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Sequential working memory (SWM), referring to the temporary storage and

manipulation of information in order, plays a fundamental role in brain cognitive

functions. The serial position e�ect refers to the phenomena that recall accuracy

of an item is associated to the order of the item being presented. The neural

mechanism underpinning the serial position e�ect remains unclear. The synaptic

mechanism of working memory proposes that information is stored as hidden

states in the form of facilitated neuronal synapse connections. Here, we build a

continuous attractor neural network with synaptic short-term plasticity (STP) to

explore the neural mechanism of the serial position e�ect. Using a delay recall

task, ourmodel reproduces the the experimental finding that as themaintenance

period extends, the serial position e�ect transitions from the primacy to the

recency e�ect. Using both numerical simulation and theoretical analysis, we

show that the transition moment is determined by the parameters of STP and

the interval between presented stimulus items. Our results highlight the pivotal

role of STP in processing the order information in SWM.

KEYWORDS

sequential working memory, serial position e�ect, short-term plasticity e�ect,

continuous attractor neural networks, the primacy and recency e�ect

1 Introduction

Sequential working memory (SWM), a function responsible for temporarily storing

and manipulating information in a specific order (Stephan and MJB, 1989; Jensen and

Lisman, 2005; Logan, 2021), plays a fundamental role in brain cognitive functions,

such as reasoning, comprehension and learning (Alan, 2003; Curtis and Lee, 2010;

Potagas et al., 2011; Calmels et al., 2012; Ru et al., 2022). SWM supports human

mental processes by providing an interface between perception, long-term memory

and actions (Tsetsos et al., 2012). The memory recall paradigm is widely utilized

to investigate the storage of multiple items in SWM (Endel and CFI, 2000; Pantelis

et al., 2008; Henson, 2013), where subjects are required to retrieve previously presented

information. A large volume of psychological experiments has demonstrated that the

retrieval performances of human subjects are associated with the order of presented

items, displaying a serial position effect, namely, subjects exhibit better performances for

memory items appearing at the beginning or at end of a sequence, called the primacy
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or recency effect, respectively (Simon, 1962; Postman and Phillips,

1965; Glanzer and Cunitz, 1966). This serial position effect is

observed in various types of working memory systems, including

visual (Kiani et al., 2008), auditory (Hurlstone et al., 2014; Borderie

et al., 2024), and spatial working memories (Groeger et al.,

2008). The serial position effect is a well-established phenomenon

in memory research, yet its underlying neural mechanism,

contextual variation, and functional implication remain

largely unresolved.

A number of psychophysical experiments have indicated that

the serial position effect of SWM is affected by factors related to

attention, context and interference. For instance, the attentional

gradient, i.e., a gradual decrease in attention level as different

items are presented during the encoding period, affects the primacy

effect. Contents can also affect participants’ retrieval performances,

with the recency effect observed when the recall cue is the item

order, while the primacy effect observed when the recall cue

is the relative size of a specific feature of the item (Cowan

et al., 2002; Li et al., 2021). Interference between items affects

the recency effect (Gorgoraptis et al., 2011). Additionally, some

variations in the experimental paradigm can affect the serial

position effect, such as, increasing the inter-stimulus interval

during the encoding can weaken the primacy effect but not

the recency effect (Glanzer and Cunitz, 1966); prolonging the

maintenance period in a visual sequence working memory task can

shift participants’ performances from the recency to the primacy

effect (Knoedler et al., 1999), and this recency-primacy shift

were observed in experiments including auditory, verbal, and text

materials (Knoedler et al., 1999; Storm and Bjork, 2016). Finally,

distractions at different time points during the maintenance period

can lead to fluctuations in participants’ retrieval accuracy (Lui et al.,

2023).

Up to now, the neural mechanism underlying the serial

position effect in SWM remains largely unclear. The perspective

of “limited resource” proposed that the differential allocation of

memory resources across multiple items governs their relative

recall precision, thereby leading to the primacy and recency effects

as observed in SWM tasks (Gorgoraptis et al., 2011; Ma et al.,

2014; Lee et al., 2020; Wang et al., 2021). Another study proposed

an attractor network model with firing rate adaptation, which

explains the power law of recall capacity (Naim et al., 2020),

as well as the primacy and recency effects in human free recall

(Boboeva et al., 2021). Nevertheless, these studies did not explain

how the detailed dynamics of a neural circuit account for the serial

position effect. Recent studies have suggested that workingmemory

is mediated by rapid transitions in “activity-silent” neural states

(Wolff et al., 2017; Barbosa et al., 2020), and the strength of hidden-

state representation predicts the accuracy of working memory-

guided behavior, including recall precision, i.e., the primacy and

recency effects (Stokes, 2015; Wolff et al., 2015, 2017; Katkov et

al., 2017; Naim et al., 2020). The synaptic mechanism of working

memory posits that information is encoded in the facilitated

synaptic connections between neurons, rather than in the persistent

responses of neurons (Mongillo et al., 2008; Mi et al., 2017).

These works mainly studied the neural mechanism for storing and

manipulating a single memory item. However, the neural circuit

dynamics underlying the serial position effect during the storage

of multiple (>2) memory items has not been investigated, which is

the focus of the present study.

In this work, we adopt the view that information resides

in hidden states of a neural circuit (Stokes, 2015) and is

expressed by facilitated synapses between neurons (Mongillo et al.,

2008). Specifically, we develop a model of continuous attractor

neural network (CANN) with short-term synaptic plasticity (STP).

Utilizing a delay task paradigm, we investigate the serial position

effect in SWM. In the delay task, the whole period is divided into

stimulus encoding, maintenance, and retrieval/response phases.

During the encoding phase, participants sequentially receive

and encode multiple items into their working memory. After

a maintenance period, they are prompted to recall the items,

with each item’s recall performance indicating the precision of

the corresponding memory representation. Typically, participants

are required to retain a specific attribute of each item in

the sequence, such as visual orientation, direction, or spatial

location. Our model shows that with the prolongation of the

maintenance period, the serial position effect gradually shifts

from a significant primacy effect to a significant recency effect,

with the recency effect diminishing in significance over time.

