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A neural basis for learning
sequential memory in brain loop
structures

Duho Sihn and Sung-Phil Kim*

Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan,

Republic of Korea

Introduction: Behaviors often involve a sequence of events, and learning and

reproducing it is essential for sequential memory. Brain loop structures refer to

loop-shaped inter-regional connection structures in the brain such as cortico-

basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a

crucial role in supporting sequential memory, but it is unclear what properties of

the loop structure are important and why.

Methods: In this study, we investigated conditions necessary for the learning

of sequential memory in brain loop structures via computational modeling.

We assumed that sequential memory emerges due to delayed information

transmission in loop structures and presented a basic neural activity model and

validated our theoretical considerations with spiking neural network simulations.

Results: Based on this model, we described the factors for the learning of

sequential memory: first, the information transmission delay should decrease as

the size of the loop structure increases; and second, the likelihood of the learning

of sequential memory increases as the size of the loop structure increases and

soon saturates. Combining these factors, we showed that moderate-sized brain

loop structures are advantageous for the learning of sequential memory due to

the physiological restrictions of information transmission delay.

Discussion: Our results will help us better understand the relationship between

sequential memory and brain loop structures.
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1 Introduction

Behaviors, including movement or language, consist of a sequence of events. To learn

and reproduce a sequence of events, cognitive systems often form sequential memory.

It has been suggested that brain loop structures play an important role in subserving

sequential memory (Gisiger and Boukadoum, 2018; Janacsek et al., 2020; Logiaco et al.,

2021). In the present study, loop structures in the brain only refer to a network in which

multiple, anatomically segregated, brain areas are connected in a closed-form: for example,

brain area X is connected to area Y , Y is connected to Z, and Z is connected back to X

(X → Y → Z → X).

Loop structures are widely distributed in the brain. Among them, brain loop structures

related to movement or language include parallel cortico-basal ganglia-thalamic loops

(Alexander et al., 1986; Lee et al., 2020; Foster et al., 2021) and cortico-cerebellar loops

(Middleton and Strick, 2000; Kelly and Strick, 2003; Ramnani, 2006). Brain injury research

has revealed that damage to these structures impairs movement or language functions
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(Alexander et al., 1986; Middleton and Strick, 2000; Vargha-

Khadem et al., 2005; Ramnani, 2006; Aoki et al., 2019; Chang

and Guenther, 2020; Lee et al., 2020). Furthermore, parallel loop

structures are related to the parallel modulation of different

behaviors. For example, a loop passing through the ventrolateral

striatum is involved in licking, and a loop passing through the

medial striatum is involved in turning (Lee et al., 2020).

It has been shown that loop structures in the brain support

the formation and consolidation of sequential memory related

to movement or language (for a review, see Rusu and Pennartz,

2020). This relationship between these structures and sequential

memory has mainly been proven by experimental results: that is,

the observation of increased neural activity in these structures

associated with sequential memory, or disruption of sequential

memory by damage to these structures. Recently, computational

models for the formation of sequential memory have been proposed

using recurrent networks (Maes et al., 2020; Cone and Shouval,

2021). These studies showed that spatiotemporal patterns of inputs

can be learned on recurrent structures that are randomly connected

to each other by a biologically plausible learning rule. However,

from a computational model perspective, it still remains unclear

how loop structures can form sequential memory since recurrent

networks in the previous studies do not form a loop structure

that consisting of multiple, anatomically segregated, brain areas. In

fact, while closed loops can occur within a recurrently connected

network, this study investigates them at a larger scale with multiple,

individual areas. Although the formation of sequential memory

can be computationally explained by recurrent networks, loop

structures of this type are known to subserve sequential memory

within the brain (for a review, see Rusu and Pennartz, 2020). Since

recurrent networks may not fully elucidate how sequential memory

is formed via these structures in the brain, it is more pertinent to

directly investigate the role of loop structures in the creation of

sequential memory.

One of the key properties of computational models built for

loop structures is the size of the structures, i.e., the number of

nodes in a loop. Some computational studies have demonstrated

that the size of neuronal networks affects connectivity (Meisel

and Gross, 2009) or energy-efficiency (Yu and Yu, 2017). If the

number of neurons in a node is fixed, then increasing the size

of the neuronal networks can be thought of as increasing the

loop size. However, the relationship between the size of the loop

structure and the formation of sequential memory is unknown.

Another property to be considered for modeling these structures is

time delay. Information transfer between nodes in these structures

via neuronal signal transmission should accompany time delay

in sequential neural activations of nodes. However, it is also

unexplored how such time delay in these structures contributes to

the formation of sequential memory.

In this study, we assume that the formation of sequential

memory draws upon delayed information transmission across

loop structures. To investigate the learning of sequential memory

over these structures, we devise a basic neural activity model

with delayed information transmission. Using this model,

we analyze structural conditions under which sequential

memory can emerge, particularly focusing on the size of loop

structures. We confirm our theoretical prediction through a

computer simulation.

2 Theory of the learning and retrieval
of sequential memory

The theory of the formation of sequential memory will be

presented in the following order: Section 2.1: we introduce the

conceptual conditions necessary for the formation of sequential

memory in brain loop structures; Section 2.2: we introduce a

simplified neural model, referred to as the basic neural activity

model, which is used to facilitate the mathematical analysis of

the conceptual conditions above; Section 2.3: we analyze the

mathematical necessary conditions for enabling the formation of

sequential memory, building upon the basic neural activity model;

and Section 2.4: we mathematically assess the likelihood of the

learning of sequential memory.

We first mathematically define terms related to neural

representations. Let Xt be a neural representation of the brain area

X at time t. X is the set of all cell assemblies (as a representative

of a specific subpopulations of excitatory and inhibitory neurons

with strong synaptic connections) in the brain area and a neural

representation Xt ⊆ X is the set of active cell assemblies at time

t. An active cell assembly is defined as a cell assembly in which, for

example, more than 50% of neurons are activated.We assumed that

all cell assemblies have separated subpopulations of neurons within

the same brain area, but they are interconnected between different

brain areas. Nearby neurons are more likely to be connected by

synapses (Schnepel et al., 2015; for a review, Boucsein et al., 2011),

and cell assemblies are subpopulations of neurons connected by

these strong synapses (Sadeh and Clopath, 2021). Therefore, the

assumption that cell assemblies within the same brain area are

separated implies weak connectivity between neurons in different

cell assemblies. The recurrent connections that are pervasive in the

brain indicate strong connectivity between neurons within a single

cell assembly in our model. As such, we did not define the recurrent

connections explicitly in our model as a cell assembly containing

the recurrent connections is a basic element. Furthermore, we say

that Xt is inhibited at time t+1, if and only if Xt ∩Xt+1 is an empty

set. Unless otherwise specified, it is assumed that Xt 6= Xt+ 1.

Let Et represent an event at time t, signifying its occurrence

alongside its neural representations of Xt , Yt , and Zt . These

representations belong to brain areas related to X, Y , and Z,

forming a loop structure in a sequence, X → Y → Z → X. While

there may exist time delays between Xt and Yt , as well as between

Yt and Zt , it is important to note that all of Xt , Yt , and Zt constitute

delayed neural representations of the same event Et . In other words,

Xt is not the sole representation of Et , nor are Yt and Zt solely for

delayed versions of Xt .

