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The classification of medical images is crucial in the biomedical field, and

despite attempts to address the issue, significant challenges persist. To e�ectively

categorize medical images, collecting and integrating statistical information that

accurately describes the image is essential. This study proposes a uniquemethod

for feature extraction that combines deep spatial characteristics with handmade

statistical features. The approach involves extracting statistical radiomics features

using advanced techniques, followed by a novel handcrafted feature fusion

method inspired by the ResNet deep learning model. A new feature fusion

framework (FusionNet) is then used to reduce image dimensionality and simplify

computation. The proposed approach is tested on MRI images of brain tumors

from the BraTS dataset, and the results show that it outperforms existingmethods

regarding classification accuracy. The study presents three models, including a

handcrafted-based model and two CNN models, which completed the binary

classification task. The recommended hybrid approach achieved a high F1 score

of 96.12 ± 0.41, precision of 97.77 ± 0.32, and accuracy of 97.53 ± 0.24,

indicating that it has the potential to serve as a valuable tool for pathologists.
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feature fusion, convolutional neural network, medical imaging, radiomics feature, deep

feature

1 Introduction

In medical image analysis, object identification, detection, and recognition are essential

skills that are applied in several settings, such as research, treatment planning, and

illness diagnosis. Significant duties in this discipline include image registration, medical

condition categorization, and tumor segmentation. Inmedical imaging, for instance, object

detection entails locating and classifying anomalies, such as tumors, within an image.

This is especially difficult because different medical problems present differently based

on several circumstances, such as the patient’s demographics and the imaging modalities

used (Alruwaili et al., 2024; Wang et al., 2024). Conventional techniques for medical

image analysis frequently depended onmanually created features or textural attributes. The

textural elements that Haralick et al. (1973) provided for image classification have been

essential in understanding the textures observed in medical images. The Scale-Invariant

Feature Transform (SIFT) is developed and Lowe (1999) finds unique local features in

an image that are resistant to rotation, illumination, and scale changes. By producing a
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histogram of gradient orientations surrounding each key point,

SIFT generates a descriptor which is then used to match key points

across other images. Image registration and tumor localization

in medical imaging have been made easier by the use of these

descriptors for the recognition and alignment of anatomical

components.

Convolutional neural network (CNN)-based object

identification algorithms have significantly outperformed

conventional object recognition algorithms in recent years

as a result of the tremendous advancement in deep learning

applications. These significant improvements have been noted by

the medical image analysis field (Brahimi et al., 2017; Iqbal et al.,

2024). Machine that understands features from raw images have

gradually replaced algorithms that employ handcrafted features.

Before AlexNet’s innovation, numerous alternative methods for

learning features were widely used (Bengio et al., 2013).

Three basic problems are specifically encountered while

analyzing medical data, and these problems are briefly discussed

below. Medical data may take on a variety of forms, from images

to text values, and each type requires a particular approach. This

presents many challenges when it comes to combining various

types of data to, for instance, make a medical diagnosis (Yue et al.,

2020; Xu Z. et al., 2023). The second issue is that conventional

machine learning algorithms have performed poorly when used

to analyze large amounts of data, particularly when it comes to

the evaluation of medical data, which includes text notes and

diagnostic images which is one of the primary medical tools used

to estimate and inhibit human infection. Last but not least, a

lot of medical data, including genetic expressions and bio-signals,

have significant levels of noise and fluctuation, which enable

information retrieval particularly challenging (Brahimi et al., 2018;

Wang et al., 2023). Medical images are the primary diagnostic

and prognostic tool utilized by physicians, which illustrates why

statistical models are required for the interpretation of such

material. Deep Learning might be viewed as the new approach in

medical image interpretation. Medical images are generally utilized

most frequently in the medical area of neuroscience for both brain-

related studies and screening practices referred to neurological

illnesses (Li et al., 2019). Such images are often distinguished

by a significant level of diversity that may be controlled by

complicated deep learning frameworks. These applications have

demonstrated highly encouraging outcomes in the evaluation of

such images in this context (Lin et al., 2020; Azam et al., 2022).

Radiological examinations of the chest X-ray are often performed,

and huge datasets have been used extensively in research to train

algorithms that combine Recurrent Neural Networks (RNNs) for

text interpretation and Convolutional Neural Networks (CNNs)

for image analysis (Mavakala et al., 2023). Research on nodule

recognition, description, and classification in radiography and

thoracic computed tomography (CT) is still ongoing. Many

strategies are being investigated (Xu Q. et al., 2023), including

CNNs with conventional machine learning techniques and the

integration of features produced from deep neural networks. These

developments are intended to help organizations more effectively

identify a variety of cancers on chest X-rays. Furthermore, the field

of CT research endeavors to discern textural patterns suggestive of

pulmonary ailments (Chen et al., 2023; Hao et al., 2023).

The clinical contemporary healthcare system has benefited

greatly from the use of medical imaging. The ability of image

segmentation technology to handle massive volumes of medical

images has made it a crucial tool for computer-assisted medical

evaluation and therapy. The medical image classification process

is more difficult than conventional object recognition because of

the subtle differences and higher levels of complexity in medical

images. Additionally, the medical image contains a wealth of

semantic data that is essential to clinical and pathological feature

representation (Mohan and Subashini, 2018; Zhang et al., 2022).

Low-level collection of features, mid-level feature visualization, and

deep feature learning are the three main types of visual feature

research used in medical image categorization. The low-level

feature extraction methodologies, such as radiomics, SIFT (Lowe,

1999), Local Binary Patterns (LBP) (Liao et al., 2009), and Color

Vector Patterns (Häfner et al., 2012) often characterize the image

content primarily in terms of texture, form, color, and local pixel

density. These approaches have a straightforward computation and

a univocal notion but often typically omit semantic detail and are

unable to deliver sufficient efficiency for a single feature. The low-

level feature separation techniques are further used in the mid-level

feature encoding approaches to provide statistics or acquisition that

can do up to some extent and convey semantic significance. The

widely used Bag-of-Visual-Words (BoVW) model, for instance, is

still a useful feature representation method for environment image

categorization (Nosaka et al., 2011).

Radiomics is a new branch of applied research that aims to

extract high-dimensional data that may be mined from clinical

imaging. The radiomic procedure may be broken down into

discrete phases with defined sources and outcomes, such as image

capture and reconstruction, image segmentation, feature collection

and validation, assessment, and model creation. To build strong

and trustworthy models that may be used in clinical applications

for prediction, non-invasive disease monitoring, and assessment

of disease reaction to therapy, each stage must be carefully

assessed (Manthe et al., 2024).

A particular medical imaging technique cannot provide

important precise and accurate results. This fact drives researchers

to develop new imaging technologies or suggest fusion techniques

to combine data from several manual feature extraction

methodologies and acquire complementary information that

may be present in one or more feature extraction methods (El-

Gamal et al., 2016). Even if there are several medical image

fusion methods, the clarity of the combined medical image

may still be raised. To improve image resolution and expand

the therapeutic application of images for medical concerns, the

technique known as “image fusion" combines the more important

information of numerous images from one or more feature

extraction methodologies (James and Dasarathy, 2014; AlEisa

et al., 2022). Image fusion techniques may be used at three distinct

levels: feature, outcome-based, and pixel level. The goal of feature-

level fusion techniques is to take the most important aspects or

prominent features from the input images such as edges, direction,

shape, and size. These prominent features are combined with other

extracted features. A high level of fusion that determines the real

target is called outcome-based fusion. It combines the output from

many methods to get a final fusion assessment. With pixel-level
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fusion techniques, the actual data from the input images or their

multi-resolution modifications is combined immediately (Liu et al.,

2015).

According to a report by The International Agency for Research

on Cancer (IARC) and The Global Cancer Observatory (GCO),

it is measured that in 2020, there will be 308,102 new cases of

brain tumor and 251,329 deaths worldwide (Sung et al., 2021).

Among the various types of brain cancer, GlioblastomaMultiforme

(GBM) is considered one of the most severe and challenging forms,

which is classified as a grade IV brain tumor by the World Health

Organization. It accounts for 48% of all initial malignant brain

tumors and is expected to affect more than 13,000 Americans

annually, with over 10,000 deaths each year, as reported by Bray

in 2018. Treatment options for GBM are limited (Bray et al., 2018).

The goal of our study is to ascertain whether essential radiomics

features might be present in various body cells. We evaluated the

radiomics features of tumors in the brain organ. We created a

Fusion model containing radiomics features and CNN features

(high-level semantic features) extracted from available datasets for

survival evaluation. The separate experimental dataset of brain

cancers was used to examine the possibility of leveraging the chosen

features to separate high-risk from low-risk groups. The study

proposes using CNN and radiomics-based features to enhance the

effectiveness of combined findings in medical image feature fusion.

The main contributions of this study are as follows:

• A new residual block called Sequential-ResNet (Seq-ResNet)

is proposed, which includes five 3 × 3 convolutional layers

to examine high-level semantic information. The proposed

Seq-ResNet deepens the CNN network while maintaining

a manageable parameter number and adds an approach

to preserve moderate-level features in addition to shortcut

connections.

• AFusionNet architecture with 37 layers is designed specifically

for detecting smaller or low-magnification tumors, which

allows for the combination of high-level semantic information

with moderate-level pertinent features.

• Radiomics features can be obtained from the tumor region

that has been segmented using image processing techniques.

Various feature extraction methods, including gray-level co-

occurrence matrix (GLCM), gray-level run length matrix

(GLRLM), and gray-level size zone matrix (GLSZM), are

available for this purpose.

• Feature fusion is used to extract the most discriminating

information from the source feature sets and eliminate

duplicate information produced by association across different

feature sets.

• The statistical and spatiotemporal features in each of the

various source images are extracted using an inter-extraction

method, combined, and then divided into malignant and

benign.

This research employs the medical imaging modality MRI, to

detect brain tumors. Brain MRI is widely used for diagnosing

critical diseases globally, and Section 2 describes the details

and prevalence of such diseases. Section 3 reviews the most

up-to-date state-of-the-art research on brain MRI. Section 4

discusses the importance and significance of this article, while

Section 5 elaborates on our proposed fusion model’s detailed

design and implementation. The experimental setup is presented

in Section 5.3. Finally, Section 6 details the results obtained from

training and testing on the Brain MRI dataset, and Section 8

concludes the study.