This agrees well with the experimental finding. We further

analyze that the transition moment of the serial position effect is

predominantly determined by the STP dynamics and the inter-

item interval of presenting stimuli. Our study highlights the

important role of STP plays in processing the order information

in SWM.

2 The model

To elucidate the neural mechanism underlying the temporal

dynamics of the serial position effect in SWM, we adopted a

continuous attractor neural network (CANN) with short-term

synaptic plasticity effect (STP). CANNs are a canonical model

for neural information storage and representation (Wu et al.,

2013, 2016) (Figure 1A), which has been successfully applied to

describe the encoding of continuous features in neural systems,

such as orientation (Ben-Yishai et al., 1995), moving direction

(Georgopoulos et al., 1986), head direction (Taube et al., 1990), and

spatial location of objects (Bottomley, 1987). Additionally, CANNs

has been extensively used to model the neural mechanism of

workingmemory (Mi et al., 2017; Li et al., 2021). STP is a ubiquitous

phenomenon in neural systems, referring to the property that

synaptic efficacy between neurons dynamically changes over time

in a way that reflects the firing history of the pre-synaptic

neuron (Figure 1B). Based on the property of STP, Mongillo et

al. proposed a synaptic mechanism of working memory, stating

that a neural circuit need not to maintain energy-intensive firings

during the entire period of the task for memorizing stimuli,

rather the neural circuit can utilize facilitated synaptic connections

to retain information (Mongillo et al., 2008). The alteration in

synaptic strength induced by STP is a relatively slow process that

temporarily modifies the network’s connectivity pattern, leading

to the network’s computation relying on the history of external

inputs. Combining CANNs with STP, computational models have

elucidated the maintenance and manipulation of working memory
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A B

FIGURE 1

A continuous attractor neural network (CANN) model with short-term plasticity (STP). (A) The schematic diagram of the CANN. Excitatory neurons

are arranged in a ring based on their preferred visual orientations θ (θ ∈ [−π2,π2)). The connection strength between two excitatory neurons at θ and

θ ′ is denoted as J(θ , θ ′), which depends only on |θ − θ ′| (the varying shades of gray lines represent the connection strength) and is

translation-invariant in the feature space. All excitatory neurons in the network are connected to a global inhibitory neuronal pool (the gray node).

The network generates a Gaussian-shaped bump (red curve) to represent the external stimulus (Iext(θ , t)) using population coding strategy. (B) The

schematic diagram of STP. u(θ , t), x(θ , t) represent the release probability and the fraction of available neurotransmitters of neurons θ at time t,

respectively. The firing rate of neurons at θ (rE(θ , t)) instantaneously increases (the red solid line) upon receiving external signals, leading to an increase

in release probability of neurotransmitters (u(θ , t)) and a decrease in the fraction of available resources (x(θ , t)). Following the removal of the external

stimulus, u(θ , t) decays to 0 within the time of τf , and x(θ , t) returns to 1 within τd. Due to the dominance of the synaptic short-term facilitation e�ect,

u(θ , t) remains at a high level for an extended duration.

(Mi et al., 2017), and the phase precession phenomenon in

hippocampus (Chu et al., 2022).

2.1 Continuous attractor neural networks

Consider a one-dimensional continuous stimulus θ , such as

the visual orientation, is encoded by an ensemble of neurons. All

excitatory neurons in the CANN (the red circles in Figure 1A)

are aligned in a ring according to their preference under the

periodic boundary condition, i.e., θ ∈ [−π/2,+π/2), and they

are all reciprocally connected to a global inhibitory neuronal

pool (the black circle in Figure 1A). Denotes hE(θ , t) as the

synaptic inputs at time t of excitatory neurons at θ . The

dynamics of hE(θ , t) is determined by a decay term, the recurrent

current from other neurons, the inhibitory input from the

global inhibitory neuronal pool and the external input, which is

written as,

τ
∂hE(θ ,t)

∂t = −hE(θ , t)

+ρ
∫ π/2
−π/2 J(θ , θ

′
)u(θ

′
, t)x(θ

′
, t)rE(θ

′
, t)dθ

′

−JEIrI + Iext(θ , t)+ I0 + σ0η0(θ , t), (1)

where τ denotes the time constant of neurons, ρ the neuronal

density, I0 + σ0η0(θ , t) the background input, with η0(θ , t) the

Gaussian white noise of zero mean and unit variance and σ0

the corresponding noise strength. Iext(θ , t) refers to the external

input, such as the visual stimulus during the encoding period

and the cue during the recalling period. JEI is the synaptic

strength from the global inhibitory neuronal pool to excitatory

neurons. rE(θ , t) is the firing rate of neurons with preference

at θ , and its relationship with the synaptic current is given by

rE(θ , t) = α ln[1+exp(hE(θ , t)/α)], which is a smoothed threshold-

linear function.

J(θ , θ
′
) is the synaptic connection between neurons at θ and θ

′
,

as set in Equation 2,

J(θ , θ
′

) =

{

J cos[B(θ − θ
′

)], B(θ − θ
′

) ∈
[

− arccos(−J0/J), arccos(−J0/J)
]

J0 , else
, (2)

where J(θ , θ
′
) is a function of the difference in neuronal preferences

(i.e., (θ − θ
′
)), which is translation-invariant in the feature space.

Due to this characteristic topological structure, a CANN can hold a

continuous family of stationary states, metaphorically understood

as a valley of local minima in the network’s energy landscape. J and

J0 determine the synaptic connection strength between neurons,

while B controls the synaptic interaction range. Neurons with

similar preferences have stronger synaptic connections, while those

with significantly different preferences have weaker connections.

