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Introduction: With the great success of Transformers in the field of machine

learning, it is also gradually attracting widespread interest in the field of remote

sensing (RS). However, the research in the field of remote sensing has been

hampered by the lack of large labeled data sets and the inconsistency of data

modes caused by the diversity of RS platforms. With the rise of self-supervised

learning (SSL) algorithms in recent years, RS researchers began to pay attention to

the application of “pre-training and fine-tuning" paradigm in RS. However, there

are few researches on multi-modal data fusion in remote sensing field. Most of

them choose to use only one of the modal data or simply splice multiple modal

data roughly.

Method: In order to study a more e�cient multi-modal data fusion scheme,

we propose a multi-modal fusion mechanism based on gated unit control

(MGSViT). In this paper, we pretrain the ViT model based on BigEarthNet dataset

by combining two commonly used SSL algorithms, and propose an intra-modal

and inter-modal gated fusion unit for feature learning by combiningmultispectral

(MS) and synthetic aperture radar (SAR). Our method can e�ectively combine

di�erent modal data to extract key feature information.

Results and discussion: After fine-tuning and comparison experiments, we

outperform the most advanced algorithms in all downstream classification tasks.

The validity of our proposed method is verified.
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1 Introduction

In recent years, ViT (Dosovitskiy et al., 2020) architecture has been widely studied. It

is an attention-based encoder composed of multiple transformers layers stacked together,

acting like a backbone network in a convolutional neural network, and is trained to extract

the feature representation of input data. Usually, there is a decoder behind the encoder

to output of the feature task. ViT is increasingly used in computer vision due to its

accuracy, efficiency, and scalability, and delivers state-of-the-art (SOTA) performance for

most computer vision (CV) tasks (He et al., 2022; Carion et al., 2020; Peng et al., 2022; Xu

et al., 2022; Liu et al., 2022).

The recent success of ViT in CV has made it widely studied in RS as well.

As we all know, it is very difficult to obtain labeled data sets in the field of

RS, and there are very large data without labels. Therefore, it is suitable to utilize

transfer learning in RS (Liang et al., 2019). Transfer learning accelerates and improves

learning and problem-solving in a new field by transferring knowledge and experience

from one field to another related field, so transfer learning has shown excellent

generalization ability in several fields (Pires de Lima and Marfurt, 2019; Shin et al., 2016).
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However, there are very few pre-trained models dedicated to RS

migration, and transfer learning from models trained in other

fields [e.g. ImageNet (Russakovsky et al., 2015)] has significant

drawbacks. For scene classification, if the pre-training stage is

performed on a large remote sensing dataset instead of traditional

ImageNet, transfer learning will be more meaningful because the

pre-training stage on a large remote sensing dataset helps to

provide more meaningful features (Neumann et al., 2020). In fact,

the samples from the ImageNet dataset have completely different

features from remote sensing images. The former is usually

centered around the image, while the latter’s specific category

features typically exist throughout the entire image (see Figure 1).

And we know there are various types of sensors in RS, in addition to

containing RGB three optical band data, there are additional bands

in the invisible part of the electromagnetic spectrum. In order to

better evaluate and compare the performance of remote sensing

scenario classification methods, the remote sensing community is

striving to create and collect a variety of data sets for benchmarking.

These involve different datasets, from simple three channel RGB

images to multispectral, hyperspectral, or time series datasets. On

the other hand, efforts are also being made to train pre-trained

models specifically for RS on RS datasets (Jain et al., 2021; Yuan

and Lin, 2021; Vincenzi et al., 2021; Kang et al., 2021).

SSL has the ability to learn common representations from large-

scale, unlabeled data, which is generally broken down into twomain

steps: (1) Training a model with unlabeled data to learn common

features in the data based on self-supervised goals; (2) Transferring

a pre-trained model to a supervised downstream task to leverage

its ability to capture good representations. In most common SSL

architectures, encoders are trained along with the projection layer,

and after training, encoder weights are used with a task-specific

classifier or decoder, as shown in Figure 2. Research (Abnar et al.,

2021; Zhai et al., 2022; Alabdulmohsin et al., 2022; Tay et al., 2022;