2.1 Delayed information processing in brain
loop structures

Behaviors related to movement or language consist of a

sequence of events. For subsequent successful behavior, a sequence

of events must be reproducible. Such a sequence of events

may induce the learning of a sequence of corresponding neural

representations in the brain. These neural representations can be

seen as neural substrates of sequential behaviors, which construct
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an internal model of the corresponding behavior (McNamee and

Wolpert, 2019; Yildizoglu et al., 2020; Mok and Love, 2022). In

the present study, the sequential memory problem was stated

as how the sequence of neural representations of a sequence of

behavioral events can be self-generated in the activation of all the

cell assemblies in each consecutive brain area (Figure 1A). Since

brain loop structures play important roles in forming sequential

memory (Gisiger and Boukadoum, 2018; Logiaco et al., 2021),

we assumed that this structure enables the self-generation of a

sequence of neural representations (Figure 1B). Self-generation

here means that when a part of a sequence of neural representations

is stimulated, the rest of the sequence is automatically activated.

Let X, Y , and Z be brain areas forming a loop structure such

that X → Y → Z → X (Figure 1B). Let Xt , Yt , and Zt be

neural representations of a certain behavioral event, Et , occurring

at time t in each area. If this behavioral event is concurrently

represented in this structure with no time delay, i.e., if Xt , Yt , and

Zt concurrently occur, then the Hebbian plasticity would associate

neural representations, Xt → Yt , Yt → Zt , and Zt → Xt

(Figure 1C). The Hebbian plasticity can be formulated as:

τ
dwji

dt
= x̂i (t) ŷj (t) (1)

where wji is a synaptic weight from a cell assembly x̂i to another

cell assembly ŷj and τ is a time constant. A cell assembly x̂i has the

value 1 or 0, when active or non-active, respectively. In this case,

when a behavioral event induces the neural representation Xt in the

area X at time t, it would induce Yt and Zt concurrently, generating

Xt again by Zt → Xt+1Xt . Therefore, this concurrent loop

would result in the learning of the self-generation of only a fixed

neural representation Xt → Xt by the logical transitive relation,

without learning to self-generate the next neural representation

Xt+1, (Figure 1D). As such, the neural representation Xt+1 would

only be induced by an external associated behavioral event, Et+1,

not by the internal loop structure, making it difficult to self-generate

sequential memory.

In contrast, if the neural representations of behavioral events

are delayed in the brain loop structure, i.e., if Xt , Yt , and Zt are

sequentially induced with non-zero delays between them when

an event Et occurs, then the Hebbian plasticity may associate

both neural representations, Zt → Xt and Zt → Xt+1,

from Z to X (Figure 1E). If Xt and Xt+1 are disjoint and the

previous neural representation Xt can be selectively inhibited at

time t + 1, a sequence of neural representations Xt → Yt →

Zt → Xt+1 can be self-generated. Afterward, the generation

of Xt+1 would induce Yt+1 and so on. Therefore, this delayed

information processing along with the inhibition of previous neural

representations of Xt would result in the self-generation of a

sequence of disjoint neural representations, Xt → Xt+1 →

. . . → XT in the area X (Figure 1F). This serves as a basis for

generating the sequential memory of behavioral events, Et →

Et+1 → . . . → ET , via the internal loop structure without

the occurrence of external behavioral events. As such, finding a

biologically plausible model that supports this self-generation of

a sequence of neural representations in this structure would be

important. Below, we present a biologically plausible model for the

delayed information processing and the inhibition of the previous

neural representation.

To emphasize, learning based on Hebbian plasticity

implemented in our model primarily encodes the sequence

of neural representations of events rather than precise timing.

Consequently, the delay at which each neural representation

sequentially appears may vary depending on the specific context.

The proposed model learns sequences of neural representations

from the examples of neural representations of events. Note that

the stages of neural dynamics (t, t + 1) in Figures 1C, E evolve on

the order of tens of milliseconds. The time difference of (t, t + 1)

(Figures 1C, E) in the neural representation of each event does

not indicate a behavioral transition. In fact, a single behavioral

transition XT , X2T , and X3T can occur over multiple stages of

neural dynamics t, t + 1, t + 2, ..., t + T, . . . , t + 2T, . . . , and

t + 3T.

2.2 Basic neural activity model

To present a biologically plausible model of the delayed

information processing and the inhibition of previous neural

representation, we modeled the neural activity of a cell assembly

(i.e., a subpopulation of co-active neurons). This basic neural

activity model was based on excitatory-inhibitory balanced

networks (Figure 2A) and the flow of postsynaptic potential (PSP)

changes (Figure 2C). The flow of PSP changes in response to an

external input can be described in three periods (Figures 2B, C).

When excitatory external input is received by excitatory neurons,

the PSP of the excitatory neurons starts to increase in the beginning

until it exceeds a threshold level. We call this first period initiation

period with no neural activity of excitatory neurons as the PSP

remains subthreshold level.When the PSP of the excitatory neurons

crosses the threshold, it increases the PSP of both the excitatory and

inhibitory neurons via synaptic interactions. We call this second

period active period with apparent neural activity of excitatory

neurons. When the PSP of the inhibitory neurons exceeds the

threshold, the inhibitory neurons begin to inhibit the excitatory

neurons. When the input from the inhibitory neurons is greater

than that from the excitatory neurons, the activity of the excitatory

neuron is inhibited even though the external input constantly lasts.

This period persists for a certain amount of time, even in the

absence of excitatory input from the excitatory neuron because of

the duration of the PSP of the inhibitory neuron. We call this third

period inhibition period with no neural activity of the excitatory

neurons (Figures 2B, C). Therefore, our basic neural activity model

has three consecutive periods: (1) initiation, (2) active, and (3)

inhibition periods. Apparent neural activity is present in the

active period but absent in the initiation and inhibition periods

(Figure 2B). The length of the initiation period and inhibition

period depends on the rise and decay times of the PSP (Figure 2C).

In this subsection, a basic neural activity model, a model

of the cell assembly unit, was derived from the population of

spiking neurons. From now on, we will perform mathematical

analysis related to the formation of sequential memory using the

basic neural activity model derived here, rather than the model of

spiking neurons.
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FIGURE 1

The learning of sequential memory in brain loop structures. (A) Self-generation of a sequence of neural representations of behavioral events. In the

learning step, a corresponding neural representation occurs for each behavioral event and is learned. In the retrieval step, a sequence of neural

representations is self-generated by an initial behavioral event. Xt: Neural representation of the brain area X at time t. Equivalently, X: Set of all cell

assemblies in the brain area, Xt ⊆ X: Set of active cell assemblies in the brain area X. Et: Event at time t. Therefore, Et is a simultaneous event with Xt,

Yt, and Zt, even if Yt, and Zt are delayed representations. (B) The brain loop structure for the self-generation of a sequence of neural representations.