The synaptic input to the global inhibitory neuronal pool is

denoted as hI , with rI the corresponding firing rate, and rI(t) =

α ln[1 + exp(hI(t)/α)]. The dynamics of the global inhibitory

neuronal pool is written as,

τ
∂hI(t)

∂t
= −hI(t)+ JIE

∫ π/2

−π/2
rE(θ

′

, t)dθ
′

, (3)

where τ denotes the time constant of the inhibitory neuronal

pool, JIE the connection strength from excitatory neurons in the

ring to the inhibitory neuronal pool. The global inhibitory neural

pool plays a crucial role in maintaining a balanced state between

excitation and inhibition in the network, thereby preventing

excessive neuronal firing. Additionally, it fosters competition

among different groups of excitatory neurons, ensuring that only

one memory item is represented at a given moment.

2.2 Short-term synaptic plasticity

Two types of STP, known as short-term facilitation (STF)

and short-term depression (STD), have been observed in various
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cortical areas. STF is caused by the influx of calcium into

the synaptic terminal of the pre-synaptic neuron following

spike generation, which increases the release probability of

neurotransmitters. On the other hand, STD is caused by the

depletion of neurotransmitters at the synaptic terminal of the

pre-synaptic neuron after spike generation.

In the model proposed by Mongillo et al. (2008), the STF effect

is modeled by u(θ , t) (u ∈ [0, 1]), which indicates the release

probability of neurotransmitters from pre-synaptic neurons at θ ,

and STD is modeled by x(θ , t)(x ∈ [0, 1]), indicating the fraction of

available neurotransmitters in pre-synaptic neurons. The dynamics

of STF and STD are given in Equation 4,

∂u(θ , t)

∂t
= −

u(θ , t)

τf
+ U0(1− u(θ , t))rE(θ , t),

∂x(θ , t)

∂t
= −

1− x(θ , t)

τd
− u(θ , t)x(θ , t)rE(θ , t),

(4)

where τf and τd denote the time constants of STF and STD,

respectively, and U0 the increment of u caused by spiking of the

pre-synaptic neuron. When a neuron at θ receives external inputs,

its firing rate (rE(θ , t)) increases. The increase in firing rate results

in an increase in the release probability of neurotransmitter u(θ , t)

(with the increment determined by U0), leading to the STF effect,

while the proportion of available neurotransmitter x(θ , t) decreases,

leading to the STD effect. Subsequently, u(θ , t) decays to its baseline

of 0 with a time constant τf , and x(θ , t) returns to its baseline of 1

with a time constant τd, as illustrated in Figure 1B. The product

of u(θ , t) and x(θ , t) represents the instantaneous synaptic efficacy

at time t, i.e., Ju(θ , t)x(θ , t), which reflects the strength of memory

representation in the network (Mi et al., 2017; Li et al., 2021).

To elucidate the neural mechanism of SWM, we selected

parameters consistent with the synaptic connectivity between

neurons in the prefrontal cortex (PFC), which is the primary

crotical region involved in working memory (Wang et al., 2006).

We adopted the STF dominant parameters as in the model

proposed by Mongillo et al. (2008), i.e., τd ≪ τf and a smaller

U0. This implies that after neuron firing, the synaptic connection

efficacy is maintained at a high value for an extended period to

sustain memory information.

In our numerical simulation, we model the CANN by

considering N neurons uniformly distributed in the range of

[−π/2,π/2) in the feature space. The integration in Equation (1)

is computed by,

∫ π/2
−π/2 J(θ , θ

′
)u(θ

′
, t)x(θ

′
, t)rE(θ

′
, t)dθ

′

= π
N

∑N
k=1 J(θ , θk)u(θk, t)x(θk, t)rE(θk, t),

The parameters are given in Supplementary Tables 1, 2.

3 Results

3.1 The serial position e�ect in SWM

Based on the above model of CANN with STP, we investigated

the serial position effect in SWM. We first studied the case of two

memory items and later generalized the study to the case ofmultiple

items. We utilized the same paradigm as in the psychophysical

experiments for SWM (Li et al., 2021), and investigated the recall

accuracy of items based on their visual orientations, as illustrated

in Figure 2A.

In each trail, two stimuli with different orientations (referred

to as θ1, θ2) are sequentially presented in the encoding period.

Following a delay period, a visual recall cue lasting for Trecall is

presented, and the network retrieves either the first or second

visual item based on the recalling cue. Let Tencode denote the

duration of presenting each item, Tgap the time interval between

two items, and Tmaintain the duration of the delay period. The

orientation values of two stimuli are set as: θ1 is randomly selected

from the range [−π2,π2), and θ2 = θ1 + 1θ , where 1θ is the

difference between two stimuli, randomly selected from the data set

[±17◦,±24◦,±38◦,±52◦,±66◦,±80◦] (Li et al., 2021). The visual

stimulus in the encoding period and the cues in the recalling period

are denoted as Iext(θ , t), which are written as,

Iext(θ , t)

=















atype(t) cos[Btype × (θ − θtype)]

+ σtypeζtype(θ , t)
, Btype × (θ − θi) ∈ [− arccos(0), arccos(0)]

0, else

,

(5)

where θtype(type = encode, recall) represents the visual stimulus

during different periods. The parameters atype(t) and Btype regulate

the strength and accuracy of external signals, respectively. A larger

atype(t) and Btype result in more precise encoding of orientation

information from the stimulus. As the recalling signals are

unrelated to the task, the parameters are set as follows: aencode ≫

arecall,Bencode > Brecall (Li et al., 2021).

When two visual stimuli are presented sequentially, the neural

network generates successive bump-shaped neural activity patterns.

The peaks of these bumps correspond to θ1 and θ2, respectively,

as illustrated in Figure 2B. Due to the strong interactions among

neurons with similar preferences and weak interactions among

those with significantly different preferences in the network, we

define a neuronal group Gi as the ensemble of neurons whose

preferred values satisfy |θ − θi| ≤ 1 (i = 1, 2), and this group

of neurons primarily encodes the ith item. The corresponding

neural activity and synaptic strength are calculated to be ri(t) =
1
mi

∑θi+1
θ=θi−1 rE(θ , t) and Juxi(t) = 1

mi

∑θi+1
θ=θi−1 Ju(θ , t)x(θ , t),

respectively, with mi representing the number of neurons in Gi.