Kaplan et al., 2020; Tao et al., 2020; Stojnic and Risojevic, 2021)

has shown that the more datasets used for pre-training, the more

accurate the pre-trained model is, and the greater its contribution

to downstream tasks, which can to some extent solve the problem

of RS annotation data scarcity. So in recent years, pre-trained ViT

models based on RS data have achieved SOTA performance on

some RS tasks (Wang et al., 2022a; Scheibenreif et al., 2022; Wang

D. et al., 2022; Cong et al., 2022).

2 Related work

In RS, images are acquired through various sensors, the

pre-trained datasets for SSL usually contain data from multiple

modalities, the two most popular ones currently being MS and

SAR. MS remote sensing system records the weak difference of

spectral reflection and radiation characteristics of ground objects

in different bands, has high spectral resolution, can provide a

lot of information such as surface material composition, help to

identify different types of ground objects, and is the most important

information source for remote sensing application research at

present. However, the multi-spectral remote sensing system is

vulnerable to the negative impact of weather conditions (such as

cloud cover) and has high requirements on weather. Due to the

influence of cloud cover and cloud shadow, its data can only be

effectively used in sunny days without clouds, which greatly limits

the application of its data.

Radar data is an active remote sensing system independent of

sunlight. Radar beams can penetrate clouds, not affected by day,

night and cloud factors, and obtain data all day and all weather,

which just makes up for the lack of MS remote sensing. More

importantly, radar information provides physical characteristics

of ground objects by reflecting their surface roughness, which

mainly depends on the geometric shape of the target, the

surface structure trace, such as plant cover, loose sediment (sand,

gravel, pebble), etc. Due to these characteristics of radar, it has

great application potential in geological structure, topography,

surfacemoisture, soil moisture, vegetation cover, settlements, linear

features, sea state recognition and other aspects, but SAR cannot

provide easy to interpret images, each modal data has its own

advantages and disadvantages. In order to make full use of data

information, researchers usually need to use multiple modal data

in combination. Moreover, recent studies have shown that simply

learning the joint features of the two modes also shows significant

advantages (Tao et al., 2020; Vincenzi et al., 2021).

In multi-modal data fusion training, Wang et al. (2022a)

proposed a joint SAR-optical SSL algorithm. The concatenated

SAR-optical image is taken as raw input. It is randomly transformed

into two augmented views and fed into a DINO-based (Caron et al.,

2021) teacher-student network. This way, themodel contrasts views

of either a single modality or both, learning both inner-modality

and inter-modality representations. Jain et al. (2022) applied the

distillation network concept to build and analyze single channel

and three channel features learning for MS and SAR data, utilized

MS and SAR data as an implicit augmentation to learn invariant

feature embeddings and verified the usefulness of multiple modes

for feature learning based on self-supervised distillation network

BYOL (Grill et al., 2020). Fuller et al. (2022) pre-trained the ViT

model on 1.3 million Sentinel-1 and Sentinel-2 images using a

SOTA self-supervised learning algorithm called Mask Automatic

coding (He et al., 2022) (MAE). They then loaded the pre-trained

model (Fuller et al., 2022) and reduced the patch size to retain finer

grained information, achieving better results (Green et al., 2022).

Wang et al. (2022b) expose a multi-modal, multitime unlabeled

dataset SSL4EO-S12 for Earth observation-like self-supervised

learning and validate the advantages of multimodality in multiple

downstream tasks using a series of SSL algorithms. These studies

show that the multi-modal fusion of MS and SAR images has

significant advantages over the use of a single mode. However, in

the current research on multi-modal fusion, most of the processed

data or extracted features are simply spliced together without

considering the proportion of importance of different modes in

different tasks. For example, the red-edge band is good at detecting

vegetation and soil, and the SWIR and NIR bands are good at

detecting water and resolving thin clouds. SAR, on the other hand,

is not affected by weather and can help with terrain or disaster-

related tasks. Therefore, in the multi-mode fusion, the importance

of different modes in different tasks should be fully considered.

In order to solve the problem of multi-modal fusion, we

propose a multi-modal gated fusion training method based on

self-supervision. In detail, on the basis of the traditional ViT

structure, we added the shortcut layer gated fusion mechanism,

and the feature vectors extracted from different modes were
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FIGURE 1

Illustration of the di�erence between object-centric natural images [from the COCO (Lin et al., 2014) dataset] and remote sensing scene images

[from the BigEarthNet (Sumbul et al., 2019) dataset]. (A) Object-centric image samples. (B) Remote sensing image samples.
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FIGURE 2

General SSL representation learning approach utilizes unlabeled multi-modal data in RS domain. After pre-training, projection layers are removed

and encoder weights are transferred for task specific supervised learning. h means initialize encoder with learned representations.

gated fusion. In the self-supervised training method, we integrated

contrast learning based on theMAEmethod to further improve the

performance of the model.