(C, D) Learning with concurrent occurrence. (C) Information transmission and Hebbian plasticity in case of the concurrent occurrence of neural

representations during the learning of sequential memory. Arrows indicate pathways through which synaptic transmission takes place and results in

Hebbian plasticity. (D) No self-generation of the sequence of neural representations in case of the concurrent occurrence of neural representations

during the retrieval of sequential memory. (E, F) Learning with delays occurrence. Same as (C, D) with non-zero delays. (E) Information transmission

and Hebbian plasticity in case of the delayed occurrence of neural representations during the learning of sequential memory. The learning of

sequential memory. (F) Self-generation of the sequence of neural representations in case of the delayed occurrence of neural representations (if

there is inhibition of the previous neural representation) during the retrieval of sequential memory.

2.3 Necessary conditions for the learning
and retrieval of sequential memory

Each brain area in a loop structure consists of multiple cell

assemblies, where a cell assembly is defined as the substrate of a

neural activity model introduced in the Section 2.2. Suppose that

each cell assembly undergoes one cycle of the neural activity model,

i.e., initiation-active-inhibition, with a random starting point, i.e.,

random phase. Let tN , tA, and tI denote the length of the No-activity

(initiation), Activity, and Inhibition periods, respectively. Note that

tN represents a delay from a cell assembly in one area to another

cell assembly in the subsequent area. Let N be the number of areas

in the loop structure.

We assume that tN , tA, and tI are fixed over all the cell

assemblies in each area over the loop structure. This does not have

a significant impact on the conclusions of this study, especially

when areal heterogeneity is not large. Let us assume that individual

neural activitymodels defined on each cell assembly in an area share

the same active period length tA, but start differently at a random

time point, i.e., random phase. At an arbitrary time point t, each

neural activity model undergoes in one of the active, initiation or

inhibition periods. Then, right before t + tA, some models that

start their active period at t will still be under the active period.

Right after t + tA, those models that start their active period at t

will end the active period and transit to the initiation, inhibition

or new active period. If some of those models are under new active

periods right after t+ tA, these models change to new active periods

exactly once as the active period spans tA. Therefore, between t and

t+ tA, the active period of every model will change to the initiation,

inhibition or new active period exactly once. Since neural activity

during the active period represents an event, we can assume that a

combination of the activities of all cell assemblies representing an

event changes into a different combination exactly once during a

period of the length tA.
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FIGURE 2

Basic neural activity model. A biologically plausible model of delayed information processing and previous neural representation inhibition. This is a

neural activity model of a cell assembly, i.e., subpopulation, in the loop structure. The model is based on the excitatory-inhibitory balanced networks

and the flow of postsynaptic potential (PSP) changes. (A) The excitatory-inhibitory balanced networks that form the basic neural activity model. (B)

The basic neural activity model. This model has a value of 1 during the active period, and a value of 0 during the initiation or inhibition periods. (C)

The simulation result to derive the basic neural activity model based on the setting in (A). The spike rate is smoothed by a 3-ms uniform moving

window, where the length of this moving window corresponds to the refractory period. The initiation and inhibition periods are set based on the slow

change of PSP. PSP is slowly decayed. The initiation period corresponds to delayed information processing, and the inhibition period corresponds to

previous neural representation inhibition.

When the sequential activities of cell assemblies return to the

first area X through the loop, i.e., delay tN with N − 1 times, it

must encounter the neural representation of a new event to form

a sequential memory by Hebbian plasticity between co-active cell

assemblies in the adjacent areas, where the sequential memory

should consist of different neural representations, i.e., Xt → Xt+1.

Hence, it is necessary to have the following condition: the time

during which information for sequential events returns through the

loop must be >zero, i.e., (N − 1) tN > 0. This condition yields

tN > 0.

When information for sequential events returns through the

loop, it must encounter the next neural representation, i.e., an

intermediate neural representation must not be omitted, in other

words, Xt → Xt+1 , but not Xt → Xt+t′ where t
′ > 1. If neural

activity in the loop returns to the first area X after the activation

period ends, neural activity in the last area of the loop will activate

the (t+j)-th neural activity in X where j > 1, causing the omission

of the (t+1)-th neural activity in X. Consequently, the sequence of

events would not be accurately represented. Hence it is necessary to

have the condition thatNtN ≤ tN + tA, where tA corresponds to the

active period of a neural representation. This condition yields:

tN ≤ tA
N−1 . (2)

To inhibit previous neural representation (Figure 1F), the

same cell assembly must not be active in succession. Let x̂ be

a cell assembly in the first area in the loop structure. A neural

representation emerges in the first area during a period from tN
to tN + tA will be represented in the last area during a period from

NtN to NtN + tA. In this case, the combination of the outputs of the

neural activity models in the last area will be associated with x̂ in

the first area through Hebbian plasticity. That is, the combination

of the outputs of the neural activity models in the last area can cause

the activation of x̂. If NtN + tA is larger than tN + tA + tI , x̂ may

become active in succession. This leads to the loss of opportunity

for the next event to be appropriately represented. To prevent this,

it is necessary that NtN + tA ≤ tN + tA + tI . This condition yields:

tN ≤ tI
N−1 . (3)

The inhibition period’s role is to prevent cell assemblies

activated in the neural representation of a previous event from

consecutively remaining active, ensuring the generation of a

distinct neural representation for the next event. However, as per

Equation 2, (N − 1) tN ≤ tA is established, signifying that the

activity in the last area is associated with the cell assembly x̂ in the

first area through Hebbian plasticity. Nevertheless, if Equation 3 is

not satisfied—that is, if the activity in the last area persists even after
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the inhibition period of the first area has concluded—it can result in

the continuous activation of cell assembly x̂ due to the association

facilitated by the aforementioned Hebbian plasticity.

The conditions in Equation 2 are necessary for learning via

Hebbian plasticity. The condition in Equation 3 is necessary for

the inhibition of previous neural representation. If the lengths of

the active (tA) or inhibition (tI) periods of a cell assembly are

fixed, the possible range of information transmission delay (tN) is

bounded by the inverse of the size of the loop structure (1/(N −

1)). In other words, as the size of this structure increases, the

information transmission delay should decrease (Figures 3A, D). If

the information transmission delay (tN) is fixed, the length of the

active (tA) period should increase as the size of this structure (N)

increases (Figure 3G).

We assume that tN , tA, and tI are fixed over all the cell

assemblies in each area over the loop structure. We acknowledge

that this is a strong simplification because the brain would be highly

heterogeneous in general. Nonetheless, we adopt this assumption

to obtain simplified mathematical solutions so as to arrive at

simplified conclusions. If we assume that tN , tA, and tI are

heterogeneous for N different brain areas, the necessary conditions

are from the summation of different (N – 1)-terms instead of the (N

– 1)-summation of the same terms. This would alter our equations

as follows:
∑N

i=2 tN,i > 0, instead of (N − 1) tN > 0; Equation 2

would become
∑N

i=1 tN,i ≤ tN,1 + tA,1 , instead of NtN ≤ tN + tA.;

and Equation 3 would become
∑N

i=1 tN,i+ tA,N ≤ tN,1+ tA,1 + tI,1,

instead of NtN + tA ≤ tN + tA + tI . However, using the summation

of different (N – 1)-terms instead of the (N – 1)-summation of the

same terms does not change the direction of the conclusions of this

study because each term has same characteristics.