After removing stimuli, the firing rates of both neuronal groups

gradually decrease to zero (Stokes, 2015; Wolff et al., 2015).

However, their synaptic strengths remain at high levels due to

STF, which maintain the stimulus information (see Figure 2C).

During the recalling period, the network generates a weak bump-

shaped activity pattern in response to the recalling cue, and the

retrieved orientation (denoted as θ recalledi , i = 1, 2) is decoded

using the population vector method, with details given in the

Supplementary material 1.1.

We investigated how the maintenance duration Tmaintain affects

the recall performance. We set Tmaintain as a variable ranging

from 0 to 10 s and selected 11 values within this range. For each

chosen value of Tmaintain, we evolved the network for 50 times

(corresponding to 50 different participants in a psychophysical
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experiment), each consisting of 300 trials. We utilized the

normalized target probability method (Bays et al., 2009; Schneegans

and Bays, 2016) to calculate the recall performance of each item

(i.e.,θ recalledi , i = 1, 2). More details see Supplementary material 1.2.

We found that (as shown in Figure 2D):

• When Tmaintain is smaller than a critical value denoted as

Tc, i.e., Tmaintain < Tc, the recall performance exhibits the

primacy effect, indicating that participates memorize the first

item more accurately. Moreover, the primacy effect becomes

more pronounced as the value of Tmaintain decreases.

• When Tmaintain > Tc, the recall performance shifts to

the recency effect, indicating that participates memorize the

second item more accurately. The significance of the recency

effect gradually decreases as Tmaintain increases.

We further utilized the methods of Circular Variance (CV) and

Circular Kurtosis (CK; Berens, 2009) to calculate the accuracy of

recall performance. The statistical results are consistent with those

shown in Figure 2D (more details see Supplementary material 1.2

and Supplementary Figure 1). In conclusion, with the increase

of the maintenance period, the serial position effect in

SWM dynamically shifts from the primacy effect to the

recency effect.

To further reveal the neural mechanism underlying the

dynamical change of the serial position effects, we calculated the

relative synaptic efficacy of two neuronal groups encoding two

stimuli (θ1 and θ2) over time, denoted as 1Jux(t) = Jux2(t) −

Jux1(t) hereafter. The synaptic mechanism of WM posits that

information is maintained in the facilitated synaptic interactions

between neurons, with the synaptic efficacy determining the

accuracy of the memorized item (Teyler and Discenna, 1984;

Henry and Misha, 1996; Mongillo et al., 2008). For example,

when two items (θ1 and θ2) are presented sequentially in a

trail (Figure 2C), the transient synchronous firing of a neuronal

group (G1 or G2, respectively) leads to rapid decrease in synaptic

efficacy, due to the depletion of available neurotransmitters

in neurons. After the visual stimulus disappears, the synaptic

efficacy of the neural group recovers to the maximum value

(Juxmax
i ) and maintains at a high level for an extended

period. We calculated the synaptic efficacy between two neuron

groups 1Jux(t) during the maintaining period (Figure 2E) and

found that:

• Since the second item is presented later, its synaptic efficacy

Jux2(t) is smaller than that of the first one Jux1(t) before it

recovers to the maximum value. Therefore, 1Jux(t) < 0 when

t < T′
c(SIM), where T′

c(SIM) is the moment when 1Jux(t) ≡

0.

• As the time t approaches T′
c(SIM), both 1Jux(t) and its

variance approach zero. When t > T′
c(SIM), 1Jux(t) first

increases and then gradually diminishes over time.

The critical moment T′
c(SIM) at which 1Jux(t) = 0 coincides

with the value of Tc at which the recall performance transfers

from the primacy effect to the recency effect, as shown in

Figures 2D, E. Specifically,

• When the maintenance period Tmaintain is smaller than a

critical value, i.e., T′
c(SIM) & Tc, the recall performance

exhibits the primacy effect; and the greater the value of

1Jux(Tmaintain) is, the more significant the primacy effect

becomes.

• As Tmaintain approaches the critical value and 1Jux(Tmaintain)

approaches 0, the recall performance switches to the recency

effect and is no longer significant (Figure 2D).

• When Tmaintain is much larger than the critical value and

meanwhile 1Jux(Tmaintain) ≫ 0, the recall performance

displays the recency effect. The greater the value of

1Jux(Tmaintain) is, the more pronounced the recency effect

becomes.

It is worth noting that the temporal shift of the serial

position effect is independent of the orientation difference

between two visual stimuli, which is consistent with the results

in Figures 2D, E. More details see Supplementary material and

Supplementary Figure 3.

We further investigated the detailed dependence of the

transition from the primacy to the recency effect on the model and

experimental parameters, including the time interval between two

stimuli (Tgap) and the parameters of STP (i.e., τf and τd; Figure 3).

For each set of parameters {τf , τd,Tgap}, we calculated the memory

accuracy of participants when the recall cue was given at different

times (i.e., Tmaintain). For each given Tmaintain, we simulated the

network 50 times, each consisting of 300 trails. We then calculated

the transition moment from the primacy to the recency effect (i.e.,

Tc) and the critical moment (T′
c(SIM)) when 1Jux(t) ≡ 0. Tc is

calculated using different statistical methods, such as CK, CV and

P.

We found that both Tc and T′
c(SIM) increase with τf and τd,

respectively, as shown in Figures 3A, B, and they both decrease

with Tgap (Figure 3C). Furthermore, Tc is approximately equal

to T′
c(SIM) for each given parameter set, suggesting that the

relative synaptic efficacy between two neural groups (G1 and G2)

determines the recall performance. In conclusion, the shift of the

serial position effect is determined by STP (i.e., τf , τd) and the

inter-stimulus interval (Tgap). Notably, as depicted in Figure 3, the

transition from the primacy to the recency effect coincides with the

time constant of STD (τd), precisely aligning with its time order.