2 Background

According to the American Cancer Society, negative

consequences of GBM therapy may include peripheral neuropathy,

which includes symptoms that cause effects on the central nervous

structure and limit bodily activities, lowering the quality of

life for patients severely. As a result, it is vital to determine if

chemotherapy will be beneficial in slowing the progression of the

disease before the patient begins treatment.

Surgical excision of the tumor, followed by radiation and

chemotherapy, is the treatment option for GBM patients.

Individual patients who get standard care have an average survival

period of 15 months, relative to only 4 months if they are left

untreated once identified (Bleeker et al., 2012). Chemotherapy, a

common and effective therapeutic option, kills rapidly proliferating

cells but cannot always ensure the difference between tumor and

normal cells. This may have unfavorable consequences (Taal et al.,

2015).

One of the most challenging jobs in medical imaging analysis

is the automatic classification of glioma. It would be very helpful

for healthcare professionals if a computational framework could be

created that could detect diseases, plan treatments, and evaluate

their effectiveness better than a trained and qualified one could.

Such a framework would also enable a more distinct, uniform, and

exchangeable method for diagnosis of diseases, care planning, and

measurement. Gliomas are the most prevalent type of brain tumor

in people. The appropriate classification of medical image data is a

provocative medical image analysis job because of their complex

structure and composition in multi-modal Magnetic Resonance

Imaging (MRI). Such gliomas require feature extraction, which

requires a high level of specialist knowledge, requires time, and

is inclined to human misconception. The typical approach also

deficiency of coherence and reproducibility, which has a negative

effect on the results and may result in incorrect diagnosis and

treatment.

Due to rapid advancements in machine learning and

deep learning (DL) techniques, deep neural networks (DNNs)

hold a lot of potential for application in Computer Assisted

Diagnosis (CAD) semi-automatic systems for healthcare data

interpretation. Convolutional neural networks (CNNs) have

significantly advanced, enabling models to match or surpass

human performance in a variety of fields, including, among others,

image analysis and microscopy segmentation (Russakovsky et al.,

2015).

Despite the apparent effectiveness of Deep learning models in

a variety of problem scenarios, designing well-functioning deep

learning models is not easy in reality. The success of a deep learning

model is strongly dependent on a circumstantially appropriate

selection of design factors, such as the number of hidden layers
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in a model, the number of units in a layer, and the kind of unit,

which are referred to as hyperparameters. Different elements of the

deep learning model’s behavior are governed by hyper-parameters,

including themodel’s capacity for learning patterns from images, its

degree of generalization in performance when givenwith fresh data,

and the memory consumption cost of building the classifier (Nazir

et al., 2022).

As we all know, deep learning models are black boxes

and we do not know about the pertinent feature extractions

and also these models are data hungry. As long as enough

training data are provided, deep learning models are strong

contenders for brain malignancy segmentation. The Brain Tumor

Segmentation Challenge (BraTS) offers a huge, eminent-quality

dataset that includes MRI brain images and segmentation masks.

Tumor segmentation and MGMT methylation prognosis from

pretreatment magnetic resonance (MR) images are two challenges

in the RSNA BraTS 2021 competition. The organizers of the

challenge have published large datasets to facilitate technique

assessment and advance state-of-the-art approaches in various

fields (Baid et al., 2021).

Due to the tiny size of medical image segmentation datasets

(typically ∼100 samples) and the lack of a universal baseline

for comparing the effects of different architectural adjustments,

such analyses are frequently incorrect. Nevertheless, the dataset

published for BraTS21 contains 2,040 samples (in the training,

validation, and test sets, respectively, 1251, 219, and 570 examples),

making it the leading dataset for medical image analysis at

the instant and an ideal individual for comparing performance

improvements for different UNet variants.

There has subsequently been a surge in the field of information

mining and artificial intelligence (AI) usage in medicine. The topic

of radiomics encompasses a set of approaches for automatically

extracting huge quantities of statistical data from medical images

using gray-level pixel assessment, potentially paving the way

for discoveries into pathophysiological processes underpinning

various medical disorders (Lambin et al., 2012). One of the key

fields of radiomics is texture characterization, which evaluates gray-

level value variations in images that are not discernible by a human

reader’s aesthetic judgment. As a result, it is useful in radiography

for assessing the characteristics of various tissues or organs, perhaps

leading to the discovery of novel biomarkers (Scalco and Rizzo,

2017). Texture features and characteristics may have clinical and

pathological associations that might aid in the assessment of patient

prognosis (Lubner et al., 2017).

Deep Learning (DL) has proven to be potentially effective

in a variety of healthcare sub-specialties in recent years, and

many of these techniques have now been licensed for clinical

usage (Cuocolo et al., 2019, 2020; Tsuneta et al., 2021). Radiology

is one of the most promising domains for radiomics and machine

learning applications, since they may be used to detect and

characterize lesions automatically or divide medical images (Ugga

et al., 2021; Spadarella et al., 2022). There have been an increasing

number of research studies that indicate DL to be a valuable

technique in visualizing malignant disorders (Haq et al., 2021).

It might, for example, reduce the time it takes to acquire and

rebuild images (Sermesant et al., 2021). The have also shown

encouraging results in digital anatomical structure segmentation

and illness categorization (Bruse et al., 2017; Ghorbani et al.,

2020). Finally, the capacity of DL to find hidden patterns in data

may bring fresh insights into well-known illnesses, boosting future

management (Bagheri et al., 2021).

3 Related work

Quan et al. (2021) presents FusionNet, a deep neural

network that segments neuronal structures in connectomics data

obtained from high-throughput, nano-scale electron microscopy.

The primary challenge of developing scalable algorithms with

minimal user input is addressed with deep learning. FusionNet

combines recent machine learning advancements to improve

segmentation accuracy and performs well when compared with

other electron microscopy segmentation techniques. The versatility

of FusionNet is also demonstrated in two segmentation tasks: cell

membrane segmentation and cell nucleus segmentation.

Guo et al. (2020) proposed framework for multi-modal

medical image integration, which aims to maximize physiological

information, improve visual clarity, and reduce computation. It

consists of four parts and captures all medical information features

in the input image, calculates the weight of each feature graph, and

reduces information loss. The algorithm was tested on three sets

of investigations with medical images, showing better performance

than other algorithms in terms of detail and structure recognition,

visual features, and time complexity.

The deepSeg was discovered by Zeineldin et al. (2020). They

created two fundamental components that are linked by an

encryption and decoding connection. To extract features, they

employed a Convolutional Neural Network (CNN) as an encoder.

With CNN layers, they employed dropout and BatchNormalization

(BN). Then, using the SoftMax activation function, enter the result

into the decoding section to generate a prediction map. They

employed a Batch Normalization layer between each convolution

and ReLU in the deciphering section and a modest kernel size

of 32 for the base filter. They also examined the revised UNet

to other CNN models including NASNet, DenseNet, and ResNet.

They used FLAIR MRI images from the BraTS 2019 competition,

which enclosed 336 training instances and 125 validation cases for

data size of 244 × 244. Hausdroff and Dice’s Distances increased

from 0.81 to 0.84 and 9.8 to 19.7, respectively.

For brain tumor segmentation, Lachinov et al. (2018) identified

two frames of classification techniques from the same UNet

(Multiple Encoders UNet and Cascaded Multiple Encoders UNet).

For brain segmentation, they employed a customized 3D UNet

CNN Model. With its cost function, the proposed Cascaded UNet

utilized three UNets. To improve the dataset, they employed z-

score normalization as a pre-processing strategy. To expand the

range of instances of the source data, they employed b-spline

transformation as data augmentation. They tested the proposed

two-frame classification techniques using the BraTS 2018 dataset

and found that they performed well on test data. The Dice score

increased from 0.901/0.779/0.837 to 0.908/0.784/0.884 for total

tumor, enhanced tumor, and tumor core segmentation when the

base UNet was evaluated to the Cascaded UNet.

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2024.1423051
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Iqbal et al. 10.3389/fncom.2024.1423051

Based on the number of references, encoder–decoder

architectures, in particular UNet, are among the most often

used deep learning models for medical image analysis in the

field of brain tumor segmentation (Ronneberger et al., 2015).

UNet-like topologies have been among the most popular BraTS

competition proposals in recent years. For example, in 2018,

Myronenko added a variational autoencoder branch to a UNet

model for generalization (Myronenko, 2018). Jiang et al. (2019)

used a two-stage UNet pipeline to partition brain tumor structural

components from rough to granular in 2019. Isensee et al.

(2021) reported the nnUNet architecture in 2020, with particular

BraTS-designed improvements to data post-processing, region-

based training, data augmentation, and minor nnUNet flow

improvements (Isensee et al., 2020). These results demonstrate

that well-designed UNet-based networks may execute well enough

on challenges such as brain tumor segmentation. To develop a

suitable solution for problems such as BraTS21, the optimum

neural network design, and the training procedure must be

adopted. There are many other types of UNets, such as Attention

UNet (Oktay et al., 2018), Residual UNet (He et al., 2016), Dense

UNet (Huang et al., 2016), Inception UNet (Szegedy et al., 2017),

UNet++ (Zhou et al., 2018), SegResNetVAE (Isensee et al., 2020),

or UNETR (Hatamizadeh et al., 2022), to mention a few.

We examine feature matching encoder–decoder systems from

two angles: reconstructing spatial features and utilizing hierarchical

semantics. The pooling mechanism in encoder–decoder networks

is notorious for inducing significant systematic errors and

overlooking the connection between parts and wholes. In

convolutional neural networks (CNNs), max-pooling is frequently

used for downsampling. The greatest value from each region

is generated by max-pooling, which divides feature maps into

non-overlapping parts. This results in the loss of potentially

significant geographical information. Several existing strategies

have attempted to modify crude high-level semantics through the

use of high-level spatial resolution information. In combination

with multiresolution fusion, stacked hourglass networks perform

continuous bottom-up and top-down computation (Newell et al.,

2016). Recent approaches append the characteristics of various

layers before prediction calculation to retrieve spatial information

employing encoder–decoder networks (Bell et al., 2016; Kong et al.,

2016). As the input to other concurrent sub-networks, HRNet

integrates the representations created by sub-networks with high-

level resolution (Sun et al., 2019). Deeply fused networks employ

shallow layer interim outputs as input to deeper layers (Chen et al.,

2021). The global convolutional network uses skip connections

with massive kernels to encode rich spatial information from input

images (Peng et al., 2017).