2.4 The likelihood of the learning of
sequential memory

The next step is to determine the information transmission

delay for which sequential memory can learn with the most

likelihood. Here, the likelihood indicates a probability that

sequential memory can be learned in a loop structure. For

every pair of adjacent areas, we calculated the “probability” of

sequential memory learning between them and multiplied all those

“probabilities” to form the likelihood. Hence, the likelihood here

takes a value between 0 and e−1 ≈ 0.3679, with higher values

indicating higher possibilities of sequential memory learning. The

value of e−1 ≈ 0.3679 is derived below in this subsection. In

the present study, the learning of sequential memory is based

on Hebbian plasticity which associates co-active cell assemblies.

The likelihood of the learning of sequential memory between the

adjacent areas, i.e., Xt → Yt or Yt → Zt , except the last to

first areas, i.e., Zt → Xt+1, can be described as the proportion of

a duration that two areas represent the same event in one cycle

of the neural representation of an event. Since tA is the duration

of the representation of an event and tN is the time limiting the

representation of the same event, the likelihood can be written as

the ratio: (tA − tN) /tA = 1− tN/tA. The likelihood from the last to

first areas, i.e., Zt → Xt+1, is the proportion of the representation

time of two different events that the last area represents a current

event and the first area represents the next event. This proportion

of time satisfies the condition that the duration of the neural

representation of a current event in the last area overlaps the

duration of the neural representation of the next event in the first

area, which can be written as the ratio of the duration (N − 1) tN
to the duration tA of the next neural representation: (N − 1) tN/tA.

Therefore, the likelihood in the loop structure is the product of all

proportions (Figure 3B):

f (tN , tA) =
(

1− tN
tA

)N−1
(N−1)tN

tA
. (4)

To maximize the likelihood function, we take its

partial derivative:

∂
∂tN

f (tN , tA) = ∂
∂tN

(

(

1− tN
tA

)N−1
)

(N−1)tN
tA

+
(

1− tN
tA

)N−1
∂

∂tN

(

(N−1)tN
tA

)

.

(5)

The first term becomes:

∂
∂tN

(

(

1− tN
tA

)N−1
)

(N−1)tN
tA

= (N − 1)
(

1− tN
tA

)N−2 (

− 1
tA

)

(N−1)tN
tA

.

(6)

The second term becomes:

(

1− tN
tA

)N−1
∂

∂tN

(

(N−1)tN
tA

)

=
(

1− tN
tA

)N−1 (
N−1
tA

)

. (7)

The summation of these two terms is:

∂
∂tN

f (tN , tA) =
(

1− tN
tA

)N−2 (
N−1
tA

) (

1− N tN
tA

)

. (8)

Since the local maxima of f (tN , tA) can be taken when
∂

∂tN
f (tN , tA) = 0, the possible values are tN = tA or tN = tA/N.

Since f (tN , tA) = 0 when tN = tA and f (tN , tA) > 0 when

tN = tA/N, the likelihood function f (tN , tA) has the maximum

value at (Figure 3A):

tN = tA
N . (9)

This solution for the maximization of f (tN , tA) in Equation 9

needs to satisfy the necessary conditions 0 < tN ≤ tA/(N −

1) (Equation 2). If tA of a cell assembly is fixed, the optimal

information transmission delay tN decreases as the size of the loop

structure N increases. With this optimal information transmission

delay tN , the maximum likelihood in this structure is:

max f (tN , tA) =
(

1− 1
N

)N
. (10)

The maximum likelihood, max f (tN , tA), increases as the size

of this structure N increases and soon saturates to e−1 ≈ 0.3679

(Figure 3C).

If we assume that tN , tA, and tI are heterogeneous for N

different brain areas, the likelihood is the product of different N-

terms so as to make it difficult to obtain a simplified mathematical
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FIGURE 3

Conditions for the learning and retrieval of sequential memory in brain loop structures. (A) Necessary conditions for the learning and retrieval of

sequential memory (see Equations 2, 3). The necessary condition of the initiation period as the function of the size of loop structure when the active

and inhibition periods are 50ms. The optimal, i.e., bold magenta line, corresponds to the location of ridge in (B). (B) The likelihood of the learning of

sequential memory, as the function of the initiation period and the size of loop structure when the active period is 50ms (see Equation 4). (C) The

optimal likelihood of the learning of sequential memory, as the function of the size of loop structure (see Equations 11, 12). This corresponds to the

height of ridge in (B). Top dashed black line indicates the upper bound of the optimal likelihood, e−1 ≈ 0.3679. (D–F) Similar to (A–C), but the active

and inhibition periods are 100ms. (G) The necessary condition of the active period as the function of the size of loop structure when the initiation

period are 5ms. (H) The likelihood of the learning of sequential memory, as the function of the active period and the size of loop structure when the

initiation period is 5ms. (I) The likelihood as the function of both initiation and active periods, when the inhibition period is 50ms and the size of loop

structure is 3.

solution. In Equation 4, we would have
(

∏N−1
i=1 1−

tN,i

tA,i

)

(N−1)tN,N

tA,N

instead of
(

1− tN
tA

)N−1
(N−1)tN

tA
. However, in this case, the number

of similar terms with the same characteristics increases, so it does

not have a significant impact on the conclusions of this study,

especially when areal heterogeneity is not large.

3 Simulation methods

3.1 Simulation to derive the basic neural
activity model

To derive the basic neural activity model, we performed the

simulation of a neuronal network. All parameters used in this

simulation were provided in Table 1. The neuronal network was

based on the excitatory-inhibitory balanced networks and the flow

of postsynaptic potential (PSP) changes. Neurons in the network

belonged to either the excitatory E, inhibitory I, or external Ext

populations. The ratio 4:1 of E to I was in accordance with the

previous simulation study (Litwin-Kumar and Doiron, 2014). The

synaptic inputs from E made the excitatory postsynaptic potential

(EPSP), while the synaptic inputs from I made the inhibitory

postsynaptic potential (IPSP). The PSP of excitatory neuron i was

determined as:

d
dt
VE
i (t) = − 1

tC
VE
i (t) + gExti (t) + gEEi (t) − gEIi (t) (11)

where tC is the membrane time constant, gExti (t) is an external

input, gEEi (t) is an excitatory input, and gEIi (t) is an inhibitory
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TABLE 1 Parameters for simulation to derive basic neural activity model.