3 Proposed method

We propose a self-supervised learning method for multi-modal

gated fusion in the field of remote sensing. The traditional method

simply splines two data features when SAR and MS multi-modal

data fusion. Compared with the traditional method, we use a

gated unit to achieve feature fusion of multi-modal data. The

intra-modal gating unit is used to control the fusion of different

transformers layers. After extracting the feature representation,

the inter-modal gating unit fuses the features of different modes

to obtain the effective feature representation based on different

modes. At the same time, we redesigned a new self-supervised

training model based on the mask reconstruction self-supervised

method and momentum contrast self-supervised method. Firstly,

the self-supervised pre-training was carried out on different modal

data, and then in the downstream task, the pre-training models of

different modes were loaded, and the model was fine-tune with the

inter-modal gated fusion unit.

In detail, suppose we have a multi-modal data set S that consists

of N number of SAR and MS pairs, where S = {S1, S2}
N where

S1 represents SAR data that contains 2 channels and S2 represents

MS data that contains 12 channels. Firstly, two pre-trained models

S1 encoder and S2 encoder are self-supervised trained based on S1
and S2 respectively. In the downstream task, the trained pre-trained

model is loaded respectively for data feature extraction, and the two

groups of extracted feature vectors are gated and fused, and then

sent to the classification head for output results.

3.1 Vision transformers

We selected the ViT model as the primary architecture for

our model. ViT processes feature vectors comprised of a sequence

of patches, which are then passed through multiple transformer

layers for feature extraction. Each Transformer layer consists of a

multi-headed self-attention (MHSA) sublayer and a feed-forward

network (FFN) sublayer. MHSA focuses on extracting significant

features between patches, while FFN emphasizes significant

features within patches. The number of stacked transformer

layers in ViT is known as the model depth, and the length

of each hidden features is termed the model width. Generally,

the model depth and width determine the model’s performance.

Recognizing that features extracted from shallow transformers may

be somewhat forgotten as themodel depth increases, we introduced

a Transformer-shortcut sublayer (TS) after stacking N transformer

layers. The entire ViT model structure comprises multiple TS

structures, and introduced a gating unit to control the weight

coefficient of the feature vector. This gating unit integrates ideas

from feature fusion and decision fusion.

In detail, suppose a transformer layer named Hn, on the one

hand, it will output Hn+4 after passing through four layers of

transformer, on the other hand, it will output weight coefficient

through a linear layer F and a sigmoid function. The weight

multiplied by the Hn layer and directly added to the Hn+4 layer as

the final output result of the gated unit, Figure 3 shows the gated

unit transformer architecture our proposed, and the calculation

process is as follows:

Hout = Hn+i + σ (F(Hn))×Hn (1)

Here i is shortcut number, σ is sigmoid function.
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FIGURE 3

In the encoder diagram proposed by us, the encoder has 12 layers of transformers, which is divided into three inter-modal gated fusion units, and

each fusion of the modal internal gating unit is carried out every four transformers layers. (A) Encoder. (B) Intra-modal gated fusion unit.

We designed the model depth of the ViT encoder to be 12

and the model width to be 768. Before the input data is sent to

encoder for encoding, it will be divided into small patches, and

then rearranged into a series of patches in sequence. After linear

projection of the original pixel value to the 768 underlying features

of each patch, positional coding information will be added, which

is unique to ViT. They mainly record the position information of

each patch in the encoder. The coded patches are then processed by

a series of transformer layers. In detail, take S1 data as an example,

the dimensions of the original S1 data are {224, 244, 2}. Firstly, we

will divide the input data S1 into patches, the dimensions of which

are designed to be 16 × 16 pixels, and the dimensions of each

patch are {16, 16, 2}. The number of patches after segmentation

is 14 × 14, and the dimensions of patches after rearrangement

with location coding are {196, 16 × 16 × 2}, and the dimensions

of the same S2 data after encoding are {196, 16 × 16 × 12}. In

transformer coding, feature vector gating fusion will be carried

out every four layers, and the model depth is 12, so a total of

three times gating fusion will be carried out. The number of

transformer layers through which gating fusion is carried out can

be changed. After testing, we find that every four layers has the

best effect.
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FIGURE 4

Illustration of gated units. The features of di�erent modal data are extracted by di�erent encoders, fused by gating units, and fed into the

classification head network for classification tasks.