The high-level interpretations heavily influence the outcome

of an encoder–decoder network. However, feature merging is

necessary to restore low-level semantics in addition to high-level

spatial characteristics. To prevent unnecessary failed states that

can result from increasing depth, ResNet adds low-level semantic

input feature maps to high-level semantic output feature maps (He

et al., 2016). In contrast, DenseNet combines hierarchical semantics

with spatial information at the same level, thereby improving

classification rules (Huang et al., 2017). H-DenseUNet showcases

how the optimized flow of information and parameters can

reduce the complexity of training encoder–decoder networks for

biomedical image segmentation (Li et al., 2018).

Badrinarayanan et al. (2017) discovered a convolutional

encoder–decoder network for image analysis in their study known

as SegNet. The SegNet is a fundamental trainable segmentation

engine that includes an encoder network, which is structurally

similar to the VGG-16 network’s 13 convolutional layers, and

a corresponding decoder network, along with a pixel-wise

classification layer akin to the deconvolution network. What sets

SegNet apart is its innovative approach to non-linear upsampling in

the decoder, where it employs the pooling indices obtained during

the associated encoder’s max-pooling phase. This eliminates the

need for learning how to up-sample. To produce dense feature

maps, trainable filters are used to convolve the up-sampled (sparse)

maps. SegNet outperforms many of its competitors while requiring

a considerably smaller number of learnable parameters. The same

authors proposed a Bayesian version of SegNet to model the

uncertainty in the convolutional encoder–decoder network for

scene segmentation (Kendall et al., 2015).

In their groundbreaking study, Aerts et al. (2014) reported

predictive ability in separate data sets of individuals with head-and-

neck and lung cancer. It showed that frequently obtained CT scans

may contain diagnostic and biological information. As a result,

a significant amount of radiomics research has concentrated on

this topic after acknowledging that tumor diversity has prognostic

value and may affect therapy response (McGranahan and Swanton,

2015). The relevance of radiomics for diagnosis and prognosis and

evaluating therapeutic outcomes is highlighted by research that

proves radiomics characteristics and patterns mirror the cancer

micro-environment in terms of behavior and progression. For

patients with non-small cell lung cancer, Ganeshan et al. (2012)

discovered that tumor variability may be evaluated by non-contrast

CT scan texture analysis and can offer an unbiased predictor of

survival (NSCLC). The same researchers’ texture characteristics

found pertinent relationships in a different investigation and

showed that they might function as imaging correlates for cancer

hypoxia and angiogenesis (Ganeshan et al., 2013). Win et al. (2013)

used pretreatment Positron Emission Tomography (PET)/CT scans

to study cancer heterogeneity and permeability throughout this

time. According to their research, the only variable associated

with survival in the group receiving drastic therapy was textural

heterogeneity assessed from CT scans. Textural heterogeneity,

tumor stage, and permeability were all linked to survival outcomes

in the palliative treatment group. In a similar setting, Fried

et al. (2014) retrieved texture characteristics from preoperative

CT images before receiving final chemo-radiation therapy and

discovered that radiomics featuresmay offer predictive information

further than that gained from standard prognostic markers in

NSCLC patients. Based on the widely accepted idea that tumors

are diverse and the degree of diversity may aid in determining

the malignancy and severity of tumors, Cherezov et al. (2019)

discovered a method for discovering tumor habitats using textural

data. These findings showed that lung cancer patients’ long-term

and short-term survival rates could be distinguished with an

AUC of 0.9 and an accuracy of 85% (Cherezov et al., 2019).

Furthermore, previous research has shown correlations between

prognosis and therapeutic response for radiomics characteristics
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derived from preoperative fluorodeoxyglucose (18F-FDG) PET

scans. For instance, in a previous study, textural characteristics

of PET scans were linked to worse prognostications and lack of

response to chemo-radiotherapy by Response Evaluation Criteria

in Solid Tumors (Cook et al., 2013). Decreased diversity on

PET was linked to erlotinib reaction in a different research

by Cook et al. (2015), and changes in first-order entropy were

significantly linked to both patient survival and effective manner

and response in NSCLC patients. They explain the clustering

strategy using FDG-PET and CT to detect intra-tumor diversity

in lung adenocarcinomas before and after therapy. To quantify

the lesion structure, strength, diversity, and other characteristics

in several frequencies, 583 radiomics characteristics from 127

preoperative lung nodules were retrieved in a different research.

With equal-sized benign or malignant tumors, patients were

randomly assigned to one of ten categories. The random forest

approach was then used to run a diagnostic model. This radiomics

classification algorithm successfully achieved 80.0% sensitivity,

85.5% specificity, and 82.7% accuracy in separating cancerous

primary lesions from benign ones. In contrast, the sensitivity of

the conventional knowledgeable radiologists’ annotations was only

56.9% with identical precision (Ma et al., 2016). Another study

reported how radiomics may identify the eventual development

of cancer by doing quantitative analysis on preliminary low-

dose CT chest lesions and analyzing images from the well-known

National Lung Screening Trial (NLST). There were two lineages:

one included 104 cases and 92 individuals with lung malignancies

found by screening, while the other included a similar group

of 208 incidents and 196 individuals with harmless pulmonary

lesions found through screening. Such findings are comparable

to the precision of the McWilliams framework for analysis and

outperformed the accuracies of the Lung-RADS and malignancy

volume methodologies (Kim et al., 2019). In total, 23 reliable

radiomics features chosen by the Random Forest (RF) algorithm

accurately predicted malignancy that became malignant in 1 or 2

years, with accuracies of 80% (Area Under the Curve, AUC 0.83)

and 79% (AUC 0.75), respectively (Hawkins et al., 2016). Using

peritumoral and intra-tumoral radiomic characteristics, Pérez-

Morales et al. (2020) created an independent lung cancer

prognostic prediction model (Pérez-Morales et al., 2020). This

algorithm might pinpoint a subset of individuals with initial

lung cancer who are at significant risk and have a bad outcome.

The lung cancer screening system allowed doctors to customize

clinical care for these high-risk individuals who were diagnosed

with lung cancer in its early stages. Furthermore, Horeweg et al.

(2014) identified that determining the radiomic capacity doubling

time for medium lesions helped direct lung cancer care and

perhaps forecast the likelihood of lung cancer (Horeweg et al.,

2014). Lesion treatment strategies that use volumetric or volume-

based diameter boundaries (ranging from 9 to 295 mm3 or 6–

11 mm in diameter) have demonstrated enhanced sensitivity of

up to 92.4% and specificity of 90.0% as opposed to the ACCP

lesion handling procedure using low-dose CT scans in target

populations. By lowering false positives and negatives in lung

cancer analysis and misdiagnoses, more research into radiomics

applications could improve lung cancer screening. Constanzo et al.

(2017) has generally concentrated on hand-crafted Radiomics,

while deep learning-based Radiomics is only briefly discussed

without addressing various topologies, interpret-ability, and hybrid

models. While Parmar et al. (2018) discovered both forms of

Radiomics, the combination of hand-crafted and deep learning-

based characteristics is not taken into account. Additionally, the

difficulties with radiomics and the connection between radiomics

and gene expression (radio-genomics) are not fully covered. Finally,

only deep learning-based radiomics features are covered in the

study by Litjens et al. (2017), leaving out hand-crafted features,

their stability, hybrid radiomics, and radio-genomics. All of them

necessitate a quick and timely effort to expose radiology to

your community, as image processing is one of the fundamental

elements of radiology.

The entropy of metastatic disease was proven to be a relevant

measure in an MRI-based radiomics investigation; greater entropy

values were discovered in tumor tissues relative to mild tumors,

indicating the tumor’s diversity and vascular state (Parekh and

Jacobs, 2017). Using dynamic contrast-enhanced MRI, another

research (Whitney et al., 2019) attempted to develop a collection

of quantitative parameters that might be retrieved fromMR images

to differentiate luminal breast tumors from mild breast tumors.

4 Our contributions

When Deep Convolutional Neural Networks (DCNNs) utilize

feature fusion for retrieving spatial information and leveraging

multi-layer semantics, two issues arise. First, the deep convolution

layer feature maps provide lower-level spatial information required

for reconstructing the merged feature maps. Second, feature-

matching methods only provide feature maps’ semantics at the

same level of resolution. These problems are challenging to address

as element-wise addition and channel concatenation result in

a fusion method that is overly restrictive and only aggregates

extracted features of the same scale. The encoder and decoder

convolution layers are the only ones at the same level in encoder–

decoder networks because downsampling reduces the scale of

feature maps, and upsampling increases it. UNet lacks multi-

layer semantics and global spatial information, which results in

analyzing images pixel by pixel and distinguishing objects using

color contrast. However, using contrasting colors to make objects

stand out may not necessarily improve tumor borders.

The purpose of our investigation is to determine whether

fundamental radiomics traits may be found throughout several

human tissues. In the brain organs, we assessed the radiomics

characteristics of malignancies. Using the dataset for survival

analysis, we built a radiomics model and selected characteristics.

The potential for employing the desired traits to distinguish

between high and low-risk groups was investigated using an

independent test dataset BraTS brain tumors.