3.2 Theoretical analysis

In the above, we have utilized a simplified mean-field model

to elucidate the neural mechanism of SWM, there are still many

variables and parameters involved, including the time constants of

STF and STD (τf , τd), the time constant of a single neuron (τ ),

the connection strength between neurons (i.e., J,J0,JEI ,JIE, etc.), the

duration of loading each stimulus (Tencode), and the time interval

between adjacent stimuli (Tgap). If we continue using numerical

simulations, it will be very time-consuming to explore how the

recall performance depends on all these variables. We therefore

conducted theoretical analysis to elucidate how the critical moment

Tc depends on various variables that lead to the shift of the serial

position effect. The advantage of theoretical analysis lies in its
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FIGURE 2

The serial position e�ect in SWM task for two items. (A) Schematic diagram of the psychophysical experiment paradigm. In the encoding phase, two

distinct visual stimuli are sequentially presented. Each stimulus is presented for a duration denoted by Tencode, separated by an time interval of Tgap
between them. Following a delay period of Tmaintain , a recall cue lasting for Trecall is presented. Participates are then tasked with recalling the

orientation value of either the first or second visual stimulus based on the given cue. (B, C) The temporal dynamics of neural activity pattern in an

individual trial simulation example. (B) Two visual stimuli, denoted as θi (i=1,2), are presented sequentially during the encoding phase. In response to

each stimulus, the network generates successive bump-shaped neural activity patterns centered at θi, respectively. During the delay period, the

neural activity gradually decays to a silent state. (C) The temporal course of synaptic e�cacies of neural groups encoding two visual stimuli

throughout the trail. When a stimulus is presented, the synaptic e�cacy of the corresponding neural group rapidly decreases. After the stimulus is

removed, the synaptic e�cacy gradually recovers to a maximum value, denoted as Juxmax
i , within a certain period of time. Subsequently, it remains at

a high level for an extended duration. (D) The recalling performance at varying Tmaintain. Tc denotes the critical moment of recall performance shift

from primacy to recency e�ect, and Tmaintain ∈ {0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 1s, 2s, 4s, 6s, 8s, 10s}. (Top) The normalized target probability of the ith

presented item, denoted as Pi for i = 1, 2, at varying Tmaintain. (Bottom) The normalized target probability di�erence between the 1st and 2nd item

(P2 − P1) at varying Tmaintain. (E) The relative synaptic e�cacy (1Jux(t)±SEM) of the neuronal groups encoding the two visual stimuli during

maintaining period. T ′
c(SIM) denotes the critical moment at which 1Jux(t) ≡ 0. The parameters settings see Supplementary Tables 1, 2.

(n.s.: p > 0.05, *: 0.01 <p <0.05, **: 0.001 <p <0.01, ***: p <0.001).

power of prediction, which can be validated with experiments.

Specifically, we focused on examining the dependence of Tc on the

variables τf , τd, and Tgap.

To carry our theoretical analysis, we simplified the model of

CANN with STP (i.e., Equations 1, 3, 5) into a model composed

of multiple neuronal groups. In this simplified model, each

ith neuronal group (Gi, i = 1, · · · ,M with M the number

of items in the SWM task) encodes the ith item, and the

interaction and overlap between different neuronal groups are

ignored. This is because that the orientation difference between

two stimuli does not impact much the recall performance, as

shown in Supplementary Figure 3. Note that, the value of the

visual orientation difference 1θ between memory items reflects

the extent of interaction between neural groups encoding them.

Using the experimental paradigm with two items as an example,

we showed that the recall performances (Supplementary Figure 3)

for 1θ being a random number in the range of [−π ,+π] are

consistent with that when 1θ takes a large value (Figures 2,

3, 1θ ∈ ±17o,±24o,±38o,±52o,±66o,±80o), indicating that

the ignoring the interactions between neural groups is a proper

approximation for theoretical analysis. Indeed, representation of

toomany items will introduce unignorable overlaps between neural

groups. However, consider the limited capacity of working memory

(∼4 items, Zhang and Luck, 2008), ignoring the interactions

between neuron groups is feasible in the theoretical analysis.

The STP effect is considered in each neuronal group. Moreover,

Figures 2, 3 have shown that the firing rates of different neuronal

groups during the maintaining period approach zero (i.e., ri(t) →

0Hz), and this allows us to disregard the change in firing rates

over time. On the other hand, the relative memory accuracy of

participates for multiple items is mainly determined by the relative

synaptic efficacy of neuronal groups during themaintaining period.

Therefore, we only need to consider the dynamics of STP of

different neuronal groups (Gi) during the maintaining period,
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A B C

FIGURE 3

The dependence of Tc, T
′
c(THEO&SIM) on di�erent variables τd, τf and Tgap. The calculations for Tc employ various statistical methods, including

normalized target probability (indicated by orange asterisks), Circular Variance (green crosses), and Circular Kurtosis (red hollow circles). The

theoretical analyzes T ′
c(THEO) represented by the blue solid line, while numerical simulations T ′

c(SIM) denoted by purple triangles. (A) Tc and

T ′
c(THEO&SIM) increase with increasing τf ; (B) Tc and T ′

c(THEO&SIM) increase with increasing τd; (C) Tc and T ′
c(THEO&SIM) decrease with increasing

Tgap. T
′
c(THEO&SIM) ≈ Tc in (A–C). For each given parameter set { τd, τf , Tgap }, we computed the memory accuracy for di�erent maintenance times

Tmaintain when the recall cue was presented. For every selected Tmaintain , the network was simulated 50 times, with each simulation comprising 300

trials. More details see Supplementary material 4.

which is written as:

dui(t)

dt
= −

ui(t)

τf
,

dxi(t)

dt
=

1− xi

τd
, (6)

where ui(t) and xi(t) denote the STF and STD effects of the ith

neuronal groups at time t, respectively, and t is aligned to the

presence of the sencond item.