3.2 Multi-modal fusion

In this paper, we introduce a gated multi-modal unit (Arevalo

et al., 2017) (GMU) that is similar to the way a cyclic model

controls the flow of information, learning how to use multiplicative

gates to determine how the modes affect the activation of the

unit, the GMU receives two or more input sources, and learns to

determine how much each input mode influences the activation

of the unit. It combines ideas from feature fusion and decision

fusion, and its aim is to find an intermediate representation based

on combinations of features of different patterns. The Figure 4

describes the structure of GatedMultimodalLayer. After the two

modal data are encoded by encoder respectively, the feature vector

of the modal association is obtained. Each mode associated feature

vector connects a linear layer with a tanh activation function

designed to encode an internal representation feature based on a

particular mode. For each modal associated feature vector, there

will also be a gate neuron (represented by the sigmoid node in

the figure), which controls the contribution of the features of the

different modes to the overall output of the unit. In detail, we

assume that S1 data is encoded by S1 encoder to obtain the feature

vector xs1, it passes through the linear layerWs1 and tanh activation

functions to get the feature representation hs1, S2 data is encoded

by S2 encoder to obtain the feature vector xs2, it passes through

the linear layerWs2 and tanh activation functions to get the feature

representation hs2, the hs1 and hs2 feature vectors then pass through

the linear layerWz and the gating unit sigmoid to obtain the gating

vector z, which then coordinates with hs1 and hs2 to obtain the final

feature vector h. the entire GMU calculation process is as follows:

hs1 = tanh(Ws1 × xs1) (2)

hs2 = tanh(Ws2 × xs2) (3)

z = σ (Wz × [xs1, xs2]) (4)

h = z × hs1 + (1− z)× hs2 (5)

After the GMU unit outputs the final feature vector h, it

maximizes the useful features according to the contribution of

different modal features to the overall output, and then carries

out the classification task with the classification head. Since

all operations of the control unit are differentiable operations,

the model can be easily coupled with other neural network

architectures and trained by stochastic gradient descent.

3.3 Self-supervised model pre-training

In this paper, we pre-trained SAR and MS ViT models

respectively. In order to train the encoder of the ViT model, we

refer to MAE algorithm, which is currently in the leading position

in the self-supervised learning algorithm fetching. The main idea

of MAE is to hide most of the position information in the original

data, the proportion is as high as 75, and then an asymmetric

coding-decoding structure is proposed. encoder only operates on a

subset of the unmasked patch part. The image is then reconstructed

from hidden space and mask token via a lightweight decoder. In
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FIGURE 5

The SSL algorithm structure where the encoder is trained based on the MAE algorithm and the MoCoV3 algorithm.

this paper, we first pre-process (e.g. the size is unified to 128 ×

128) all the original data. After loading the data, different data

enhancement methods are randomly selected to generate other two

sets of data, and MAE training will be conducted on these two sets

of data respectively. Before the training MAE is sent to the model

encoder, the input data will be sorted by patches and 75 patches

will be randomly shielded. For patches that are not hidden, the

patches will be sent to the encoder for feature extraction processing,

and then the patches encoding will be sent to the decoder to

reconstruct the corresponding input data information. We set the

decoder depth to 2 and width to 384 (length of feature vector

per patch).

In detail, we assume that we first pre-process the original

data as x, then we use different data enhancement methods to

generate other two sets of data x1 and x2, we randomly shield

75 patches on these two sets of data respectively, we called m1

and m2, then they will be sent to the encoder and decoder

to reconstruct the corresponding feature respectively, we called

r1 and r2, when we training encoder, we need to calculate

the reconstruction loss of input features and corresponding

reconstruction features. The reconstruction loss we used was the

mean squared error between predicted and target pixels in the

masked patches, we called MSE, the reconstruction loss Lossrec is

as follows:

lossr1 = MSE(x1, r1)×m1 (6)

lossr2 = MSE(x2, r2)×m2 (7)

Lossrec = lossr1 + lossr2 (8)