To achieve automation with manual medical image feature

fusion, we use CNN and radiomics-based features to upgrade the

effectiveness of the combined findings. The main contributions of

this study are as follows:

1. Sequential-ResNet (Seq-ResNet) is a new residual block, which

is proposed. Five 3 × 3 convolutional layers are included

in a single Sequential-ResNet to examine high-level semantic
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Require: input_image, radiomics_features

1: ⊲ Seq-ResNet Layer

2: function Seq_ResNet(input_image):

3: ⊲ Sequential Residual Architecture(x)

4: ⊲ Extract feature subspaces using

Seq-ResNet layer

5: return feature_map with multiple subspaces

6: ⊲ Down-sampling Operation

7: function down_sampling(input_high_res_feature

_map):

8: ⊲ Transpose Convolution to obtain low-resolut-

ion features

9: low_res_feature_map ← Transpose_Convolution

(input_high_res_feature _map)

10: ⊲ Deconvolution to produce high-resolution

features

11: high_res_feature_map ←

Deconvolution(low_res_feature _map)

12: ⊲ Fusion of high-resolution features with

residual output

13: final_high_res_feature_map ← Concatenate

(input_high_res_feature_map, high_res_feature

_map)

14: return final_high_res_feature_map

15: ⊲ Up-sampling Operation

16: function up_sampling(input_low_res_feature_map):

17: ⊲ Deconvolution to produce high-resolution

features

18: high_res_feature_map ←

Deconvolution(input_low_res_feature

_map)

19: ⊲ Transpose Convolution for low-resolution

features

20: low_res_feature_map ← Transpose_Convolution

(high_res_feature_map)

21: ⊲ Fusion of low-resolution features with

residual output

22: final_low_res_feature_map ← Concatenate

(input_low_res_feature_map, low_res_feature

_map)

23: return final_low_res_feature_map

24: ⊲ Main FusionNet Process

25: seq_resnet_features ← Seq_ResNet(input

_image)

26: down_sampled_features ← down_sampling

(seq_resnet_features)

27: concatenated_features ← Concatenate

(down_sampled_features, radiomics_features)

28: fc_layer_output ← Fully_Connected_Layer

(concatenated_features)

29: classification_result ←

SVM_Classification(fc_layer

_output)

30: return classification_result

Algorithm 1. Proposed FusionNet.

information. A hierarchical framework made up of these five

layers generates features that are then analyzed by different

numbers of convolutional layers. The proposed Seq-ResNet

deepens the CNN network while maintaining a manageable

parameter number as compared with the original ResNet.

The proposed Seq-ResNet adds an approach to preserve the

moderate-level features in addition to the shortcut connection

increasing the outcomes.

2. We design a Seq-ResNet for the detection of a smaller or low-

magnification tumor. This CNN architecture comprises 37 Seq-

ResNet layers. The proposed model having a deeper architecture

allows the model to capture more intricate and complex high-

level semantic features from the input data. Additionally, the

pairing of numerous Seq-ResNet preserves the moderate-level

features necessary for smaller tumor recognition while allowing

the resulting features to be digested by varied numbers of

convolution layers. As a result, the feature produced by the

proposedmodel combines high-level semantic information with

moderate-level pertinent features.

3. The essence of feature fusion lies in its ability to extract the most

discriminating information from the source feature sets engaged

in fusion and get rid of the duplicate information produced

by association across different feature sets. The statistical and

spatiotemporal features in each of the various source images are

extracted using an inter-extraction method. The source images’

features are combined, and the combined result is divided into

malignant and benign.

5 Methodology

5.1 FusionNet

The natural contour of the body edge is changeable in medical

images because distinct features of the human body are visible.

To handle the separation of microorganisms, a structure has been

developed that uses sophisticated models which amalgamate a

high-level representation of depth-wise convolution layers and

residual blocks with a description of the presence of upsampling

and downsampling levels to achieve detailed segmentation. The

original residual block is suggested as a solution to the vanishing

gradient issue that arises as network complexity grows. Networks

with different depths have been developed to effectively investigate

high-level contextual information by layering numerous residual

blocks. Low-level precise information is observed as being as

significant as high-level contextual information in the case of tiny

feature extraction. Although the auxiliary link in the initial residual

block aids in deepening the network, convolutions still lead to low

extensive information vanishing. The 3 × 3 convolution layer in

the original residual block is replaced with a sequential ResNet

convolution structure to allow for simultaneous acquisition of low-

level specific information and high-level contextual information.

Proposed Seq-ResNet is the term given to the res-block since the

input feature is separated and analyzed hierarchically, which is

similar to mounting a mountain.

The Proposed FusionNet algorithm is shown in Algorithm 1

and Figure 1 and use of Seq-ResNet is shown in Figure 2 to obtain

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1423051
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Iqbal et al. 10.3389/fncom.2024.1423051

FIGURE 1

Proposed Framework: The Proposed FusionNet, where seq-resnet layer is shown in Figure 2, extracts feature subspace (3 × 3), represents the

number of convolution layers, the subspace has gone through, and j represents the subspace number. The extracted features via Seq-ResNet are

forwarded for downsampling steps and 1 × 1 convolution to 1 × 3, 3 × 1 depth-wise separable convolution, respectively. After that, we apply

upsampling to get the pertinent features, and these features are concatenated with radiomics features and apply the FC layer. These concatenated

features are passed to the Support Vector Machine (SVM) for classification.

feature subspace, where j is the subspace number and (3× 3) is the

size of convolution layers the subspace has undergone. The Seq-

ResNet-extracted features are then sent forward for downsampling

steps and 1× 1 depth-wise separable convolution with 1× 3 and 3

× 1, respectively. The relevant characteristics are then obtained by

using upsampling, and these features are combined with radiomics

features before applying an FC layer. Support Vector Machine

(SVM) is given these concatenated characteristics to classify the

data. The proposed CNN model FusionNet comprises Seq-ResNet

and is made up of two parts:

5.1.1 Sequential residual network
Figure 2 depicts the proposed Seq-ResNet, where F

j
i stands

for a feature subspace (i [3 × 3] for the number of convolution

layers the subspace has undergone and j for the subspace number).

Fi stands for a feature map constructed from feature subspace (i

indicates the number of this feature map). The symbolC
j
i denotes a

convolution layer with j depicting the kernel value and i presenting

the number of layers. The input image of Seq-ResNet is convolved

with kernel 1 × 1 to decrease the number of channels into 1
5 .

These number of channel outputs such as F1
1, F

1
2 , F1

3, and F
1
4 are

convolved with kernel value 3 × 1 and 1 × 3, except the F1
0. The

remaining feature (F1
0) is processed-free overlaid to final feature

map (Fi). We then pass F1
2 , F1

3, and F
1
4 to depth-wise seperable

convolution with kernel value 3 × 1 and 1 × 3, and the remaining

feature F1
0 and F

1
1 forward to final feature map (Fi). The detailed

operation is shown in Figure 2 Seq-ResNet block. At the end, we

concatenate all the processed and processed-free features into a

final feature map Fi. To restore the original channel number, we
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FIGURE 2

Proposed Framework: The suggested Seq-ResNet, where F
j

i represents a feature subspace, i(3 × 3) represents the number of convolution layers the

subspace has gone through, and j represents the subspace number. Fi denotes a feature map built from feature subspace (i indicate the number of

this feature map). The symbol C
j

i represents a convolution layer, with j representing the kernel value and i representing the number of layers. The

Seq-ResNet input image is convolved with kernel 1 × 1 to reduce the number of channels to 1
5
. These numbers of channel output such as F1

1, F
1
2 , F1

3,

and F
1
4, are convolved with kernel value 3 × 1 and 1 × 3 except the F

1
0.

process the concatenated feature map with convolution with a

kernel value is 1 × 1. Multiple subspaces of the result are analyzed

using various convolutional layers, resulting in various subspaces

that include features with various receptive fields. Smaller receptive

field subspace, such as F1
0 and F

1
1, comprise more relevant details

and undergo smaller convolution stages, which is crucial for smaller

tumor recognition. Large receptive field subsets, such as F
2
2, F

3
3,

andF4
4, blur particular information while exploring deep contextual

features is equally crucial for detection. At the start and conclusion

of the suggested block, two C3
1 and C

3
2 are utilized to automatically

choose the appropriate features and apply a bottleneck to lower the

parameter count.

5.1.2 Upsampling and downsampling
Typically, a compilation of feature maps is created by sampling

and concatenating the information from various levels of the

proposed Seq-ResNet. To construct a feature selection procedure,

several 1 × 1 convolutions are applied during the gathering of

feature maps. After feature extraction, the gathered features are

merged to create feature maps with various resolutions, which

are then put through distinct upsampling and downsampling

procedures. Throughout the upsampling and downsampling

operations, both high and low contextual information from the

proposed feature fusion network can be used. However, because

of these processes, information impurity might happen. Our

suggested feature fusion network uses a deep upsampling and

downsampling deConvolution layer to address this problem. This

lessens the effect of imperfect information. This methodology

was motivated by the deep upsampling and downsampling

units found in super-resolution image reconstruction methods.

Figure 3 depicts the proposed deep upsampling and downsampling

deConvolution module’s structure. The two main components,

upsampling and downsampling, are used to extract low-level and

high-level contextual features. The upper layer of Figure 3 presents

the upsampling methodology. The low-resolution feature maps

(LowResi) are passed to deConvolution to produce the high-

resolution features (HiResi), as shown in Figure 3. The Transpose

Convolution (Tconv) is used to extract pertinent features from low

resolution (LowResi) to convert it into high resolution (HiResi).

The low resolution (LowRes2) feature map residual outcome

and initial low resolution (LowRes1) feature map are passed to

deConvolution to obtain high resolution (HiResi) feature maps.

The final high resolution residual output is obtained from the

initial high resolution feature map (HiRes1), and the output

of the Transpose Convolution is concatenated in final high-

resolution feature maps (HiResn). The lower layer of Figure 3

portrays the downsampling technique. Initially, we pass high

resolution (HiResi) feature maps to Transpose Convolution to

acquire low resolution (LowResi). These residual outcomes are

passed to deConvolution to get the feature maps of high resolution

(HiResi). The initial high resolution and the residual output of

the second Transpose Convolution which are applied on second

high-resolution feature maps are fused. After concatenation, we

apply Transpose Convolution to generate the low-resolution

feature maps (LowResi). These low resolution feature maps

are convolved with Transpose Convolution and then fused

with the initial low resolution feature maps. After fusion, we

apply Transpose Convolution to achieve low-resolution residual

feature maps.