We first examined the case of two items (i.e., M = 2). In

accordance with Equation (6), the synaptic efficacy of neuronal

group Gi is calculated as Juxi(t) = Ju0 exp(−
t
τf
)[1 − (1 −

x0) exp(−
t
τd
)], where u0 and x0 represent the values of STF and

STD of the ith neuronal group when the stimulus is removed. Thus,

the relative synaptic efficacy among neuronal groups during the

maintaining period is expressed as:

1Jux(t) = Ju0 exp
(

− t
τf

)

{

(1− x0) exp
(

− t
τd

) [

1− exp
(

− t∗

τd
− t∗

τf

)]

+ exp
(

− t∗

τf

)

− 1
}

, (7)

where t∗ = Tencode + Tgap. According to Equation (7), the critical

moment T
′

c(THEO) for 1Jux(t) ≡ 0 is derived as,

T
′

C(THEO) = τd ln
(1− x0)

[

1− exp(− t∗

τd
− t∗

τf
)
]

1− exp(− t∗

τf
)

. (8)

For details, see Supplementary material 3. Since it takes an

amount of time for the cue in the recalling period to trigger

the activity of the corresponding neuronal group, a constant bias

(denoted as tb, tb ∈ (0,Trecal]) is considered into Equation (8).

Meanwhile, since τf ≫ τd, and t∗ = Tencode + Tgap has the same

time scale as τf , we further simplify Equation (8) to be:

T
′

c(THEO) = τd ln





(1− x0)

1− exp(− t∗

τf
)



 + tb. (9)

Based on the theoretical predictions in Equation (9), we found

that the theoretical results for T′
c(THEO) (represented by the blue

colored line in Figure 3) are consistent with both the critical

moment T′
c(SIM) (depicted by the purple triangle in Figure 3)

and Tc (shown by the blue line in Figure 3). It is important

to highlight that our theoretical analysis effectively captures the

dynamic patterns of storage for multiple items qualitatively during

the maintenance period. Therefore, the shift of the serial position

effect is positively correlated with the time constants of STD and

STF, which implies that a larger time constant of STD enables

the working memory system to maintain the primacy effect for a

longer duration. This shift of the serial position effect is inversely

correlated with the sum of presentation durations of items and the

inter-stimulus time intervals (referred to as t∗), which indicates that

the larger the value of t∗, the more difficulty it is for the working

memory system to keep the primacy effect.

To further validate the theoretical results, we conducted three

different tasks to investigate the temporal dynamics of relative

accuracy formultiplememory information (i.e.,T′
c(THEO) andTc).

We explored the serial position effect on various parameters of the

network and the design of the experiment, as illustrated in Figure 4,

where T′
c(THEO) is computed based on Equation (9).

In the first task, we calculated Tc using the same experimental

parameters as depicted in Figure 2, but altered the values of τf and

τd of the network, as shown in Figure 2A. We selected 21 different

values of τf uniformly from the range of [2, 8] s and 21 different

values of τd from the range of [0.1, 0.4] s. For each parameter set {

τf , τd }, we simulated the network and assessed recall performances

of participants at different moments (i.e., Tmaintain), and obtained

the critical moment Tc when the recall performance shifted from

the primacy to the recency effect (left panel). The selection of

Tmaintain followed the same procedure as depicted Figure 3.

In the second task, we fixed τd and varied the variable Tgap in

the psychophysical experiment, as well as τf , as shown in Figure 4B.

We selected 21 different values of τf uniformly from the range of

[2, 8] s and 21 different values of Tgap from the range of [0, 2] s. The

calculation method for Tc is the same as that in Figure 4A.
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In the third task, we fixed τf and varied the variable Tgap in the

psychophysical experiment, along with τd, as shown in Figure 4C.

We uniformly selected 21 different values of τd from the range of

[0.1, 0.4] s and 21 different values of Tgap from the range of [0, 2] s.

The calculation method for Tc is the same as in Figure 4A.

In summary, we found that: (1) the theoretical analysis of the

critical moment (T′
c(THEO)) is qualitatively consistent with the

results obtained by numerical simulations (Tc). (2) Tc increases

with τf and τd, as shown in Figure 4A, (3) Tc decreases with Tgap,

as shown in Figures 4B, C.

3.3 Model prediction: the serial position
e�ect in SWM for multiple items

In this section, we demonstrate that the results obtained in

SWM with two items can be extended to cases involving multiple

items. We continued using the experimental paradigm depicted in

Figure 2A for simulations, and studied the case of loading three

items successively into the working memory system during the

encoding period.

In the WM task, we considered that three items with different

orientations are presented sequentially in each trail. Following

a maintaining period lasting Tmaintain, a recalling signal with

duration of Trecall is presented, which triggers the network to

retrieve the task-related feature of the corresponding item. Denote

Tencode the loading duration of each item, Tgap the time interval

between two adjacent items, and θi, (i = 1, 2, 3) the orientation

of each item. The value of θi(i = 1, 2, 3) is determined as

follows. θ1 is randomly selected from the range of (−π/2,π/2],

and θi is determined by θi = θ1 + 1θ(i = 2, 3), where 1θ

denotes the orientation difference between the ith (i = 2, 3)

and the first items. The value of 1θ is chosen according to

the relevant psychophysical experiments (Huang et al., 2023),

specifically, 1θ ∈ [±12◦,±24◦,±36◦,±48◦,±60◦,±72◦,±84◦],

with 1θ being randomly selected in each trail. For each Tmaintain,

we conducted 50 runs, each consisting of 500 trials, and used

three methods of normalized target probability, Circular Variance,

and Circular Kurtosis to measure the recall performance of each

trail. More details are given in Supplementary material 1.2 and

Supplementary Figure 2.