Symbol Description Value

NE Number of excitatory (E) neurons 160

NI Number of inhibitory (I) neurons 40

NExt Number of external (Ext) neurons 160

JEE Synaptic efficacy from E to E [0, 1]× 0.8/NE

JEI Synaptic efficacy from I to E [0, 1]× 3.2/NE

JIE Synaptic efficacy from E to I [0, 1]× 3.2/NI

JII Synaptic efficacy from I to I [0, 1]× 3.2/NI

JExt Synaptic efficacy from Ext to E [0, 1]× 0.7

PConn Connection probability between neurons 0.2

τC Membrane time constant 20 ms

τref Refractory period 3 ms

τsim Simulation time resolution 0.1 ms

τ E
r Rise time for E synapse 1 ms

τ E
d Decay time for E synapse 6 ms

τ I
r Rise time for I synapse 0.5 ms

τ I
d Decay time for I synapse 2 ms

input. The PSP of inhibitory neuron i was determined as:

d
dt
VI
i (t) = − 1

tC
VI
i (t) + gIEi (t) − gIIi (t) (12)

where gIEi (t) is an excitatory input, and gIIi (t) is an inhibitory

input. Then the spiking activity of an E or I neuron was

determined as:

AP
i (t) =



























1, if VP
i (t) > 0.2

and u > 0.995

0, otherwise

(13)

where P is a population (E or I) and u is a pseudo-random

number generated from the uniform distribution between 0 and

1. This was intended to generate irregular spike patterns reflecting

probabilistic neural responses (Cannon et al., 2010). Once a neuron

was active (1), it became inactive (0) for the next 3ms, representing

the refractory period of the action potential of the neurons. The

spiking activity of Ext neuron was determined as:

AExt
i (t) =

{

1, if w > 0.125

0, otherwise
(14)

where w is a pseudo-random number generated from the

uniform distribution between 0 and 1. The synaptic kernel, which

determines the temporal properties of PSP, can be modeled as

follows (Litwin-Kumar and Doiron, 2014):

KP (t) = 1
τP
d
−τPr

(

exp

(

− t
τP
d

)

− exp
(

− t
τPr

)

)

(15)

where P is excitatory population E or inhibitory population I,

τPr is the rise time for synapses of the certain population E or I, and

τP
d
is the decay time for synapses of the certain population E or I.

The current PSP is a convolution between the synaptic kernelKP (t)

and previous neural activity. The rise and decay times of the current

PSP is determined by τPr and τP
d
. The synaptic input from E or I

neurons was the weighted sum of the spiking activities multiplied

by the synaptic kernel as follows:

gXPi (t) = KP (t)∗
∑

j J
XP
ij AP

j (t) (16)

where P is a certain population, E or I, KP (t) is the synaptic

kernel introduced in Equation 15, JXPij is the synaptic efficacy from

P to E population (Table 1), and ∗ is a convolution operator.

The parameters used in the synaptic kernel were similar to the

previous study (Litwin-Kumar and Doiron, 2014). The ratio of

E-I to E-E synaptic efficacy was set to 4 (Table 1). This balance

of the excitatory-inhibitory populations used in the simulation

was similar to the previous study, which represents strong lateral

inhibition (Sadeh and Clopath, 2021). The synaptic input from Ext

to E neurons was as follows:

gExti (t) =
∑

j J
Ext
ij AExt

j (t) (17)

where JExtij is the synaptic efficacy from Ext to E population

(Table 1).

3.2 Simulation for the learning and the
retrieval of sequential memory

For simplicity, we set the size of the loop structure to N = 3,

in addition, N = 2, 4, 5, 6. The initiation period range was set

to tN = [20, 60] ms, which was comparable to the previous study

(Siegle et al., 2021; for a review,Wang, 2022). The range of initiation

period was distributed around the biologically plausible initiation

period of 40ms. The active period was set to tA = 120 − tN ms,

which is equal to or longer than the range of the initiation period.

The inhibition period range was set to tI = [0, 120] ms, which

were also within a reasonable range compared to the range of the

initiation period to cover both the initiation and active periods.

These lengths of the initiation, active, and inhibition periods, tN , tA,

and tI , respectively, were the parameters of our basic neural activity

model. In spiking neural networks, the lengths of the initiation,

active, and inhibition periods depend on other parameters such as

time constant, synaptic efficacy, spiking threshold, and also varies

across brain areas. However, here, a range of three periods was used

to verify the theoretical predictions in Section 2. In these three

parameter ranges, there are parameters satisfying the necessary

conditions up to N = 2, ... , 6. Therefore, simulations were

performed at these structure sizes.

We modeled one cell assembly by one basic neural activity

model, which constituted a fundamental unit in the simulation.

Here, unit refers to cell assembly. The value of a cell assembly was

1 for the active period or 0 for the initiation or inhibition periods.

It simplifies the activity of cell assemblies as 1 or 0. These values are

used to calculate Hebbian plasticity described in Equation 1.We set

five cell assemblies to represent a common event in each area. Here,

event refers to an external event and is represented by the activities,

e.g., Xt and Yt in Section 2, of cell assemblies. In this simulation, Xt
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and Yt are pre-assigned to represent each external event such that

all external events are represented as disjoint sets, e.g., Xt and Xt+1,

of the same number of cell assemblies, with each set assigned to

appear at a specific time delay. The five cell assemblies in the same

area had the same cycle of periods with the same starting point.

We also assumed that different events were represented distinctly

by different cell assemblies. As we presented ten consecutive events

to the loop structure, a total of fifty cell assemblies were created in

each area. Ten consecutive events were applied to each area with

sequentially added time delays. Time delays indicate the size of the

initiation period, reflecting a situation in which external events are

sequentially represented in the brain.

When ten consecutive neural representations were induced by

external events in the first area, the same events were presented in

the second area with a delay of tN . Synaptic weights between the cell

assemblies of connected areas were learned by Hebbian plasticity

where a synaptic weight was strengthened if both pre- and post-

synaptic neurons were activated. The sum of all synaptic weights on

a cell assembly was fixed to implement the synaptic normalization

during 1,000 iterations of the presentation of ten events. The value

of each cell assembly was set to 1 if the weighted sum of the values

of cell assemblies in other areas and the corresponding synaptic

weights exceeded 0.15; otherwise, it was set to 0.

A difference between the assumptions in theory and simulation

was the distribution of the phase of the cell assembly within an

area. While theory assumes that the phases of assembly activity

are randomly distributed, simulation assumes that all assembly

activities are in the same phase to quantify the results.

3.3 Simulation for the retrieval of sequential
memory in spiking neural networks

For consistency with the simulations in the previous section, we

set the size of the loop structure to N = 2, . . . , 6, containing two

to six brain areas. Neurons in the network belonged to either the

excitatory E or inhibitory I populations. We employed an adaptive

exponential leaky integrate-and-fire neuron model (Brette and

Gerstner, 2005) as the spiking neuron model and adopted model

parameters from the previous study (Litwin-Kumar and Doiron,

2014). All parameters used in these simulations were provided in

Table 2.

All the equations and parameters used in the spiking neural

network model were taken from Litwin-Kumar and Doiron (2014).

Specifically, the dynamics VE
i (t) of the potential of E neuron i at

time t was as follows:

d
dt
VE
i (t) = 1

τC

(

REA − VE
i (t) + δθ e

VEi (t)−Vθ ,i(t)

δθ

)

+
gEEi (t)

C

(

REB − VE
i (t)

)

+
gEIi (t)

C

(

RIB − VE
i (t)

)

− Wi(t)
C

(18)

where Vθ ,i (t) is the threshold dynamics, gEEi (t) and gEIi (t) are

the E to E and I to E synaptic conductance, respectively, andWi (t)

is the adaptation current. The dynamics VI
i (t) of the potential of I

TABLE 2 Parameters for spiking neural network simulations.