In order to further improve the feature extraction capability

of the encoder, we refer to the contrast learning idea in the

self-supervised learning algorithm and introduce the Momentum

contrast (Chen et al., 2021) (MoCoV3) method. Contrast SSL trains

the model by encouraging the representation of enhanced versions

of the same image to be similar (positive) while contrasting with

other images (negative), which aims to align the different image

enhanced representations between the model and the momentum

encoder, which is a copy of the model updated by the exponential

moving average (EMA). Since MAE has been randomly enhanced

from the original data to generate two sets of new data x1 and x2
during training, during MoCoV3 training, x1 is sent to Encoder for

encoding, xp1 is output through prediction layer, and xm1 is output

through momentum encoder layer, and the same process for x2 to

generate xp2 and xm2. The dimension of the output hidden features

of the prediction layer is conssistent with that of the momentum
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for x in loader:

# randomly augmented version

x1 = Aug(x)

x2 = Aug(x)

# Calculate reconstruction loss

xm1, m1 = Randommasking(x1)

xm2, m2 = Randommasking(x2)

xe1 = Encoder(xm1)

xe2 = Encoder(xm2)

r1 = Decoder(xe1)

r2 = Decoder(xe2 )

Lossrec1 = MSE(x1, r1, m1)

Lossrec2 = MSE(x2, r2, m2)

Lossrec = Lossrec1 + Lossrec2

# Calculate comparative loss

xe3 = Encoder(x1)

xe4 = Encoder(x2)

xp1 = Predict(xe3)

xp2 = Predict(xe4)

with torch.no_grad():

update(Momentum.params)

xm1 = Momentum(x1)

xm2 = Momentum(x2)

Losscon = ctr(xp1, xm2) + ctr(xp2, xm1)

Loss = Lossrec + Losscon

return Loss

# contrastive loss

def ctr(q, k):

logits = mm(q, k.t()) # [N, N]

pairs

labels = range(N) # positives

are in diagonal

loss = CrossEntropyLoss(logits/tau,

labels) # tau: temperature

return 2 * tau * loss

Algorithm 1. Pseudocode of loss function in a PyTorch-like style.

encoder, and the contrast loss of the two is calculated. The contrast

loss we use is InfoNCE (Oord et al., 2018), the contrast loss Losscon
is as follows:

Losscon = InfoNCE(xp1, xm2)+ InfoNCE(xp2, xm1) (9)

After calculating the reconstruction loss and the contrast loss,

we can get the final loss, the final loss Loss is as follows:

Loss = Lossrec + Losscon (10)

The overall structure of the self-supervised learning model

used in this paper is shown in Figure 5. Algorithm 1 provides the

pseudo-code of loss for this pretext task. We have verified that

a pre-trained encoder that combines both SSL model structures

performs better than a pre-trained encoder with a single structure.

4 Experimental results

4.1 Datasets

In this paper, we use BigEarthNet-MM (Sumbul et al.,

2021) dataset for both self-supervised training and classification

task evaluation, which is the most common multi-label scene

classification dataset in remote sensing so far. We use PyTorch

and Adam optimizer to train our network. The GPU and CPU

configuration of the computer are NVIDIA GeForce RTX 3090

and Intel(R) Xeon(R) Gold 6226R CPU, respectively. BigEarthNet

is a benchmark dataset that consists of 590,326 non-overlapping

Sentinel-1 (S1) and Sentinel-2 (S2) image patches acquired between

June 2017 andMay 2018 over the 10 European countries, S1 patches

were enriched with Synthetic Aperture Radar and S2 patches were

enriched with spectral bands at 10, 20, and 60-m resolution. For S1,

two channels are available, and for S2, twelve channels are available.

Each image patch is annotated by multiple land-cover classes (i.e.,

multi-labels) taken from the CORINE Land Cover database of the

year 2018 (CLC 2018). Originally, 43 labels were used. These were

later merged into 19 labels. We show some samples of S1 data and

S2 data respectively in Figures 6, 7, and carry out normalized visual

processing display. As can be seen from the visual images of S1

and S2, the data of SAR and MS modes are still very different.

SAR data mainly provides the physical characteristics of the ground

and reflects the surface roughness of the ground objects, making it

difficult to interpret the image content. However, MS data is easy to

interpret and helps to identify various types of ground objects. So

we use both kinds of data together.