The term “handcrafted features" in our study refers to

certain traits or attributes that are retrieved from raw data by

following predetermined rules or algorithms. Other names for these

characteristics include “handmade features" and "hand-engineered

features." They are thoughtfully created and defined by researchers

or domain specialists based on their comprehension of the data

and the particular issue being addressed. In our study, we use a

set of statistical and textural metrics that we extract from medical

tomography images as these “handcrafted features." The choice

of these metrics is an important step since they help obtain vital
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FIGURE 3

The low resolution feature maps (LowResi) are passed to deConvolution to produce the high resolution features (HiResi). The Transpose Convolution

(Tconv) algorithm is used to extract relevant features from low resolution (LowResi) images and convert them to high resolution (HiResi). The residual

outcome of the low resolution (LowRes2) feature map and the initial low resolution (LowRes1) feature map is passed to deConvolution to produce

high resolution (HiResi) feature maps. The final high resolution residual output is obtained by concatenating the output of the Transpose Convolution

with the output of the initial high resolution feature map (HiRes1). In the downsampling technique, we send high resolution (HiResi) feature maps to

Transpose Convolution to obtain low resolution (LowResi). These residual results are deconvolved to produce high resolution feature maps (HiResi).

The preliminary high resolution feature maps are fused with the residual output of the second Transpose Convolution, which is applied to the second

high resolution feature maps. Following concatenation, we use Transpose Convolution to create low resolution feature maps (LowResi).

information about the texture and characteristics contained in the

images.

These hand-crafted features include metrics derived from

various statistical approaches and texture analysis methods,

gradient-based features, and other characteristics. The Gray Level

Co-occurrence Matrix (GLCM), the Gray Level Run Length Matrix

(GLRLM), and the Gray Level Size Zone Matrix (GLSZM) are

three well-known matrices that we specifically add to our features.

With the aid of these matrices, we can record vital details on

the connections between pixel values and their spatial distribution

within the images.

5.1.3 Radiomics features
The qualities of radiomics features, such as histograms,

textures, shapes, transformations, and models, may be categorized

numerically (Benoit-Cattin, 2006). Radiomics features may be

retrieved from either 3-dimensional (3D) Volumes of Interest

(VOIs) or 2-dimensional (2D) Region of Interest (ROIs). We

used ROI as a catch-all word for both to make the text easier to

read. Additionally, gray-level brightness that has not been changed

or discretized can have numerical features estimated. Gray-level

discretization and feature importance aggregation are not covered

in this article since they fall outside of its purview. Gray-level

discretization limits the range of gray levels to a predetermined

number to improve reliability and manageability, whereas feature

significance aggregation obtains a single value when the same

feature is recognized in various forms and simplifies it using

average values. Gray-level variance, minimum, maximum, mean,

and percentiles are the most basic statistical variables that are

derived on the global gray-level histogram (Zwanenburg et al.,

2020). First-order features are those that are dependent on single-

voxel or single-pixel analysis. Skewness and kurtosis are more

complex characteristics as depicted in Equation (1) which describe

the brightness distribution of the data. Skewness must represent

the leftward or rightward asymmetry of the data distribution curve

(negative skew, below the mean) (positive skew, above the mean).

Kurtosis tends to reflect the tailedness of a distribution of the data

compared with a Gaussian distribution as a result of anomalies.

Other characteristics include energy also called homogeneity and

histogram entropy. These are distinct from their corresponding

co-occurrence matrix models of the same name.

By measuring the intensity variations in gray levels throughout

an image, studying the absolute gradient provides a straightforward

method for characterizing genuine radiomics textures. When two

adjacent pixels or voxels have the same color, the gradient stays

at zero, and it reaches its maximum when one is black and

the other is white or vice versa. Similar to histograms, gradients

are subjected to statistical features including variance, skewness,

kurtosis, and mean, regardless of the direction of the gray-level

transition (Benoit-Cattin, 2006; Zwanenburg et al., 2020). To

balance the ratio of the dataset, we apply preprocessing techniques

and data augmentation methodology before retrieving radiomics

features.

Sk =
n

(n− 1)(n− 2)

n
∑

i=1

(

xi − x̄

s

)3

K =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n
∑

i=1

(

xi − x̄

s

)4

−
3(n− 1)2

(n− 2)(n− 3)

(1)

In their research, Haralick et al. (1973) established the second-

order gray-level histogram feature known as the Gray Level Co-

occurrence Matrix (GLCM), as shown in Equation (2). The spatial

associations between pairs of pixels or voxels with defined distances

between them, predetermined gray-level intensities, and numerous

directions such as vertical, horizontal, or diagonal-for a 2D analysis

and 13 directions for a 3D analysis are captured by GLCM.

Entropy, which shows gray-level inhomogeneity or randomness,

angular second moment, uniformity or energy, and contrast, draws

attention to the gray-level differences between adjacent pixels or

voxels that are some of the qualities that make up GLCM.

GLCM(i, j, d, θ) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and I(x+ d, y+ θ) = j

0, otherwise

(2)

Galloway (1975) proposed the Gray Level Run Length Matrix

(GLRLM), as shown in Equation (3), which is intended to record

the spatial distribution of succeeding pixels in one or more
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directions, as well as in two or three dimensions. Many elements

of GLRLM are included, such as fraction which examines the

percentage of pixels in the Area of Interest. The availability of

short and long runs is shown, respectively, by the weighted

measurements known as short- and long-run emphasis inverse

moments. Measures that evaluate the dispersion of runs over

various gray levels and run lengths, respectively, are run-length

non-uniformity and gray-level non-uniformity.

GLRLM(i, j, d, θ) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and I(x+ d, y+ θ) = j

0, otherwise

(3)

An effective statistical method for characterizing textures is the

gray-level size zone matrix (SZM), as shown in Equation (4), which

was first presented by Thibault et al. (2013). The Gray Level Size

Zone Matrix (GLSZM) uses the infinity norm to quantify the gray-

level zones in an image. These are the areas where linked voxels

have the same gray-level intensity within a given distance, usually 1.

Texture homogeneity increases SZM’s size and smoothness. While

SZM does not require multidimensional calculations such as RLM

and COM do, its efficacy is dependent on gray-level compression,

therefore the best way to use it is to test out various compression

techniques on training datasets.

GLSZM(i, j) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and the size of the zone containing i is j

0, otherwise

(4)

Based on their importance in collecting various facets of

textural and structural information in medical tomography images,

we chose these characteristics. Our objective was to achieve a

balance between removing useful characteristics and avoiding too

much dimensionality, which might result in overfitting and more

complicated computations. The use of these elements enhances the

overall efficacy of our suggested approach for image classification

and enables us to provide a meaningful representation of the

textures contained in the images.

5.2 Dataset

For our study, we utilized the MRI dataset provided by the

Brain Tumor Segmentation (BraTS) Challenge in 2020 and 2021.

The BraTS 2020 Challenge dataset is used to produce a separation

model that could detect the malignancy region. The dataset

comprised 369 MRI images captured in four distinct modalities,

T2-weighted (T2w), T1-weighted (T1w), fluid-attenuated inversion

recovery (FLAIR), and T1-weighted contrast-enhanced (T1wCE).

These images and extraction patterns were provided in NIfTI

format with coronal orientation. The masks provided four

classifications, including non-tumor, non-enhancing tumor core,

peritumoral edema, and enhancing tumor. As we were only

interested in the broad tumor area, we combined the last three types

for our analysis.

The Radiological Society of North America (RSNA) and the

Medical Image Computing and Computer Assisted Intervention

(MICCAI). Society expanded the MGMT promoter methylation

detection component of BraTS challenge in 2021. A pre-selected

collection of 585 MRI images from 2020 in almost the same four

modalities was made available. To represent a broad spectrum

of healthcare practices used across the world, the images were

collected from several institutions utilizing a range of tools. For

the classification task, we used these datasets, which were in

DICOM format and annotated with their methylation status.

The methylation pattern of MGMT was confirmed by laboratory

analysis of surgical brain tumor tissues. The four modalities were

kept the same as in the earlier datasets, but the T1w scans were not

utilized since the diameters were continuously enormous, resulting

in much more chaos than information.

5.3 Experimental setup

The proposed feature fusion model uses the Keras, PyTorch

package with the TensorFlow backend and is entirely written in

Python. Experiments are carried out utilizing MRI slices with

a resolution of 256 × 256 to evaluate all of the suggested

feature instrument networks. The cost function’s relationship to

its parameters must be optimized using stochastic scaling for

the BraTS dataset of convolutional neural networks (CNNs). We

utilized the adaptive moment (Adam) estimator for parameter

estimation. Adam typically uses the first and second moments of

the gradients to update and fix the linear trend derived from the

real gradients. The settings for our Adam optimizer are as follows:

150 epochs is themaximum allowed, and the learning rate is 0.0001.

With all biases set to 0, all weights are normally distributed with a

mean of 0 and a variance of 0.01.

5.4 Dataset preprocessing

For each sample in the BraTS21 dataset, four NIfTI files

containing different MRI modalities are provided. During the

initial phase of data pre-processing, these modalities were stacked,

resulting in an input tensor of shape (4, 240, 240, 155) in the (C,

H, W, D) layout, where C represents the channels, H represents the

height, W represents the width, and D represents the depth. Next,

the redundant background voxels (with a voxel value of zero) at the

edges of each volume were removed, as they did not provide any

useful information and could be eliminated by the neural network.

The standard deviation for each channel was then calculated

independently within the non-zero zone for each image. To

normalize all volumes, the mean was first subtracted, and then,

the standard deviation was divided. The background voxels were

left unnormalized, and their measure remained at the cardinal. To

differentiate between normalized voxels, which had numbers close

to zero, and background voxels, an extra source channel was created

using one-hot encoding for foreground voxels and then combined

with the input data.

Image segmentation is frequently completed as part of the

image enhancement activity. The initial step in comprehending an

image is to improve it. We used three datasets in the empirical

results section: TCIA, FIGSHARE, and BraTS 2019. As a result, we
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FIGURE 4

For noise removal, we apply di�erent preprocessing techniques and acquire noise-free images of the BraTS dataset. (A) Input image. (B) SWMF Filter.

(C) Laplacian. (D) Sobel. (E) Gabor.

will go over the pretreatment steps for each dataset in this section.