In each experimental trial, three items are sequentially loaded

to the network, and the network generates three bump-shaped

population firing patterns to represent the corresponding items

(Figure 5A), respectively. The synaptic efficacy of each neuronal

group (Juxi(t), i = 1, 2, 3) decreases rapidly due to the

neurotransmitter depletion. After all items are removed, Juxi(t)

(i = 1, 2, 3) recovers to its maximum value (Figure 5B) and then

retains at a relatively high level to preserve the item information.

We calculated the memory performance of participants at different

Tmaintain, as shown in Figure 5C.

We extended the theoretical analysis in Section 4 to the SWM

task involving three items. By comparing the relative synaptic

efficacy of neuronal groups encoding different items, we can

deduce the network’s recalling performance. Due to the neglect of

connections and overlaps between different neuronal groups, and

the assumption that all neuronal groups receive the same intensity

and duration of external signals, the relationship of synaptic

efficiency between any two different neuronal groups (for example,

Juxi(t), Juxj(t), and i < j, for the ith and j loaded items) during the

maintaining period is solved to be Juxi(t) = Juxj(t+(j−i)∗t∗), with

t∗ = Tencode +Tgap. Thus, the relative synaptic efficacy between the

ith and jth neuronal groups (1Juxij(t)) are given by,

1Jux12(t) =

Ju0 exp
(

t+t∗

τf

) {

(1− x0) exp
(

− t+t∗

τd

) [

1− exp
(

− t∗

τd
− t∗

τf

)]

+ exp
(

− t∗

τf

)

− 1
}

,

1Jux23(t) =

Ju0 exp
(

t
τf

) {

(1− x0) exp
(

− t
τd

) [

1− exp
(

− t∗

τd
− t∗

τf

)]

+ exp
(

− t∗

τf

)

− 1
}

.

(10)

The critical moments (Equation 10) can be theoretically resolved

based on 1Jux12(t) ≡ 0 and 1Jux23(t) ≡ 0, which are:

T12′

c = τd ln





1− x0

1− exp(− t∗

τf
)
− t∗ + t12b



 ,

T23′

c = τd ln





1− x0

1− exp(− t∗

τf
)
+ t23b



 ,

(11)

where t12
b
, t23
b

(t12
b
, t23
b

∈ (0,Trecall]) denote the response times of

neuronal groups to recalling signals, which are approximately in

the time order of τ . According to the above theoretical analysis, if

t < T12′
c , then Jux1(t) > Jux2(t); otherwise, Jux1(t) < Jux2(t).

Similarly, if t < T23′
c , then Jux2(t) > Jux3(t); otherwise, Jux2(t) <

Jux3(t).

The above theoretical analysis is in perfect alignment with

the numerical simulation results, as shown in Equation 11 and

Figure 5C.

Firstly, when Tmaintain < T12′
c , the network exhibits the

primacy effect (see Figure 5C middle panel). This is because that

after the removal of multiple items, Jux1 firstly recovers to the

maximum valve, while the synaptic efficacy of other neuronal

groups still remains low values due to neurotransmitter depletion

(Figure 5B). The larger the relative synaptic efficacy 1Jux12(t), the

more significant the primacy effect. Meanwhile, both the value of

1Jux12(t) and the significance of the primacy effect decrease with

Tmaintain over time. Thus, the recalling performance indeed shifts

around the critical moment T12′
c (Figure 5C).

Secondly, when Tmaintain > T23′
c , the network exhibits the

recency effect (see Figure 5C bottom panel). This is because

the synaptic efficacy of the third item (Jux3(t)) recovers to its

maximum valve, which is larger than that of other neuronal groups.

Furthermore, the synaptic efficacy of neuronal groups gradually

decrease over time, and the recency effect becomes insignificant

(Figure 5C, bottom panel).

Thirdly, the critical moments (T12′
c and T23′

c ) are primarily

influenced by the time constants of STF and STD (τf and τd), as

well as the time interval between adjacent items (Tgap). Specifically,

the values of T12′
c and T23′

c increase with τf and τd, and decrease

with Tgap.

4 Discussion

In this study, we built a CANN incorporating STP to investigate

the neural mechanism underlying the shift of the serial position
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FIGURE 4

The dependence of temporal dynamics of memory accuracy on di�erent variables and parameters, particularly τf , τd, and Tgap. (left panel) the

numerical simulation results of Tc, (right panel) the theoretical predictions (T
′

c(THEO)). (A) Both T
′

c(THEO) and Tc increases with increasing τf , τd. (B)

Both T
′

c(THEO) and Tc increases with increasing τf , and decreases with increasing Tgap. (C) Both T
′

c(THEO) and Tc increases with increasing τd, and

decreases with increasing Tgap.

effect in SWM. We found that with the elongation of the delay

period, the participates’ recall performance undergoes a shift from

the pronounced primacy effect to the significant recency effect.

Additionally, the prominence of the recency effect gradually wanes

with the extension of the delay period. Furthermore, we show that

the transition moment of the serial position effect is predominantly

determined by STP, the time interval between adjacent stimuli, and

the duration of stimulus presentation. We carried out theoretical

analysis to confirm the simulation results and made predictions

to be validated by future experiments. Overall, our study indicates

that STP gives us insights into understanding how the ordinal

information is processed in working memory.

Utilizing a CANN to depict the encoding, maintenance, and

retrieval processes in SWM is biologically plausible. CANNs have

been extensively applied to elucidate the neural mechanisms

of information processing in working memory. In these tasks,

the stimuli are typically represented by continuous variables’

including visual orientation (Ben-Yishai et al., 1995), spatial

location (Bottomley, 1987), and motion direction (Georgopoulos

et al., 1986) in visual working memory, as well as auditory

frequency in auditory working memory (Borderie et al., 2024).

