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Brain-computer interfaces (BCIs) represent a groundbreaking approach to 
enabling direct communication for individuals with severe motor impairments, 
circumventing traditional neural and muscular pathways. Among the diverse array 
of BCI technologies, electroencephalogram (EEG)-based systems are particularly 
favored due to their non-invasive nature, user-friendly operation, and cost-
effectiveness. Recent advancements have facilitated the development of adaptive 
bidirectional closed-loop BCIs, which dynamically adjust to users’ brain activity, 
thereby enhancing responsiveness and efficacy in neurorehabilitation. These systems 
support real-time modulation and continuous feedback, fostering personalized 
therapeutic interventions that align with users’ neural and behavioral responses. By 
incorporating machine learning algorithms, these BCIs optimize user interaction 
and promote recovery outcomes through mechanisms of activity-dependent 
neuroplasticity. This paper reviews the current landscape of EEG-based adaptive 
bidirectional closed-loop BCIs, examining their applications in the recovery of 
motor and sensory functions, as well as the challenges encountered in practical 
implementation. The findings underscore the potential of these technologies 
to significantly enhance patients’ quality of life and social interaction, while also 
identifying critical areas for future research aimed at improving system adaptability 
and performance. As advancements in artificial intelligence continue, the evolution 
of sophisticated BCI systems holds promise for transforming neurorehabilitation 
and expanding applications across various domains.
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1 Introduction

Brain-computer interfaces (BCIs) provide a direct communication pathway by bypassing 
traditional peripheral neural and muscular channels. This innovative capability has 
increasingly attracted attention across neuroscience, neuroengineering, and clinical 
rehabilitation fields (Islam and Rastegarnia, 2023). The core objective of BCI technology is to 
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facilitate non-muscular communication, thus enabling individuals 
with severe motor impairments to interact with their environment 
(Islam and Rastegarnia, 2023). Among the diverse BCI technologies, 
electroencephalogram (EEG)-based BCIs are particularly favored due 
to their non-invasive nature, user-friendly operation, and cost-
effectiveness. Recent advancements have seen EEG-based BCI systems 
incorporate adaptive closed-loop control capabilities. These systems 
dynamically adjust their parameters based on the user’s brain activity, 
thus enhancing the system’s responsiveness and efficacy (Shupe et al., 
2021). Adaptive closed-loop BCIs offer real-time modulation, 
bidirectional communication, and closed-loop feedback, which are 
especially advantageous in neurorehabilitation. They provide 
personalized therapeutic interventions by continuously monitoring 
and adjusting to the user’s neural and behavioral responses (Dangi 
et al., 2013). The adaptive mechanism inherent in these BCIs allows 
for real-time adjustments in response to fluctuations in EEG signals. 
Machine learning algorithms typically drive these adjustments, 
constantly refining the BCI’s decoding parameters to optimize user-
system interaction (Arvaneh et al., 2017). For instance, as a user’s 
neural responses evolve during rehabilitation, the BCI can modify 
feedback parameters to ensure that therapeutic stimuli remain 
effective and tailored to individual needs (Soekadar et  al., 2015). 
Bidirectional communication is a crucial feature of these systems, 
encompassing both the decoding of neural signals to control external 
devices and the provision of feedback to the user. This feedback loop 
is essential for neurorehabilitation, enabling users to perceive the real-
time impact of their neural activity, thus reinforcing learning and 
fostering neuroplasticity (Bronte-Stewart et al., 2020). Feedback is 
delivered through various sensory modalities, such as visual, auditory, 
or haptic signals, facilitating a dynamic and reciprocal interaction 
between the brain and external devices (Leeb et al., 2007). Closed-loop 
feedback systems continuously monitor EEG signals and make 
instantaneous adjustments to system outputs, thereby allowing BCIs 
to adapt effectively to changes in the user’s neural state (Lotte et al., 
2018). This is in stark contrast to open-loop systems, which lack real-
time feedback and cannot accommodate ongoing changes in neural 
conditions (Zhang et al., 2021). In neurorehabilitation, the real-time 
feedback of closed-loop BCIs aligns system responses with the user’s 
evolving cognitive and motor states, significantly enhancing 
rehabilitation outcomes (Ramos-Murguialday et  al., 2019). In 
summary, adaptive closed-loop BCIs present notable advantages in 
neurorehabilitation. They support the personalization of rehabilitation 
protocols to meet individual patient needs, potentially accelerating 
recovery and improving functional outcomes through real-time 
neural feedback. Additionally, the bidirectional nature of these 
systems fosters active engagement and learning, crucial components 
for effective rehabilitation (Lebedev and Nicolelis, 2017). This progress 
underscores the potential for substantial advancements in 
neurorehabilitation technologies and offers innovative approaches for 
addressing neurological disorders.