Symbol Description Value

NE Number of excitatory (E) neurons in each area 500

NI Number of inhibitory (I) neurons in each area 125

RE
A E resting potential −70 mV

RI
A I resting potential −62 mV

RE
B E reversal potential 0 mV

RI
B I reversal potential −75 mV

δθ Slope factor 2 mV

PConn Connection probability between neurons 0.2

τC Membrane time constant 20 ms

τref Refractory period 1 ms

C Capacitance 300 pF

τθ Threshold time scale 30 ms

Vθ Threshold potential −52 mV

τW Spike-triggered adaptation time scale 150 ms

cW Subthreshold adaptation 4 nS

bW Adaptation current increase 0.805 pA

Vupper Upper bound potential 20 mV

Vlower Lower bound potential −60 mV

JEE Synaptic efficacy from E to E 0–30 pF

JEI Synaptic efficacy from I to E 0–2,500 pF

JIE Synaptic efficacy from E to I 0–20 pF

JII Synaptic efficacy from I to I 0–250 pF

JExt Synaptic efficacy from Ext to E 1.78 pF

τ E
r Rise time for E synapse 7–25 ms

τ E
d Decay time for E synapse 12.6–45 ms

τ I
r Rise time for I synapse 1.5–15 ms

τ I
d Decay time for I synapse 6–60 ms

neuron i at time t was as follows:

d
dt
VI
i (t) = 1

τC

(

RIA − VI
i (t) + δθ e

VIi (t)−Vθ ,i(t)

δθ

)

+
gIEi (t)

C

(

REB − VI
i (t)

)

+
gIIi (t)

C

(

RIB − VI
i (t)

)

(19)

where gIEi (t) and gIIi (t) are the E to I and I to I synaptic

conductance, respectively. The threshold dynamics Vθ ,i (t) was

given as follows:

d
dt
Vθ ,i (t) =

1
τθ

(

Vθ − Vθ ,i (t)
)

. (20)

An E neuron was influenced by the dynamics of the adaptation

currentWi (t) given by:

d
dt
Wi (t) =

1
τW

(

cW
(

VE
i (t) − REA

)

−Wi (t)
)

. (21)

A neuron discharged a spike when its potential increased above

Vupper . At the same time,Wi (t) was increased by bw. After spiking,

the potential was set to Vlower during the refractory period.
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FIGURE 4

Simulation for the learning and the retrieval of sequential memory. (A) The loop structure. (B) Simulation parameters for the basic neural activity

model. The active period was set to 120ms minus the length of the initiation period. (C) Stimuli that exhibit neural representations to the learning via

Hebbian plasticity. (D) The theoretical prediction of the learning of sequential memory for simulation parameters. The color-coded parameter

indicates that this parameter satisfies the necessary conditions for the learning of sequential memory (see Equations 2, 3). The color codes the

likelihood of the learning of sequential memory (see Equation 4). (E) The simulation results for the theoretical prediction. The color codes the 4 states

of neural activity. We determined the state in the simulation in the following way. The “Passive” state was determined if there was no active cell

assembly when the stimulus ended, representing the absence of activity. The “Seizure-like” state was determined if more than 40% of all cell

assemblies were active when the stimulus ended, representing the excessive activity. If the active cell assemblies existed and occupies <40% when

the stimulus ended, the state was determined as the “Self-generation” or “Persistent” state. Among these two states, if cell assemblies were activated

by the order of stimuli, then the state was determined as “Self-generation”, representing the generation of the stimulus sequence without the

stimulus presentation. Otherwise, the state was alternatively determined as “Persistent”, representing the incapability of generating the stimulus

sequence. Black line represents the boundary of areas that satisfy the necessary conditions. (F) Examples of four states of neural activity. The left side

of the black vertical bar indicates the neural activity during the stimulus presentation. The right side of the black vertical bar indicates the neural

activity during the no-stimulus presentation. Each panel corresponds to the black open circle in e.

The dynamics gXPi (t) of the synaptic conductance from

population P to X at time t was given as follows:

gXPi (t) =
(

JXPextA
XP
ext (t) +

∑

j J
XP
ij AP

j (t)
)∗

KP (t) (22)

where P and X are E or I, JYXext is the synaptic efficacy from

external neurons, JXPij is the synaptic efficacy from population P to

population X, AXP
ext (t) is the number of spikes of external neurons,

AX
j (t) = 1 or 0 represents spiking activity of neuron j, ∗ is the

convolution, and KP (t) is the synaptic kernel in Equation 16. The

specific parameters of the synaptic kernel were τEr , τ
E
d
, τ Ir , and τ I

d
,

which indicate the rise r and decay d time for synapses of the E

and I populations, respectively. These parameters were adjusted to

control the initiation and inhibition periods of the simulation (see

Table 2). Consequently, the initiation duration, representing the

appearance of the first spike, fell within the range [25.5, 55.5] ms.
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An approximate inhibition duration was calculated as 2×
(

τ Ir + τ I
d

)

,

resulting in a range of [15, 150] ms.

We presented 10 consecutive events within the loop structure,

and the synaptic weights were preset to ensure that this sequence

of events was self-generating. There were 10 assemblies in each

area. E-I, I-E, and I-I populations were connected only within each

assembly. The E-E populations were not only connected within

an assembly in an area, but also connected between areas. The E-

E connections from the nth to the (n + 1)-th areas had similar

structures, while the E-E connection matrix from the (N + 1)-th

to the first area was shifted circularly downward by 50 rows—

one assembly—along the vertical axis to enable the self-generation

of spiking activity. The external stimulus was applied only to the

first assembly in each area. The external stimulus was given during

0–120ms to the first area, 40–160ms to the second area and 80–

200ms to the third area, with a 40-ms delay between subsequent

areas. The spiking activity could then propagate sequentially to

other assemblies, resulting in self-generation.

There exists a trial-to-trial variability in neural activity, which

can be viewed as spontaneous neuronal noise. It is therefore

important to know whether the sequential retrieval of “Self-

generation” would be affected in the presence of such spontaneous

neuronal noise. To confirm this, we re-performed the simulation of

the spiking neural network with an initiation period= 39.5ms and

inhibition period = 105ms. However, at this time, neuronal noise

of various magnitudes, i.e., 0–4/6 noise level, was applied to 10% of

randomly selected neurons. We set an external stimulus as 12-kHz

spikes with the synaptic efficacy of JExt . We also generated external

noise as noise level× 12-kHz spikes with the same synaptic efficacy.

Note that the magnitude of external stimulus and noise represent

the aggregation of the firing rates of all presynaptic neurons. For

the issue of the aggregation of the firing rates of different neurons,

we assumed that the firing processes of neurons are mutually

independent Poisson processes. Due to this assumption, the firing

rate of different neurons can be added together linearly. Both the

external stimulus and external noise were input to a fixed set of

neurons or a set of randomly selected neurons, respectively, each

of which occupied 10% of the whole neurons. If the noise level is

equal to 1/6, the noise is provided to the same number of neurons

as those receiving the stimulus but with as 1/6 less intensity as that

of the stimulus.