We used initial image improvement approaches in the TCIA

dataset: noise reduction and contrast adjustment. The artifacts

caused by the imaging approach are attempted to be reduced using

preliminary processing procedures. Additionally, noise reduction

is a competent way to enhance outcomes before analysis (e.g., edge

detection on image). It should be noted that the images used are

gray-scale. We utilized two filters to remove noise: a median filter

and a soft filter. After that, we will show you how to use the two

filters. The median filter is a type of non-linear digital filter. It

is a technique for removing unwanted signals or noise from an

image. The Soft Weighted Median Filter (SWMF) is a novel image-

processing approach for removing noise. Two noisy images are

processed using this filter. The first is constant value noise, which

is similar to salt and pepper noise in that its value does not vary.

The second type is Random Value Noise (RVN), which is a sort of

arbitrary value noise that has a variable value, similar to Gaussian

and Speckle noise. The outcomes of the preprocessing steps are

shown in Figure 4. The preprocessing techniques were only applied

to the BraTS dataset.

The batch normalization approach is used on the FIGSHARE

and BraTS datasets. Convolutional neural network (CNN) training

is a complex task with several issues. Batch normalization is

one of the most used methods for dealing with this problem.

It is a widely used strategy in the field of deep learning. Batch

normalization accelerates neural network learning. Moreover,

batch normalization provides regularization, preventing over-

fitting.

Data augmentation is a technique for avoiding over-fitting by

artificially growing datasets during the learning stage. The essential

data augmentations were used throughout the learning phase to

strengthen our method:

1. Flips: the volume of each axis was reversed with a probability of

0.5 for the x, y, and z axes individually.

2. Gaussian Blur: The deviation of the Gaussian Kernel is obtained

periodically from (0.5, 1.5) with a probability of 0.15, subjecting

the reference volume to Gaussian fading.

3. Brightness: at a frequency of 0.15, a random number is regularly

selected at random from the range (0.7, 1.3), after which source

volume voxels are increased by it.

4. Zoom: the image size is increased to its initial dimensions twice

the chosen value using cubic interpolation, and the source data

are scaled using nearest neighbors interpolation. An arbitrary

value is regularly gathered from (1.0, 1.4) with a frequency of

0.15.

5. Gaussian noise: every voxel is captured, and the source volume

is then filled with randomized Gaussian noise with an average of

zero and variance regularly selected from the range of (0, 0.33)

with a probability of 0.15.

6. Contrast: at a frequency of 0.15, an arbitrary value is uniformly

obtained from (0.65, 1.5). It is then enhanced, and the source

volume voxels are trimmed to the value of the original range.

7. Biased crop: From the source volume, a piece with the

dimensions (5, 128, 128, 128) was arbitrarily selected. Moreover,

a probability of 0.4 ensures that some prominent voxels (with

true positives in the underpinning data) will be retained in the

trimmed area of the patch chosen using arbitrary-biased crop.

5.5 Multiple kernel for classification

For classification techniques, monitored learners such as the

Support Vector Machine (SVM) method are utilized. We used

an expanded form of SVM that includes various kernel training.

The fundamental SVM operates as such. The content is first

divided into binary categories. Next, a hyper-plane is located which

distinguishes between both categories. Support vectors seem to be

the parameters that seem to be close to the hyper-plane and are

scientifically described in Equations (5–7):

(m, n), ...(mi, ni), ...(mj, nj);mi ∈ RN , nj ∈ {−1, 1} (5)

The below expression can be used to represent the hyper-plane

that categorizes a particular set of information as being linearly

distinguishable. The Maximum Dividing hyper-plane is the name

of this hyper-plane.

f (x) =

j
∑

i=1

(αinj(X
T
i X)+ b) (6)

Provided below is a depiction of the ideal hyperplane

accompanied by the support vectors m1, m2, and m3 which are

located on its edge.

g(X̄) = W̄T X̄ + b (7)

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2024.1423051
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Iqbal et al. 10.3389/fncom.2024.1423051

A variety of techniques for traditional machine learning are

used by numerous kernel systems. A predetermined collection of

kernels is included in each approach. The kernel function allows

the SVM to transform the data into a higher-dimensional space,

facilitating the separation of data points through both linear and

nonlinear decision boundaries. This strategy lessens the influence

of bias throughout the training experience.

For the overall classification of BraTS, the precision and

accuracy statistics of the best kernel operations are accumulated

for all characteristics. Whereas the polynomial kernel is reliable

for classifying radiomics-selected features, three different feature

configurations (GLCM, GLRLM, and GLSZM) are better identified

using the linear kernel function in SVM. Table 1 shows the top-

chosen kernel technique for the BraTS sample together with

assessment precision of the kernel function.

By using the SVM classifier on the BraTS, TCIA, and

FIGSHARE datasets, we subsequently trained and validated UNet,

VNet, and UNet++ on a classification task that incorporated.

In five-fold cross-validation, the classification algorithm we

created using a Support Vector Machine with different Kernels

yielded an estimated ROC AUC of 96.4 ± 0.43%. On a fusion

features classification assignment, we trained different pre-trained

CNN models such as AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, andUNet++, as well as a workflow using the

categorization predictions of these models against a professional

investigator. The pipeline increased recall (93.4 ± 0.5% vs. 95.4 ±

0.7%) without noticeably reducing accuracy (81.5± 0.4% to 95.7±

0.5%).

Our findings show that UNet and other similar networks such

as VNet and UNet++ continue to have large false positive rates,

which may preclude their application in healthcare situations. We

showed that adding a different classifier significantly increases

accuracy. We are aware that this is simply one of many

viable options; future advancements to UNet could eliminate the

requirement for a different classifier.

6 Result and discussion

This is the first study that, as far as we know, combines

radiomic analysis for medical imaging with deep neural network

installation. Our findings show that utilizing transpose convolution

for both up and downsampling, the integration of Seq-ResNet

architecture greatly enhances the ability to identify cancerous

slices in brain MRI images. This new mix of customized imaging

biomarkers and powerful deep learning approaches boosts model

performance on the BraTS dataset, even with a smaller patient

cohort compared with earlier research. We carried out effective

image preprocessing to guarantee reliable and repeatable deep

learning execution. To be more precise, we scaled each image

to a 256 × 256 grid and normalized it to 256 gray levels. The

repeatability of our findings is aided by these common digital image

processing procedures. Furthermore, we carried out a thorough

assessment of the pre-trained CNN models’ dependability. The

promise for enhanced medical image analysis is highlighted by

this fusion of complex neural network topologies with exact image

preprocessing techniques, opening the door to more accurate brain

tumor diagnosis.

Average Precision (AP), mean Average Precision (mAP), and

F1 are utilized in the trials to assess the effectiveness of the suggested

framework. Finding objects and classifying them into multiple

classes is the basic goal of image analysis. The assessment metrics

for these two tasks are recall (abbreviated as R) which may be

stated as “the percentage of the appropriate tumors identified to

all tumors" and precision, “the accurate rate of the categorization of

identified tumors" (abbreviated as P). The terms False Positive (FP),

False Negative (FN), True Positive (TP), and True Negative (TN)

are used to characterize these metrics. The calculation for Precision

(P) and Recall (R) is shown in Equation (8):

R =
TP

TP + FN

P =
TP

TP + FP

(8)

The accuracy and recall metrics might tend to be in conflict

when measuring the results of several architectures. Additionally,

a single index must be used to determine accuracy of a classifier.

Precision and Recall create a rectangle-coordinated graph using

Precision and Recall as the coordinates after being ordered

by grading value. Precision-Recall curve is the name of this

rectangle-shaped graph. The area underneath the Precision-Recall

curve or AP is the average of APs across many classes or

mean Average Precision (mAP). The Equation (9) mAP evaluates

the classifier’s performance across all classes, AP evaluates the

classifier’s performance across each category. As a result, in this

study, AP is employed when goals come from a single class, whereas

mAP is utilized when criteria come from a variety of categories.

Another often-used indication for object detectors is F1-Measure

(sometimes called F1-Score). Recall (R) and Precision (P) are

weighted averaged to get the F1-Measure. F1-Measure is referred

to as F1 when it is equal to 1:

F1 =
(α2 + 1)× (P × R)

α2(P + R)

F1 =
2× (P × R)

P + R

mAP =
1

N

N
∑

i=1

APi

(9)

A higher F1 score denotes greater classifier efficiency. The F1

score is calculated by combining the Precision and Recall values.

We also offer the Recall and Precision values of the suggested

approach on several datasets to give a thorough evaluation. Within

a transfer learning framework, this study uses eight popular

Convolutional Neural Network (CNN) pre-trained models. Since

VGG16 has a relatively modest number of learnable parameters

under the transfer learning framework and is widely used in

medical image evaluation tasks, it was first selected because it

required less computing power for network training than other

well-known models.

For the proposed radiomic-based FusionNet architecture,

we also looked at AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, and UNet++. In contrast, the efficiency

after the feature fusion architecture was greater in the UNet pre-

trained model than in the VNet model. This difference can be
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TABLE 1 We report the results of employing a Support Vector Machine (SVM) on the BraTS, TCIA, and FIGSHARE datasets to classify particular radiomics

characteristics (GLCM, GLRLM, and GLSZM) in terms of sensitivity, specificity, precision, accuracy, and F1-score.

Dataset Feature set Sensitivity Specificity Precision Accuracy F1-Score

BraTS

GLCM 73.16 74.31 75.91 75.14 74.93

GLRLM 71.36 71.85 72.34 72.76 73.44

GLSZM 73.69 71.94 73.49 72.35 73.11

Average 72.74 72.7 73.91 73.43 73.83

TCIA

GLCM 75.20 73.80 74.50 74.75 74.25

GLRLM 74.40 72.90 73.80 73.15 73.60

GLSZM 73.60 75.10 74.90 74.35 74.75

Average 74.40 73.60 74.07 74.08 74.20

FIGSHARE

GLCM 74.71 76.05 77.13 76.58 76.81

GLRLM 72.85 73.42 74.12 73.64 73.98

GLSZM 76.07 74.91 75.94 75.49 75.72

Average 74.04 74.46 75.06 75.24 75.50

Included are the average performance metrics for every dataset.

TABLE 2 Training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS, TCIA, and FIGSHARE datasets of the proposed model (FusionNet

with ResNet, FusionNet with Seq-ResNet, and FusionNet with Seq-ResNet and radiomics features) and other pre-trained CNNmodels such as AlexNet,

SqueezeNet, VGG16, InceptionV3, Xception, UNet, VNet, and UNet++.