We divided the data set into 311,667 training sets, 103,944

validation sets and 118,065 test sets, where the data covered by snow

or cloud cover was dropped. Since the BigEarthNet-MM images

are 120 × 120 pixels, we resize all samples to 224 × 244. We

perform self-supervised pre-training on the training set without

labels and fine-tune the classification task using 19 labels in the

downstream task.

4.2 Shortcut number evaluation

Firstly, we improve the transformer model structure.

Considering that features extracted from shallow transformer will

be forgotten to a certain extent with the deepening of model depth,

in order to effectively use the effective information extracted from

shallow transformer, we added a gating unit after N transformers

layers to fuse the previous feature information. In order to verify

how many transformers layers in the encoder structure can get

the best performance, we added a gating fusion on the basis of

the SatViT (Fuller et al., 2022) model structure. We first set the

Encoder depth as 12 layers, select the number of shortcut layers

N as 0, 2, 3, 4, 6, and conduct supervised training tests based on

BigEarthNet-S1 data and BigEarthNet-S2 data, The test results

are shown in Figure 8. It can be seen from the results that the

best result can be obtained when gated fusion is carried out by

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1404623
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fncom.2024.1404623

FIGURE 6

S1 Data visualization and corresponding multi-label information.

FIGURE 7

S2 Data visualization and corresponding multi-label information.
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FIGURE 8

Testing the impact of varying shortcut layers with encoder depth set at 12. (A) S1 patches. (B) S2 patches.

four transformers. Similarly, in order to verify the effect of other

Encoder depths, we selected Encoder depths of 18 for testing and

the number of shortcut layers N as 0, 2, 3, 6, 9, respectively, and

conducted supervised training tests based on BigEarthNet-S1 data

and BigEarthNet-S2 data respectively. The test results are shown

in Figure 9, it can be seen from the results that the best results

can be obtained when gated fusion is carried out by the three

transformers. Therefore, we believe that layer hopping connections

for multiple transformer layers can improve the feature extraction

capability of Encoder, but the number of layers is not too large.

In later experiments, we uniformly used models with Encoder

depth 12.

4.3 Multi-modal data fusion evaluation

Since remote sensing data usually contains multi-modal data,

the BigEarthNet-MM we used generally contains multi-modal

data. Recently, multi-modal fusion has become a research hotspot

of everyone. However, we found that many BigEarthNet studies

simply spliced S1 and S2 data. Because S1 patches were enriched

with Synthetic Aperture Radar and S2 patches were enriched with

spectral bands at 10, 20, and 60-m resolution. We believe that data

of different modes should have different proportions in the feature

extraction process, so we propose a GMU structure to fuse the

two modal data. In order to verify our method, we conduct four

sets of experiments based on the MGSViT model, which are (1)

S1 data single-modal supervised training; (2) S2 data single-mode

supervised training; (3) Simple spliced together with S1 and S2 data

for supervised training; (4) S1 data and S2 data are supervised train

through gated fusion training. The test results are shown in Table 1.

It can be seen from the results that the two kinds of data are best

fused by gating.

At the same time, we compared the test results of MGSViT

model without shortcut layers structure(MGSViT-C0) and

MGSViT model with 4 shortcut layers structure (MGSViT-C4)

under different fusion modes of single mode data and multi-mode

data. The test results are shown in Figure 10. The results show

that MGSViT-C4 model structure is still the best in S1 and S2

multi-mode gated fusion.
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4.4 SSL encoder evaluation

As we all know, self-supervised learning has the ability to

learn common expressions from large-scale, unlabeled data, and

FIGURE 9

Testing the impact of varying shortcut layers with encoder depth set

at 18. (A) S1 patches. (B) S2 patches.

Transformers structure has also achieved good results in the

field of self-supervised learning. Therefore, in order to further

improve the feature extraction capability of model encoder,

we refer to the contrast learning idea in the self-supervised

learning algorithm. The momentum contrast (MoCov3) method

is introduced on the basis of MAE model. First, BigEarthNet-

MM data is used to self-supervise the training of Encoder part,

and then the pre-trained Encoder model is transferred to the

supervised downstream task. When designing the self-supervised

training model, we referred to the training ideas of MAE and

MoCov3 models on the basis of SatViT model, so we tested SatViT,

MAE, MoCov3 and our designed model without shortcut layers

for a fair comparison respectively, and only selected BigEarthNet-

S2 data for testing. When self-supervised training encoders and

decoders,We apply several image augmentationmethods including

RandomResizedCrop with cropping scale ranges from 20% to

100% of the original image size. RandomBrightness/Contrast

randomly applies either random brightness adjustment or random

contrast adjustment to the image with a probability of 80%.