2 Dynamic neural mechanisms in 
adaptive closed-loop BCI

BCIs are a transformative technology that harnesses brain signals 
to control external devices or deliver feedback to the brain, 
fundamentally changing how the central nervous system (CNS) 

interacts with the environment (Abiri et al., 2019). A BCI system is 
composed of three critical components: signal acquisition and 
processing, decoding and control, and feedback mechanisms (Fetz, 
2015). The signal acquisition module captures EEG signals from scalp 
electrodes, which are then preprocessed through filtering, noise 
reduction, and feature extraction to improve signal quality and 
detectability. The decoding module interprets these features to discern 
the user’s motor intentions or motor imagery (MI), converting them 
into commands that govern external devices. Meanwhile, the feedback 
module provides sensory feedback, such as electrical stimulation, 
tactile sensations, or virtual reality cues, to inform the user of the 
outcomes of their actions (Nojima et al., 2022). This bidirectional flow 
of information—from decoding neural signals to delivering 
feedback—is pivotal for the BCI’s adaptive capabilities, allowing the 
system to adjust its operations in real-time based on changes in the 
user’s neural activity. This enhances the user’s understanding of and 
interaction with the system, thereby improving overall system 
performance (Wolpaw et al., 2020). Closed-loop adaptive BCI systems, 
especially those based on EEG, further deepen this interaction by 
integrating multiple brain signals from various CNS regions, with a 
focus on cortical and subcortical structures (Wang et al., 2019). The 
defining characteristic of these systems is their capacity to enable 
dynamic interactions between the user and the BCI. The system 
decodes neural signals generated by the user, transforming them into 
commands for external devices—this represents the initial 
communication pathway, from user to system (Wolpaw et al., 2020). 
Simultaneously, the system provides real-time feedback based on the 
decoded signals and system output, delivered through visual, auditory, 
or tactile stimuli (Deo et al., 2021). This feedback loop is crucial as it 
informs the user about the effectiveness of their neural activity in 
controlling the system, establishing the second communication 
pathway, from system to user (Wolpaw et al., 2002). This continuous 
feedback mechanism allows for ongoing adaptation, where users can 
refine their mental strategies while the system concurrently adjusts its 
parameters in response to neural feedback (Lebedev and Nicolelis, 
2006; Khorev et al., 2024). This dynamic, bidirectional interaction is 
vital for optimizing neurorehabilitation outcomes, as it facilitates 
continuous adjustments in both user engagement and system 
responsiveness, ultimately enhancing the effectiveness of personalized 
and adaptive therapeutic interventions tailored to the specific needs 
of each patient (Daly and Wolpaw, 2008).