Dataset Model Sensitivity Specificity Precision Accuracy F1-Score

BraTS

AlexNet 81.39 81.43 82.04 81.93 81.73

SqueezNet 82.19 83.29 82.95 83.07 82.78

VGG16 82.63 82.14 83.09 82.79 82.54

InceptionV3 84.95 85.23 85.31 85.49 85.19

Xception 85.36 85.94 85.97 85.43 85.27

UNet 86.49 87.09 87.12 86.71 86.34

VNet 86.91 86.97 87.04 87.12 87.01

UNet++ 88.13 88.27 87.38 87.51 87.21

FusionNet 90.19 89.77 89.84 90.07 89.92

FusionNet-Seq-ResNet 93.06 93.34 93.41 93.79 93.81

FusionNet-Seq-ResNet+Radiomics 95.19 95.37 95.46 95.83 95.79

TCIA

UNet 82.34 82.78 83.02 82.69 82.88

VNet 83.12 83.45 83.21 83.34 83.17

UNet++ 81.87 81.98 82.45 82.13 82.28

FusionNet 91.56 91.23 91.92 91.64 91.74

FusionNet-Seq-ResNet 93.02 93.71 93.19 93.93 94.09

FusionNet-Seq-ResNet + Radiomics 95.07 95.84 94.98 94.93 95.16

FIGSHARE

UNet 86.21 86.45 86.32 86.39 86.28

VNet 87.03 86.89 87.12 87.08 87.17

UNet++ 87.45 87.51 87.38 87.62 87.49

FusionNet 91.67 92.78 92.45 91.72 92.59

FusionNet-Seq-ResNet 94.21 94.34 94.47 93.15 93.28

FusionNet-Seq-ResNet+Radiomics 95.17 95.81 95.67 95.72 95.86
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attributed to the superior classification results of UNet utilizing

solely MRI slices compared with VNet. The empirical analyses

(precision, specificity, recall, sensitivity, F1, and accuracy) of

experimental pre-trained CNN models with radiomics features

are shown in Table 2. The radiomics feature fusion with deep

learning model produced substantial gains in all parameters with

p ≤ 0.05 for the pre-trained CNN architecture and proposed

FusionNet model. Furthermore, the data with lower standard

deviations demonstrated the radiomics feature fusion with deep

learning architecture’s improved resilience. These quantifiable

findings demonstrate the efficiency of the proposed feature fusion

with the deep learning model.

A significant degree of resilience is shown by the variance,

which is <3% after 50 epochs. When comparing the pre-

trained CNN models with the pilot model, the average values

of all parameters for the suggested FusionNet architecture are

superior. Only a few statistically significant improvements are

observed in the MRI tumor and healthy class data, and the

reported mathematical benefits are minor. Further evidence of

enhanced resilience is provided by the FusionNetmodel’s decreased

variances.

On the BraTS dataset, the performance and efficacy of the

novel suggested framework have been tested and verified. Table 2

displays the Average Precision of the proposed Fusion CNN

model framework together with other cutting-edge and pre-trained

CNN models. The novel and proposed framework, as shown in

Figure 2, obtains an AP of 97.53%, which is ∼3.7% higher than

the APs attained by other pretraind CNN models such as AlexNet,

SqueezeNet, VGG16, InceptionV3, Xception, UNet, VNet, and

UNet++. The proposed FusionNet classifier’s Recall and Precision

curve and specific performance are shown in Table 2 and Figure 5.

To exhibit the performance and efficacy of the novel proposed

Seq-ResNet with FusionNet, upsampling and downsampling have

been evaluated and the results are shown in Figure 5 and

Tables 2, 3.

FusionNet with radiomics features uses Sequential Residual

Network layers to create its backbone in contrast to the planned

FusionNet (which uses conventional ResNet layers), although other

components are the same. In other respects, the Seq-ResNet

employed in their backbones is the only distinction between

simple FusionNet and FusionNet with Seq-ResNet. By contrasting

the assessment outcomes of FusionNet and FusionNet with Seq-

ResNet, it is possible to show the usefulness of the suggested

novel Seq-ResNet layers. FusionNet without Seq-ResNet obtains

an AP of 94.73%, which is 3.31% lower than the AP achieved by

FusionNet with Seq-ResNet, according to the assessment findings

shown in Tables 2, 3. To put it another way, Sequential Residual

Network (Seq-ResNet) layers outperform simple ResNet in the

evaluation by 3.31% AP.

Another major difference between simple FusionNet

and FusionNet with Seq-ResNet is using upsampling and

downsampling modules. By contrasting the assessment outcomes

of the proposed simple FusionNet and FusionNet with Seq-

ResNet, it is possible to show the usefulness of the proposed

FusionNet with Seq-ResNet. Table 2 shows that the feature fusion

with upsampling and downsampling modules delivers a strong

performance advantage of 3.18% AP when compared with normal

simple FusionNet. To have a thorough grasp of the proposed

novel FusionNet with Seq-ResNet performance, the classification

results are carefully examined. The majority of tumors may be

appropriately located in the classification outcomes irrespective

of their orientations, colors, and scales, proving the usefulness

of the suggested framework. However, the suggested technique

occasionally fails when portions of the tumors make up more than

half of the original kernel values.

The BraTS dataset has also assessed the proposed framework.

Table 2 displays the assessment outcomes of the proposed

FusionNet with Seq-RestNet and other pre-trained CNN models

such as AlexNet, SqueezeNet, VGG16, InceptionV3, Xception,

UNet, VNet, and UNet++. Generally speaking, the suggested

novel framework outperforms existing state-of-the-art algorithms,

achieving an F1 Score of 96.72%.

Figure 5 shows the Precision and Recall curves for the proposed

FusionNet with Seq-ResNet framework based on the BraTS dataset.

The comprehensive assessment findings for the suggested novel

framework are shown in Table 2. Table 4 shows that the proposed

FusionNet with Seq-ResNet performs well for identifying tumors

in MRI and achieves plausible results when detecting tumors in

MRI images with F1 Score of 95.88 and 96.72%, respectively. As

compared with other algorithms, the performance of FusionNet

with Seq-ResNet can be steady even as the tumor’s scales change

quickly.

The accuracy, precision-recall, and F1-measure calculations

are used to examine the quantifiable efficiency. The performance

and efficiency measures for tumor detection (Accuracy, Sensitivity,

Specificity, Precision, and F1 measure) for the dataset BraTS are

shown in Table 2. The table shows that the suggested technique

performs better than previous methods in terms of Precision-

Recall and F1 measure. The suggested technique combines many

aspects that are better able to depict image changes and hence

execute both statistically and aesthetically better. It is frequently

used as a plot indicative of the effectiveness of the classifier. A

ROC curve is a useful tool for visualizing, organizing, and choosing

learners based on their efficiency. A classifier’s ability to determine

outcomes is measured by the Receiver Operating Characteristic

(ROC), which contrasts and illustrates the trade-off between the

model’s specificity and sensitivity. The result for the ROC plot is

the region beneath the ROC curve, and a large value denotes a

successful algorithm. An excellent predictor produces a value in the

top left corner of the ROC space, or coordinate (0,1), signifying

100% specificity (zero false positives) and 100% sensitivity (zero

false negatives). The ROC plot for the BraTS dataset for the various

change detection methods is shown in Figure 7. It is evident from

the chart that for the dataset, the suggested strategy outperforms

conventional approaches. The area under the ROC curve or AUC

is used to calculate the ROC plot’s mathematical value. A high

AUC value means the applied tumor detection framework is good

and can successfully differentiate between benign and malignant

patches. By examining the proximity of the curve to the top left

corner of the image in Figure 7, it is evident that the suggested

strategy works better than the established tumor detection methods

for the BraTS dataset.

In Figure 5, the novel proposed method’s precision-recall

outcomes are shown. For MRI images, the first fusion experiment
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FIGURE 5

Precision-Recall Curve on BraTS dataset: Precision-Recall curve of the proposed model (FusionNet with ResNet, FusionNet with Seq-ResNet, and

FusionNet with Seq-ResNet and Radiomics features) and other pre-trained CNN models such as AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, and UNet++.

TABLE 3 Training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS dataset of the proposed model (FusionNet with ResNet,

FusionNet with Seq-ResNet, and FusionNet with Seq-ResNet and radiomics features) and other state-of-the-arts methodologies.

Model Sensitivity Specificity Precision Accuracy F1-Score

Zare et al. (2018) 81.39± – – 82.11± –

Zhu et al. (2023) 92.00± 93.11± 92.01± 92.03± –

Jie et al. (2023) 91.17± – – 92.04± –

Wen et al. (2023) 86.15± – – 87.12± 86.77±

Singh and Anand (2019) – 87.15 – 87.11 88.15

Qin et al. (2018) – – – 77.80 –

Dogra and Kumar (2022) 87.16 – – 87.08 88.15

Wang et al. (2021) 89.13 88.71 87.19 87.11 88.15

FusionNet 90.19 89.77 89.84 90.07 89.92

FusionNet-Seq-ResNet 93.06 93.34 93.41 93.79 93.81

FusionNet-Seq-ResNet+Radiomics 95.19 95.37 95.46 95.83 95.79

TABLE 4 FusionNet training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS dataset.

Fold Sensitivity Specificity Precision Accuracy F1-Score

Fold-1 93.29 94.71 95.81 95.57 94.38

Fold-2 94.37 95.13 95.77 96.51 95.04

Fold-3 95.91 95.31 96.85 96.17 95.64

Fold-4 94.88 95.57 96.15 97.13 95.89

Fold-5 95.89 95.21 97.77 97.53 96.12

Average 94.88 95.18 96.47 96.58 95.41
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FIGURE 6

Precision (P) vs. Recall (R) curves of di�erent folds using proposed model (FusionNet) on the BraTS dataset.