The random brightness adjustment has a maximum delta of 0.4,

and the random contrast adjustment has a maximum delta of

0.4. RandomGrayscale converts the image to grayscale with a

probability of 20%. RandomGaussianBlur with a probability of

100%. The blur radius is randomly chosen from a range between

0.1 and 2. And We set the same epochs and optimizer. After the

pre-training, we perform commonly used linear probing (freezing

the pre-trained encoder) and fine-tuning for the downstream

tasks. The test results are shown in Figure 11. From the results

TABLE 1 Impact of data fusion on model training results (%) with di�erent

data modal, the values marked in bold indicate that model is the best

performer in the corresponding item.

Datasets S1 S2 S1 + S2 S1 GMU S2

Accuracy 77.1 87.9 88.2 88.9

FIGURE 10

Results of MGSViT-C0 model and MGSViT-C4 model in di�erent modal data fusion modes.
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FIGURE 11

BigEarthNet-S2 performance depending on di�erent SSL model

structures to train downstream task, We report linear probing,

fine-tuning results. (A) SSL + Linear. (B) SSL + Fine-tune.

figure, we find in SSL and linear experiments, although our

results are lower than MAE but the difference is not large,

and in SSL and fine-tuning experiments, our results are the

best, which is 0.4 higher than MAE algorithm. The results

show that the self-supervised training method designed by us

is generally better than the current mainstream self-supervised

learning methods.

4.5 Ablation studies

In order to analyze the influence of each improvement

point on the performance of the model, we supplemented

the ablation experiment of each improved module on the

basis of the above test experiment, In detail, We compared

different versions defined on the basis of six different

configurations. The experiments with SSL module adopted

the strategy of self-supervised training and fine-tuning the

whole model structure, while the other experiments without

SSL module adopted the strategy of supervised training. The

results of the ablation experiment were summarized in the

Table 2.

MGSViT-NO: the model structure without

shortcut layers, simply splice multiple modal data and

supervised training.

MGSViT-C4: the model structure with four shortcut layers,

simply splice multiple modal data and supervised training.

MGSViT-C0-GMU: the model structure without shortcut

layers, gated fusion of multi-modal data and supervised training.

MGSViT-C4-GMU: the model structure with four shortcut

layers, gated fusion of multi-modal data and supervised training.

MGSViT-SSL: the model structure without shortcut

layers, simply splice multiple modal data and self-supervised

learning training.

MGSViT-base: the model structure with four shortcut

layers, gated fusion of multi-modal data and self-supervised

learning training.

According to the results of ablation experiments, one can

observe that the intra-modal shortcut connection, inter-modal

multi-modal fusion and self-supervised training models proposed

by us can effectively improve the performance of the models. In

detail, the intra-modal shortcut connection can improve model

performance by 0.5, gated multi-modal fusion can improve model

performance by 0.7, self-supervised learning can improve model

performance by 0.1, and the standard base model can improve

model performance by 1.9 with the above improvements.

4.6 Comparison with previous results

In this sub-section, we evaluate the effectiveness of the

proposed method and the most advanced methods in the

field of remote sensing on BigEarthNet-MM datasets. In order

to verify the validity of our proposed method, we use the

model structure with 4 shortcut layers and gated fusion

of multi-modal data, so we use BigEarthNet-S1 data and

BigEarthNet-S2 data to self-supervised train two Encoder models,

respectively. When self-supervised training encoders and decoders,

the input data size for the model is set to 224 × 244. We

run 100 epochs of end-to-end training on each mode using

the Adam-W optimizer, and a max learning rate of 1e−5

decreasing to 0 according to a cosine schedule. Similarly, we

designed the downstream task for comparison experiment. Our

downstream task is multi-label image classification. During the

training of the downstream classification task, we fine-tuned

the parameters of the entire model, also set the input size to

224 × 244, and 100 epochs of end-to-end training for each

mode with Adam-W optimizer. and a max learning rate of 1e−4

decreasing to 0 according to a cosine schedule. We use a self-

supervised pre-trained model to initialize the encoder parameters

while randomly initializing the task classification headers. The

decoder of the pre-trained model does not participate in

downstream tasks.