3 Major category

3.1 BCI based on event-related potentials

Event-related potentials (ERPs) are crucial signals in BCI systems, 
reflecting neural information processing in response to stimuli (Sur 
and Sinha, 2009; Yu et al., 2016). These signals capture time-locked 
brain electrical activities associated with both physical and mental 
tasks, functioning as a non-invasive cognitive imaging method known 
for its high temporal resolution, as detected in EEG recordings (Ma 
et al., 2021). In the context of BCI applications, ERPs serve various 
purposes, including the recognition of user intent and emotions, as 
well as the examination of cognitive functions like attention, memory, 
language, and emotional processing (Xu et al., 2020). ERPs encompass 
both sensory responses, such as visual evoked potentials (VEPs), and 
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more complex components, including N2 and P3, which are 
modulated by higher-order cognitive processes. VEPs, elicited by 
visual stimuli, are most prominently detected in the occipital region 
and are indicative of visual perception, transmission, and processing. 
Subtypes of VEPs include transient visual evoked potentials (TVEP), 
steady-state visual evoked potentials (SSVEP), motor visual evoked 
potentials (mVEP), and code-modulated visual evoked potentials 
(cVEP) (Shirzhiyan et al., 2020). While VEPs are primarily associated 
with sensory processing, components such as N2 and P3 are linked to 
cognitive functions. The N2 component is typically involved in 
conflict monitoring and cognitive control, originating mainly in the 
anterior cingulate cortex (Folstein and Van Petten, 2008). The P3 
component, characterized by a positive deflection approximately 
300–400 ms after stimulus presentation, is associated with stimulus 
evaluation, attention allocation, and decision-making processes, 
primarily engaging the parietal and frontal regions (Xu et al., 2013). 
Given their involvement in cognitive processing, N2 and P3 
components should be distinguished from purely sensory ERPs, as 
they reflect complex interactions within the brain’s cognitive networks. 
In BCI systems, the P3 component is particularly valuable due to its 
strong correlation with cognitive states, offering a high signal-to-noise 
ratio and consistent temporal characteristics (Picton, 1992; Polich, 
2007). The information encoded in modulated ERP signals, including 
those related to N2 and P3, can be decoded using advanced signal 
processing and classification techniques. Compared to spontaneous 
EEG rhythms that do not require external cues, ERP signals like P3 
provide significant advantages, including reduced user variability and 
stable spatiotemporal features, making them highly suitable for BCI 
applications (Pan et  al., 2022). Recent advancements in signal 
modulation and demodulation technologies have further enhanced 
the efficiency of ERP-based BCI systems, leading to higher 
communication speeds (Craik et al., 2019; Savić et al., 2023).

3.2 BCI based on sensorimotor rhythms

Sensorimotor rhythms (SMRs) represent brainwave activity that 
falls within the frequency range of 8–30 Hz and reflects the rhythmic 
electrical patterns seen in groups of neurons. These brainwaves are 
closely tied to our ability to maintain control over rhythmic movements 
and basic behaviors (Wang et al., 2019; Wolpaw and Thompson, 2023). 
Research into the field of neurophysiology has shown that alpha waves 
(8–12 Hz) and beta waves (13–30 Hz) can be  influenced by actual 
movement and motor planning. When tasks are being performed, SMRs 
tend to show a decrease in amplitude or power in the lower frequency 
spectrum, leading to what is known as event-related desynchronization 
(ERD). On the other hand, an increase in amplitude within a specific 
frequency range is referred to as event-related synchronization (ERS) 
(McFarland et al., 2006). By observing the distinct changes in SMRs 
through EEG measurements, it becomes possible to classify the brain’s 
activity during the planning or visualization of various limb movements. 
This forms the basis for SMR-based Brain Computer Interfaces 
(Pfurtscheller et al., 2006). In brain-computer interfaces based on SMRs, 
the primary method for controlling SMRs is through MI. Research 
indicates that individuals can be trained to control the amplitude of 
SMRs through MI, which can then be used for operating a cursor and 
spelling in BCIs. Through the use of spatial filters and classifiers to teach 

participants how to produce distinct MI states, BCI’s coadaptive learning 
system facilitates simultaneous learning by both the brain and the 
machine. This system is capable of recognizing more complex 
spatiotemporal patterns of ERD/ERS when imagining movements of 
various body parts, such as the hands, feet, and tongue (Fumanal-Idocin 
et al., 2022). Currently, there is a growing body of research exploring the 
potential uses of SMR-based BCIs in motor rehabilitation, cognitive 
improvement, and other areas.