4 Simulation results

4.1 Simulation results for the learning and
the retrieval of sequential memory

To confirm the theoretical predictions, we performed the

simulation study when N = 3 (Figures 4A–C). When the

theoretical likelihood (Equation 4) was high within the range of

the parameters that satisfied the necessary conditions (Equations 2,

3), the simulation result showed that the neural representations

were self-generated and sequential memory emerged, i.e., “Self-

generation” (Figure 4F). When the theoretical likelihood was low

within the range that satisfied the necessary conditions, cell

assemblies responded only when a stimulus was given, i.e., “Passive”

(Figure 4F). In the parameter range where necessary conditions

were not satisfied, the last stimulated cell assemblies continued

to respond, i.e., “Persistent” (Figure 4F), or all cell assemblies

responded, i.e., “Seizure-like” (Figure 4F). These simulation results

confirmed the theoretical predictions for the learning of sequential

memory (Figures 4D–F). Specifically, self-generation of sequential

activities mainly occurred within a parameter range where the

theoretical likelihood was >0.2 while satisfying the necessary

conditions (Figures 4D,E). For example, when the initiation period

was 35ms and the inhibition period was 100ms, we observed “Self-

generation” (Figure 4F). In contrast, when the inhibition period

was smaller, e.g., 20ms, but with the similar initiation period, the

necessary conditions were not satisfied, resulting in the “Seizure-

like” state (Figure 4F). Additionally, when the initiation period was

60ms and the inhibition period was 100ms, the cell assemblies

exhibit “Passive” state (Figure 4F). When the inhibition period

was 58ms and the necessary conditions were not met, the cell

assemblies were in “Persistent” state (Figure 4F).

To confirm theoretical predictions in loop structures of

different sizes, additional simulations were performed not only at

N = 3 but also atN = 2, 4, 5, 6. When the theoretical likelihood

(Equation 4) was high within the range of the parameters that

satisfied the necessary conditions (Equations 2, 3), the simulation

result showed that the neural representations were self-generated,

and sequential memory emerged (Figures 5A–H).

Note that our theoretical model assumes that neural activity has

a random phase such that every cell assembly in an area changes

its activity exactly once during tA (see Section 2.3). However,

in the simulations, only a few cell assemblies were activated

simultaneously; otherwise they displayed seizure-like behavior.

Therefore, for the sake of visualization and effective simulations,

this assumption is not always met. That is, it may be possible

to change the neural activity of every cell assembly before tA.

Conversely, the neural activity of cell assemblies can be unchanged

during as well as after tA due to prolonged lack of activity. Let

α be such timing variation. In the former case, α has a negative

value; in the latter, α has a positive value. The conditions to obtain

Equation 2 are then modified as follows: NtN ≤ tN + tA + α. This

condition yields:

tN ≤ tA+α
N−1 . (23)

The conditions to obtain Equation 3 can bemodified as follows:

NtN + tA ≤ tN + tA + tI + α. This condition yields:

tN ≤ tI+α
N−1 . (24)

This is why “self-generation” appears in the simulation

(Figures 4E, 5A–H), although it does not satisfy the necessary

conditions (Equations 2, 3).

4.2 Simulation results for the retrieval of
sequential memory in spiking neural
networks

For consistency with the simulations in the previous section,

we set the size of the loop structure to N = 2, . . . , 6, containing
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two to six brain areas. We presented 10 consecutive events within

this structure, and the synaptic weights were preset to ensure

that this sequence of events was self-generating. There were 10

assemblies in each area and one assembly contains 50 neurons.

The E-E populations were not only connected within assembly, but

also connected between areas. The E-E connections from n to n

+ 1 areas had similar structures, while, the E-E connection from

N + 1 to 1 area was shifted by one assembly to enable the self-

generation of spiking activity (Figures 6A, B). The external stimulus

was applied during 120ms to the first assembly in each area, with a

40ms delay added cumulatively to each area. The spiking activity

could then propagate sequentially to other assemblies, resulting

in self-generation.

What differs from previous simulations is that we controlled the

initiation period and inhibition period by adjusting the parameters

of the synaptic kernel. The specific parameters of the synaptic

kernel were τEr , τ
E
d
, τ Ir , and τ I

d
, which indicate the rise r and decay

d time for synapses of the E and I populations. These parameters

were adjusted to control the initiation and inhibition periods of

this simulation (see, Table 2). Consequently, the actual initiation

duration, representing the appearance of the first spike, fell within

the range [25.5, 55.5] ms. An approximate inhibition duration was

calculated as 2 ×
(

τ Ir + τ I
d

)

, resulting in a range of [15, 150] ms.

Unlike previous simulations, the longer the initiation period was,

the longer the active period was in this simulation. The purpose

of this simulation is not to use a simplified basic neural activity

model, but to use spiking neural networks in a real environment

to verify “Self-generation”.

Simulation results showed that the phenomenon of “self-

generation” was also evident in spiking neural networks of loop

structure with various sizes N. We assumed that the actual

initiation duration corresponds to the initiation period and the

approximated inhibition duration corresponds to the inhibition

period. The simulation results demonstrated that when the

theoretical likelihood was high within the range of parameters

satisfying the necessary conditions (Figures 4D, 5A, C, E, G),

neural representations were self-generated, indicating the retrieval

of sequential memory (Figures 6C–G).

There exists a trial-to-trial variability in neural activity, which

can be viewed as spontaneous neuronal noise. It is therefore

important to know whether the sequential retrieval of “Self-

generation” would be affected in the presence of such spontaneous

neuronal noise. To confirm this, we re-performed the simulation

of the spiking neural network with an initiation period = 39.5ms

and inhibition period = 105ms. However, at this time, neuronal

noise of various magnitudes, i.e., 0–4/6 noise level, was applied to

10% of randomly selected neurons. As a result, the “self-generation”

of the sequence was retrieved well until the noise level was ≤

1/6, but disrupted when the noise level exceeded 1/6 (Figure 7A).

This phenomenon may occur because as the magnitude of the

noise increases beyond a 1/6 level, the cell assembly can be

activated regardless of the sequence (Figures 7B–D). That is,

below a 1/6 noise level, spontaneous neuronal noise can be

corrected and ignored by the loop structure, but above that

level, these errors appear to propagate globally (Figures 7C,

D). See the previous section for more information about

applying noise.

5 Discussion

In the present study, we investigated how brain loop structures

subserve the learning of sequential memory. We assumed that the

sequential memory emerges by delayed information transmission

in these structures (Figure 1) and presented a basic neural activity

model for the delayed information transmission (Figure 2). Based

on this model, we described necessary conditions for the learning

of sequential memory in these structures (Figure 3). Through the

simulation, it was confirmed that sequential memory emerged in

this structure under the theoretically predicted conditions and

the neural representations of sequential events were self-generated

(Figure 4).