FIGURE 7

Receiver Operating Characteristic (ROC) curves of di�erent folds using proposed model (FusionNet) on the BraTS dataset.

was conducted. The radiomics feature fusion with deep learning

features approach offers more accurate anatomical details in MRI

images separately. Figure 5 shows how the suggested strategy

maintains the measurement elements of MRI images in the fused

images. The study that performed on the proposed FusionNet

model in consideration of various metrics under various numbers

of folds is shown in Table 4 and Figure 6. The proposed FusionNet

model’s specificity and sensitivity assessments for various fold

numbers are shown in Figure 6. The greatest specificity and

sensitivity outcomes for the novel proposed FusionNet model
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under fold-1 is 94.71 and 93.29%, respectively. The presented

feature fusion model also produced higher specificity and

sensitivity results under fold-2, with corresponding outcomes

of 95.13 and 94.37%, respectively. The presented feature fusion

model approach also produced the highest specificity and

sensitivity outcomes under fold-3, which were 95.31 and 95.91%,

respectively. Additionally, the reported FusionNet model strategy

had higher specificity and sensitivity under fold-4 95.57 and

94.88%, respectively. The suggested feature fusion approach also

showed ideal specificity and sensitivity results of 95.89 and 95.21%,

respectively, under fold-5.

The ROC curves of the proposed FusionNet model are shown

in Figure 7, demonstrating its accuracy and precision at different

fold counts during cross-validation. The model performs better

than expected, with fold-1 obtaining 95.57% accuracy and 95.81%

precision by combining feature fusion with up and downsampling

methods. The feature fusion method yields the best accuracy and

precision in fold-2, with 96.51 and 95.77%, respectively. Transpose

Convolution, when used for up and downsampling in fold-3,

produces even better results, with accuracy and precision reaching

96.17 and 96.85%, respectively. The model achieves significantly

greater accuracy and precision under fold-4, 97.13 and 96.15%,

respectively. The feature fusion model under fold-5 performs best

overall, with a precision of 97.77% and an accuracy of 97.53%. This

shows how well the suggested FusionNet integrates deep learning

methods for improved medical image interpretation.

A novel framework for the CAD solution may be established

by the proposed architecture FusionNet comprises Seq-ResNet

and up-down sampling with Transpose Convolution, which

combines radiomics analysis with Convolutional Neural Network

implementation. The established Seq-ResNet calculation method

may potentially improve the efficiency of neural networks in

other applications, especially those requiring the intake of multi-

channel imaging images. The suggested technique also offers a

radiomics viewpoint on the interpretability of deep learning. Since

the neural network’s hyperparameters were developed without

explicit personal expertise interaction, actual interpretation of

them is challenging. The black box world of deep learning-based

CAD systems hindered their medical and clinical implementations

without the support of medical practitioners and radiologists.

We explored neural network information using a radiomics-

based approach as a first milestone toward deep learning

interpretability. It has been shown that radiomic feature regions

may be computationally fragmented to produce interpretation.

Radiomics have been extensively researched as computational

imaging biomarkers for illness identification and performance

assessment. Complicating factors, such as anatomical outlines from

radiation therapy and histopathology samples from biopsy, can

be employed to improve deep learning interpretability after the

saliency analytical method in this study. Future research will

examine these topics once suitable datasets are obtained.

7 Ablation studies and future works

We performed several sets of ablation experiments to

demonstrate the effectiveness of the suggested vascular

segmentation method. The purpose of these tests was to investigate

the effects of different loss parameter settings and the efficacy

of different techniques. We create a baseline using an X-shaped

network that contains an encoder with modified sequential

residual blocks and a feature decoder (influenced by Szegedy et al.,

2017), to validate the efficiency of the proposed methodologies.

We develop our network based on this foundation. Tables 2,

3 and Figure 5 show the results, from which we derive several

inferences.

Table 2 shows the quantitative experiment data for the baseline

and the three proposed models. When compared with the baseline,

Model 1 (FusionNet) improves Accuracy, F1-Score, Sensitivity,

Specificity, and Precision by 2.15%, 1.89%, 1.96%, 1.73%, and

2.11% percent, demonstrating the benefits of using both up

and downsampling strategies. Furthermore, when compared with

FusionNet, FusionNet-Seq-ResNet achieves a 2.94% improvement

in Accuracy, while FusionNet-Seq-ResNet + Radiomics achieves a

4.81% improvement, demonstrating the efficacy of the Sequential

Residual Network and radiomics features. FusionNet exceeds UNet

by 2.79% in F1-Score, demonstrating that combining up and

downsampling approaches improves the model’s performance even

further. Similarly, when compared with UNet++, FusionNet-

Seq-ResNet shows a 2.98% gain in F1-Score, highlighting the

importance of Transpose Convolution and deconvolution in

improving brain MRI classification. Finally, when compared with

VNet, FusionNet-Seq-ResNet + Radiomics improves accuracy by

3.97%, highlighting the effectiveness of radiomics features and

the impact of Transpose Convolution and deConvolution in up

and downsampling. The proposed approaches exhibit significant

improvements over the baseline, with increments of 3.98% in

accuracy, 4.15% in F1-score, 3.89% in Sensitivity, 3.91% in

Specificity, and 3.79% in Precision, demonstrating the proposed

network’s superior segmentation performance.

Our new local convolution-based network, FusionNet,

performs well on publicly accessible BraTS datasets. We do,

however, find a constraint on its ability to generalize to other

data distributions. This restriction results from the fundamental

characteristics of local convolution, which prioritize local

data above important global data. Consequently, long-term

dependencies are difficult for CNNs to capture and are crucial

for improving the model’s summarization ability. We investigate

the possibility of using the Transformer design, which has

demonstrated efficacy in creating global dependencies via a

self-attention mechanism, to tackle this problem. Transformers

have several drawbacks, including a high parameter count and a

heavy dependency on large amounts of training data, even if they

provide dynamic attention and global context fusion.

We track the variations in accuracy as the epochs proceed

during the training process of various networks. The results are

shown in Figures 6, 7. When comparing FusionNet with standard

pre-trained CNN networks and a network created specifically

for BraTS classification, it is clear that FusionNet has easier

convergence and training. This gain can be ascribed to FusionNet’s

Seq-ResNet module, which improves learning ability while utilizing

much fewer parameters than typical convolutional layers. When

trained on 1,315 samples, the ROC of FusionNet reaches 0.79 at the

13th epoch, 0.86 at the 27th epoch, and 0.885 at the 35th epoch,
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as shown in Figure 7. On an NVIDIA 1050TI, training for one

epoch takes 297 s. This suggests that by applying FusionNet, a high-

performing BraTS MRI classification model may be produced in

137 min (80 epochs). These findings confirm that the proposed

FusionNet is simple to train and capable of giving satisfactory

outcomes.

Table 2 shows how incorporating the up and downsampling

module into FusionNet improves performance. FusionNet beats

pre-trained CNN models, improving accuracy from 87.11 to

90.07%, precision from 88.15 to 89.92%, and F1-Score from 87.38 to

89.84%. These improvements are ascribed to the proposed up and

downsampling module’s dynamic merging of multi-scale context

information. Two experiments were carried out to further validate

this. First, we introduced a Seq-ResNet module, FusionNet-

Seq-ResNet, into the baseline with no point-wise convolution

rate. It improved accuracy by 4.21% over the baseline but

decreased by 2.18% when compared with FusionNet-Seq-ResNet

+ Radiomics. This result emphasizes the need to obtain multi-

scale contextual information. Second, we incorporated radiomics

features with various Transposed convolution and deconvolution

settings into FusionNet’s parallel branches. While these two

models outperformed the baseline and FusionNet-Seq-ResNet,

they fell just short of FusionNet. This finding demonstrates that

the FusionNet-Seq-ResNet + Radiomics transposed convolution

and deConvolution configuration is best, and the addition of

multi-scale context information is especially useful for up and

downsampling. As shown in Figure 6, FusionNet-Seq-ResNet

+radiomics outperforms FusionNet in the analysis of under-

segmented patches, particularly those with relatively small scales.

This finding adds to the evidence that dynamic selection of

multi-scale contextual information promotes more successful MRI

analysis.

In the future, we suggest a hybrid network design that

combines the best features of Transformers and CNNs. This

method entails sandwiching a thin transformer module between

the encoder and decoder of the CNN. By combining multi-

scale information, the lightweight transformer will facilitate

the effective integration of multi-scale information and global

channel attention, spatial attention, and scale attention. The

objective is to create a network that combines the benefits of

Transformers (dynamic attention and improved generalization)

with CNNs (local receptive fields, shared weights, shift, and

scale invariance). By combining these elements, we hope to

create a segmentation technique that preserves the advantages

of both designs, enhancing FusionNet’s overall robustness and

speed.

8 Conclusion

According to the results of this comprehensive research,

radiomics feature fusion with deep learning features in medical

image analysis is a nascent but promising topic that supports

medical practice in medical imaging interpretation across all

disciplines. We have honed in on important insights, described

unanswered problems and summarized essential terminology,

approaches, and appraised the state of the art for radiomics

feature fusion with deep learning features in medical imaging.

Different preprocessing methodologies are carried out initially

to continue improving the accuracy of the diseased patch in

the proposed fusion framework (FusionNet), and the training

dataset is subsequently employed to expand the training dataset.

Various pre-trained learning models are used to design and train

on the BraTS dataset. Additionally, a FusioneNet deep model

is improved with radiomic features, and this manual feature

is carried out with other models. Subsequently, the proposed

fusion technique (FusionNet) is employed to better integrate the

information rather than the initial serial-based methodology. A

novel feature simplification approach is presented as a result of

the examination of the fused feature space, which shows several

duplicate characteristics. The proposed FusionNet model captures

the structural, textural, and statistical aspects of brain tumors with

an F1 score of 96.72, sensitivity and specificity of 96.31, and AUC

of 96.93.

The topic of feature fusion for deep learning in medical

imaging is growing, and it is anticipated that new fusion

techniques will be created. The upcoming study should

concentrate on common nomenclature and measurements

for particular and appropriate direct evaluation of various

radiomics fusion models. We discovered that radiomics feature

fusion with deep learning features for automated medical

imaging tasks significantly outperforms in single modality

models, and further research may provide insights to guide

the most effective methods. We will monitor the effectiveness

of the presented methodology based on distinct handcrafted

feature fusion by including spatial information and other

medical datasets using deep learning and Seq-ResNet in the

future.
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