3.3 Hybrid BCI

Hybrid BCI systems blend BCI with additional physiological or 
technical signals to combine multiple input streams, with the goal of 
enhancing the accuracy and/or speed of communication of traditional 
BCIs and broadening their user base (Zhu et al., 2020). Depending on 
the mode of the secondary signal, hybrid BCIs can be categorized as 
either simple or complex. Simple hybrid BCIs commonly incorporate 
two EEG modalities to enhance BCI performance. Widely utilized 
simple hybrid EEG modalities currently include combinations of ERP 
and SMR, like SSVEP-MI and P300-MI, as well as pairs of ERP signals 
such as P300-SSVEP and N2pc-SSVEP (Barios et al., 2019). Apart 
from hybrid EEG signals, other brain signals can be used to create 
simple hybrid BCIs, for instance, an EEG-BCI utilizing functional 
near-infrared spectroscopy technology (Liu et al., 2022). On the other 
hand, complex hybrid BCIs combine EEG with various non-neuronal 
control signals to achieve more stable and reliable control. These 
control signals involve physiological signals such as electromyography, 
electrooculography, heart rate, or signals from other existing input 
devices like eye-tracking systems, often originating from residual 
muscle function (Jiang et al., 2014; Nann et al., 2021).

Hybrid BCIs can be further categorized into synchronous and 
sequential types based on how they process multiple input signals over 
time. Synchronous hybrid BCIs combine information from various 
input signals, requiring the integration of multiple inputs in processes 
such as extracting features, combining features, and making 
classification decisions. These signals all have the same intentional 
control goals to improve accuracy. Research has shown that BCI 
systems that combine SSVEP and P300 signals can greatly improve the 
recognition of target fixation, leading to higher accuracy in selecting 
targets and faster data transfer rates (Tang et al., 2022). On the other 
hand, sequential hybrid BCIs involve the consecutive operation of two 
systems, with one usually functioning as a switch or selector, and the 
other as a conventional BCI controller (Ma et al., 2017).

4 Applications in neurorehabilitation

The primary purpose of EEG-based adaptive closed-loop BCI in 
rehabilitation is to substitute and recover damaged neural functions. 
These BCIs assist individuals in regaining authority over various 
environments and tasks, such as tasks involving computers (typing 
documents, browsing the internet) (He et al., 2020), controlling the 
environment (adjusting lights, temperature, TV) (Daly and Wolpaw, 
2008), and using mobile devices (controlling electric wheelchairs, 
neuroprosthetics, orthoses) (Li et  al., 2013; Kotov et  al., 2019). 
Additionally, they can be incorporated into rehabilitation treatments. 

https://doi.org/10.3389/fncom.2024.1431815
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Jin et al. 10.3389/fncom.2024.1431815

Frontiers in Computational Neuroscience 04 frontiersin.org

By promoting activity-dependent neuroplasticity, BCIs aid in the 
reinstatement of normal CNS operation (Halme and 
Parkkonen, 2022).