If the active or inhibition periods of a cell assembly are fixed, the

possible range of information transmission delay is bounded by the

inverse of the size of the loop structure. In other words, as the size of

this structure increases, the information transmission delay should

decrease (Equations 2, 3; Figures 3A, D). The range of information

transmission delay may be bounded according to the cellular

properties of the tissue. Therefore, the information transmission

delay cannot be infinitely reduced. This means that for the learning

of sequential memory, (1) the size of brain loop structure must be

limited so that it does not become too large. The optimal likelihood

of the learning of sequential memory increases as the size of this

structure increases and soon saturates theoretically (Equation 10;

Figure 3C). Yet, it is noteworthy that it remains challenging to

verify these characteristics of the optimal likelihood by simulations

because while the possibility of sequential memory learning can

be confirmed through simulation, it is difficult to determine “how

well sequential memory is learned” by simulations. This means

that for the learning of sequential memory, (2) the size of brain

loop structure must be relatively large, but not necessarily infinitely

large. Combining (1) and (2), we come to a conclusion that a

moderate level of this structure size, e.g.,N = 5, is advantageous for

the learning of sequential memory. This may explain why biological

brain loop structures are made up of a moderate number of areas,

such as cortico-basal ganglia-thalamic loops (Alexander et al., 1986;

Lee et al., 2020; Foster et al., 2021) and cortico-cerebellar loops

(Middleton and Strick, 2000; Kelly and Strick, 2003; Ramnani,

2006).

The basic neural activity model in this study is based on

cell assemblies. During the inhibition and initiation periods, cell

assemblies exhibit low activity levels, whereas they exhibit high

activity levels during the active period, indicating oscillatory

patterns. If the lengths of the inhibition plus initiation periods

and the active period are unequal (Figures 4, 5), they can resemble

sawtooth oscillations, similar to those observed in hippocampal

theta oscillations (Montgomery et al., 2009).

The firing timing of hippocampal neurons is known to be

related to the oscillatory phase of theta oscillations, and the theta

sequence—the order of neuron firing timings associated with

theta oscillations—is known to correlate with behavioral sequences

(Foster and Wilson, 2007; Gupta et al., 2012). This exemplifies how

spatially and temporally correlated neural activity, i.e., oscillations,

is linked to sequences of behaviors.

In our model, if the activities of cell assemblies are

oscillatory and spatially correlated, the neural activity represented
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FIGURE 5

Simulation for the learning and the retrieval of sequential memory in loop structures of various sizes. (A) The theoretical prediction of the learning of

sequential memory for simulation parameters when N = 2. The color-coded parameter indicates that this parameter satisfies the necessary

conditions for the learning of sequential memory (see Equations 2, 3). The color codes the likelihood of the learning of sequential memory (see

Equation 4). (B) The simulation results for the theoretical prediction when N = 2. The color codes the 4 states of neural activity. (C) Similar to (A), but

N = 4. (D) Similar to (B), but N = 4. (E) Similar to (A), but N = 5. (F) Similar to (B), but N = 5. (G) Similar to (A), but N = 6. (H) Similar to (B), but N = 6.

We determined the state in the simulation in the same way as for Figure 4E. Black line represents the boundary of areas that satisfy the necessary

conditions.

by the active period spreads spatially like a traveling wave.

In this case, because neural activity propagates collectively,

the sequential activation of cell assemblies is less likely to

be disrupted and may therefore appear more stable. These

oscillatory propagations are thought to facilitate information

transmission across many brain areas and frequency bands (Rubino

et al., 2006; Bhattacharya et al., 2022; Zabeh et al., 2023; for

reviews, see Bauer et al., 2020). This collective information

transmission through loop structures enables stable sequential

activation of cell assemblies, allowing the brain to better represent

behavioral sequences.

Recent studies showed that a sequence of activities can be

generated in randomly connected structures (Rajan et al., 2016;

Rajakumar et al., 2021), other than loop structures. The present

study does not exclude this possibility. Moreover, it has been shown

that the neural representations of sequential events can be self-

generated even when input is absent in recurrent structures (Klos

et al., 2018). However, a key difference between the present study
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FIGURE 6

Simulation for the retrieval of sequential memory in loop structures of various sizes in spiking neural networks. (A) Pre-assigned synaptic weights for

simulation of retrieval of sequential memory in spiking neural networks when N = 2. (B) Similar to (A) with N = 3. (C) The simulation results in spiking

neural networks when N = 2. (D) Similar to (C), but N = 3. (E) Similar to (C), but N = 4. (F) Similar to (C), but N = 5. (G) Similar to (C), but N = 6. Black

line represents the boundary of areas that satisfy the necessary conditions when tA = 120 ms virtually. The right-lower areas of black line satisfy the

necessary conditions.

and other studies is whether it handles loop structures, which are

known to be important in sequential memory.

The present study used a basic model to simplify the derivation

of mathematical results, and therefore, all connections between

each area were assumed to be excitatory. However, inhibitory

connections are also present in cortico-basal ganglia-thalamic loops

(Lanciego et al., 2012). Our results can still be applied to inhibitory

connections if cell assemblies of each area selectively represent each

neural representation. However, it is a limitation of this study that

the diversity of these excitatory-inhibitory connections was not

directly incorporated into the model. This point can be addressed

in future studies.

There exists a trial-to-trial variability in neural activity, which

can be viewed as spontaneous neuronal noise. It is therefore

important to know whether the sequential retrieval of “Self-

generation” would be affected in the presence of such spontaneous

neuronal noise. In this study, we showed that the activities of

cell assemblies for self-generation were robust to spontaneous

neuronal noise when the noise level was <1/6 of the external

stimulus. However, this study did not provide comprehensive

simulations of the intensities of various external stimuli and the

number of stimulated neurons. This limits our understanding of

how robust cell assemblies are to noise. Future studies should

be conducted to understand the effects of spontaneous neuronal

noise on the self-generation of sequential memory through the

loop structure of cell assemblies. Moreover, 1/6 of the external

stimulus can be considered as a low level of spontaneous neural

noise. The simulation results show that “self-generation” can fail

even under such small noises (Figure 7). This can be seen as a

limitation of this study. Therefore, future studies are needed, such

as additional theoretical predictions based on cell assembly models

that can include the presence of spontaneous noise, or additional

simulation studies under conditions that can be more robust to

spontaneous noise.
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FIGURE 7

Simulation for noise injection in spiking neural networks. (A) The state of the loop structures (self-generation, seizure-like, persistent or passive)

depending on the noise level and the size of loop structures. Black line represents the boundary of areas that satisfy the necessary conditions when

tA = 120 ms virtually. The upper areas of black line satisfy the necessary conditions. (B) An example of spike trains when the noise level is 0. Each

colored dot indicates each spike. Red dots indicate spikes of neuron in the area 1. Magenta dots indicate spikes of neuron in the area 2. Blue dots

indicate spikes of neuron in the area 3. (C) Similar to (B), but the noise level is 0.8/6. (D) Similar to (B), but the noise level is 1/6.

Nonetheless, this study elucidated the relationship between

the size of brain loop structures and the formation of sequential

memories. By revealing that a moderate-sized structure is most

suitable for the formation of sequential memory, it provided insight

into why the biological brain loop structure is moderate-sized. The

results of this study may help to advance our understanding of

the relationship between brain structures and functions involved

in sequential memory.
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