Additionally, CANNs have been widely used to describe the

neural representation and storage of continuous variables, such

as head orientation (Stringer et al., 2002; Wang and Kang,

2022), visual orientation (Li et al., 2021), motion direction (Fung

et al., 2010; Mi et al., 2014), and spatial location (Samsonovich

and McNaughton, 1997; Yoon et al., 2013), and they align

with experimental data. A core feature of CANNs is that the

synaptic connections between neurons are solely dependent on

their difference in preferred continuous variables (Wu et al.,

2013, 2016), implying that the synaptic connections in their

feature space exhibit spatial translation invariance. Moreover,

the network employs population coding (forming bump-shaped

neural activity patterns) to represent external stimuli, where

the peak value of the bump corresponds to the continuous

value of the external stimulus. This structural characteristics of
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FIGURE 5

The temporal pattern of memory accuracy in a SWM task for three items. (A, B) The temporal dynamics of neural activity pattern in an individual trial

simulation example. (A) Three items are presented sequentially loaded to the network, and the network generates three bump-shaped population

firing pattern to represented the corresponding items, respectively. After the removal of items, the neural activity decays to a slient state. (B) The

synaptic e�cacy of each neuronal group (Juxi(t) for i = 1, 2, 3) rapidly decays when the corresponding items is presented, and then recovers to a

maximum value, denoted as Juxmax
i , within a certain time and then remains at a high level for an extended duration. (C) The recall performance at

varying Tmaintain . T
12
c and T23

c present the critical moment of recall performance shift from the primacy to recency e�ects. (Top) The normalized target

probability of the ith presented item, denoted as Pi, i = 1, 2, 3, at varying Tmaintain. (Middle) The normalized target probability di�erence (denoted as

P1 − P2) and relative synaptic e�cacy (Jux1 − Jux2, the red line) between the 1st and 2nd items. (Bottom) The normalized target probability

di�erence (denoted as P2 − P3) and relative synaptic e�cacy (Jux2 − Jux3, the red line) between the 2nd and 3rd items. (n.s.: p >0.05, *: 0.01<p <0.05,

**: 0.001<p <0.01, ***: p <0.001).

CANNs and its mode of representing external stimuli have been

empirically validated.

In this study, we adopted the view of the synaptic mechanism

of working memory which considers that information is stored in

the facilitated synaptic connections (Mongillo et al., 2008). The

prefrontal cortex (PFC) is a crucial cortical region for the execution

of working memory. A significant body of empirical evidence

demonstrates that the connections between neurons in the PFC

exhibit STP and are dominated by STF (Wang et al., 2006; Masse

et al., 2020; Bocincova et al., 2022). Consequently, after the removal

of external stimuli, information can be stored in the temporally

enhanced synaptic connections between neurons, rather than in the

sustained firings of neurons (Rainer and Miller, 2002; Shafi et al.,

2007), i.e., the memory is residing in the activity-silent hidden state.

The synaptic mechanism of working memory postulates that

the memory information is primarily stored in the facilitated

synaptic interactions between neurons, and the synaptic efficacy

determines the accuracy of the memorized item (Stokes, 2015;

Wolff et al., 2015). However, other studies suggest that STD also

plays a critical role in the storage and manipulation processes

of memory information. Regarding the storage of memory

information, the limited capacity of working memory is directly

proportional to the time constant of STD (Mi et al., 2017). In

term of memory manipulation, for instance, external dynamic

perturbations that are irrelevant to the task but weakly related

to the attributes of the remembered items can alter the relative

synaptic connection strengths between neuronal groups encoding

different items through STD, thereby changing the relative accuracy

of participates’ recollection of different items in visual working

memory in real time, a transition from the recency effect to the

primacy effect (Knoedler et al., 1999; Li et al., 2021). Moreover,

the time constant of STD determines the effective time window

for dynamically manipulating working memory. Compared to

previous works (particularly Li et al., 2021), the contributions

of our study include: (1) We theoretically calculated the critical

moment (Tc) at which the relative memory accuracy of two or

more items in a SWM task undergoes a transition. We showed

that Tc depends on the time constants of short-term facilitation

(τf ) and short-term depression (τd), and the sum of the duration of

presenting the items and the inter-item intervals (t∗). (2) Previous

studies focused on manipulating two memory items. In this study,

we investigated the relative memory accuracy changes of multiple

items and derived the critical moments for when these changes

occur. Furthermore, our study indicates that the efficacy of synaptic

connections (Jux) encoding memory items in neuron groups not

only determines the accuracy of item retrieval but is also related to

the ordinal information of items, suggesting the importance of STP

in processing order information in SWM.

In our model, the efficacy of synaptic connections within

neuronal groups, denoted as Jux, determines the accuracy of
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memory storage. On one hand, u represents the short-term synaptic

facilitation effect. According to the synaptic computational theory

of working memory, information is retained in the facilitated

synaptic connections between neurons within each neuronal

group. Therefore, the accuracy of information storage gradually

diminishes as u decreases. On the other hand, x represents the

short-term synaptic depression effect, which provides the network

with a slow negative feedback effect. This negative feedback

effect can induce the mobility of neuronal activity bumps within

the network (Fung et al., 2012), consequently leading to the

phenomenon where neural activity bumps drift in the feature

space of the network during the information maintenance period

[i.e., the memory drift phenomena reported by Funahashi et al.

(1989)]. Such drifting of activity bumps weaken the accuracy of

memory representation (Seeholzer et al., 2019). Therefore, during

the information maintenance period, a decrease in u within the

neuronal groups leads to memory accuracy decay; simultaneously,

if the STD effect in the network is sufficiently strong, this effect

can also induce the drifting of weak neuronal activities during the

maintenance period, further reducing memory accuracy decay.

The design of the psychophysical experimental paradigm also

affects the shift of the serial position effect. Our theoretical analysis

and simulation results indicate that an increase in the duration

of stimulus and the inter-stimulus interval can affect the relative

synaptic efficacy between neuronal groups encoding different

items. Consequently, this reduces the prominence of the primacy

effect and its significance, and concurrently induces the shift of

the serial position effect. These theoretical insights into the effects

of the psychophysical experimental design on the serial position

phenomena pave the way for further investigation into the control

of SWM with multiple items.
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