We compared the most advanced multi-modal classification

models, DINO-MM (Wang et al., 2022a) and MoCo-MM

(Wang et al., 2022b) on the dataset BigEarthNet-MM. In the
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TABLE 2 Ablation of model baselines.

Case Shortcut Multi-modal fusion SSL Accuracy (%)

MGSViT-NO 88.2

MGSViT-C4 X 88.7

MGSViT-C0-GMU X 88.9

MGSViT-C4-GMU X X 89.1

MGSViT-SSL X 88.3

MGSViT-base X X X 90.1

TABLE 3 Linear classification results (%) on the BigEarthNet-MM dataset.

Model Method S1 S2 S1 + S2 S1 GMU S2

DINO-MM SSL + fine-tune 79.5 87.1 87.1 –

DINO-MM Supervised 77.1 86.7 88.6 –

MoCo-MM SSL + fine-tune 79.5 85.1 85.2 –

MoCo-MM Supervised 77.2 88.7 88.9 –

MGSViT (ours) SSL + fine-tune 80.3 88.9 89.1 90.1

MGSViT (ours) Supervised 77.5 88.7 88.7 89.1

DINO-MM, they report random initialization, self-supervised pre-

training joint SAR-optical pre-training (DINO-MM), and fully

supervised learning. In the MoCo-MM, they integrate SAR data

by early fusion, and use RandomSensorDrop as an additional

data augmentation strategy, and the model gets fed random

combinations of SAR/optical patches, thus learning both inner-

and inter-modality representations. Then they compare multi-

modal pre-training (MM) to uni-modal pre-training (S1/2) on

BigEarthNet. We conducted experiments on self-supervised pre-

training with fine-tuning of downstream tasks and supervised

training respectively, and conducted comparative experiments on

single mode and multi-mode. The experimental results are shown

in Table 3.

It can be seen from the results that the proposed method

is superior to the most advanced methods in terms of both

self-supervised training and supervised training. In detail, in the

single-mode experiments of S1 and S2, our results are generally

higher than those of DINO and MoCov3 methods. In the S1

+ S2 experiments, the supervised training results of our model

are not much different from those of DINO and MoCov3

methods, but the results of SSL + fine-tune are superior, 2%

higher than the DINO method result and 3.9% higher than the

MoCov3 method result. In the S1 GMU S2 experiment, only

we used this method, and it can be observed that the multi-

modal data fusion method is better than the direct splicing

method, and the result can reach 90.1% after adding SSL and

fine-tune.

5 Conclusion

In this paper, a new multi-modal gated fusion self-supervised

training method is proposed for image classification in remote

sensing field. The proposed method extracts multi-modal feature

representations by means of intra-modal shortcut gated fusion and

inter-modal feature gated fusion, and uses a new self-supervised

training method to learn encoder module. In detail, we have

designed the intra-modal and inter-modal gated fusion. In the

internal structure of the encoder, a series of transformers are

stacked, and we have designed a layer hopping mechanism. We

have learned through experiments that when the total depth of the

Encoder is 12 layers, gating fusion every four layers of transformers

has the best effect, which can extract the shallow and deep features

of the data more effectively. If the Encoder is of other depths, the

number of layers of the shortcut layer connection will be different.

After the feature representation is extracted from encoder structure,

the features of different modes are gated and fused to obtain

the effective feature representation based on different modes. We

have tested two modes fusion methods, one is directly splicing

the feature vectors of two modes, and the other is controlling the

fusion proportion of each mode feature through a gating system.

Through the test and comparison, we find that it is better to control

multi-mode fusion by gating system. In the self-supervised training

model, we conducted self-supervised pre-training of different

modal structures based on mask reconstruction self-supervised

method and momentum contrast self-supervised method, and

then fine-tuned the trained encoder for subsequent downstream

classification tasks. Through experiments, we compared the effects

of the reconstruction method alone, the momentum contrast

method alone and the combination of the two methods. It is found

that the combination of the two methods can extract data features

more effectively, and the generated Encoder model has stronger

representation ability.

Finally, we conducted a series of experiments on the remote

sensing open data set BigEarthNet, including verifying the impact

of each module on the model performance, and comparing SSL +

fine-tune and self-supervised training experiments with the most
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advanced published methods. Experimental results demonstrate

the effectiveness of the proposed multi-modal gated fusion self-

supervised training method, and prove that the proposed method

is superior to the most advanced methods.
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