred when A32V

and A11 were both stimulated. The new dynamical state could then

be modified by gamma stimulus of any one of A10, A11, or A46D.

The range of response illustrates the possibilities that emerge

from heterogeneous models of NM tuned to available connectivity

data. This study demonstrates that multiple, simple processes

can generate dynamical transitions in time windows consistent

with those of working memory. It provides a framework in

which specific events can be placed to generate biologically

relevant processes. It also illustrates how local dynamics might

relate to known large-scale nested oscillations and coherence.

Computational studies can thus expose the inner workings of the

oscillatory dynamics of neural assemblies to build insight and

suggest experimental investigations.
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