4.1 Promote recovery of motor function

Currently, EEG-based adaptive closed-loop BCI systems have been 
combined with a variety of tools, such as FES on the surface and inside 
the body, neuroprosthetics, exoskeletons, orthoses, virtual limbs, and 
robotic arms. This merging introduces innovative ways to carry out 
essential tasks for patients who are unable to move (Rupp, 2014; Tidoni 
et al., 2017). By joining BCI systems with these treatments, patients can 
engage in repetitive training for upper limb movements at a high 
frequency, leading to increased involvement in their recovery process 
(Remsik et  al., 2016). This method is beneficial because it creates 
opportunities for treatment in individuals with limited motor function, 
enabling them to regain control and reestablish connections between 
the brain and nerves in the body (Kim et  al., 2022). In a study by 
Kreilinger and colleagues, it was shown that patients with spinal cord 
injuries undergoing neuroprosthesis training using FES in combination 
with MI-BCI were able to use EEG-controlled shoulder sensors to select 
between grasping, elbow flexion, or resting functions (Kreilinger et al., 
2013). Another research demonstrated that the efficacy of non-invasive 
FES-BCI hand rehabilitation in enhancing neurological function 
recovery in individuals with subacute cervical spinal cord injury 
exceeded that of FES alone (Osuagwu et al., 2016). Kosmyna et al. 
combined BCI with biofeedback and observed that biofeedback had the 
ability to shift participants’ focus toward the current task, resulting in 
improved performance on comprehension assessments. Through a 
study involving non-invasive BCI technology for robotic arm control, it 
was discovered that repetitive training could induce EEG-triggered 
sequences, ultimately enhancing the control performance of the robotic 
arm (Kosmyna and Maes, 2019). Presently, research into using BCI 
systems for the control of lower limb movements following spinal cord 
injury is scarce (Athanasiou et al., 2017). In recent years, there has been 
a growing interest in the intersection of BCI and wearable exoskeletons, 
hinting at potential for gait training in diverse neurological conditions 
in the coming years (Murphy et al., 2017). Studies have shown that the 
motor intentions of patients, as well as their MI, are crucial in promoting 
cortical reorganization and aiding in the recovery of motor functions in 
paralyzed limbs (Langhorne et al., 2009; Maier et al., 2019). Non-invasive 
neuroregulation techniques such as EEG-based adaptive closed-loop 
BCI systems have been developed to enhance patients’ perception and 
evaluation of their motor status through various methods like electrical 
stimulation, visual and tactile feedback, and virtual reality training. 
These systems are effective in promoting cortical reorganization, 
modulating neuroplasticity, and improving motor function (Gao et al., 
2021). A recent study conducted by Sinha et al. involved 23 stroke 
patients with upper limb motor disorders who underwent EEG-based 
FES-BCI interventions. The results showed a significant increase in 
interhemispheric resting-state functional connectivity within the motor 
network, as well as notable improvements in upper limb motor function 
tests and stroke impact scale outcomes (Sinha et al., 2021). Research on 
ankle dorsiflexion MI-BCI interventions in both healthy individuals 
and stroke patients revealed that MI-BCI training had a positive impact 
on the excitability of the lower limb motor cortex in stroke patients, 
leading to improvements in lower limb motor recovery (Chung et al., 

2015). Furthermore, two separate studies highlighted the feasibility and 
stability of EEG-based SSVEP-BCI systems in enhancing the recovery 
of upper limb motor function in patients with post-stroke motor 
impairments (Chi et al., 2022; Guo et al., 2022). EEG-based adaptive 
closed-loop for BCI can function as a non-invasive technology for 
neural control by detecting the motor intentions or MI of patients and 
translating them into corresponding control instructions. These 
instructions prompt external devices to carry out the appropriate limb 
movements, presenting a more natural and versatile means of 
interaction and boosting patient confidence and satisfaction in 
rehabilitation (Bai et al., 2020). Through EEG signal-based identification 
of patients’ motor intentions or MI, Bundy et al. implemented a 12-week 
exoskeleton training regimen for 10 stroke recovery patients with 
moderate to severe impairments in upper limb motor function. The data 
illustrated an average improvement of 6.2 points in scores on upper limb 
motor function assessments with the aid of BCI, which displayed a 
notable relationship with enhanced BCI control proficiency (Bundy 
et  al., 2017). In a study by Cantillo-Negrete et  al., the viability of 
EEG-BCI in conjunction with a robotic arm was examined in patients 
with functional impairments in the upper limb post-stroke, with an 
assessment of the integrity of the cortical spinal tract in the affected 
hemisphere using transcranial magnetic stimulation. The outcomes 
suggested that the combined utilization of EEG-driven BCI and a 
robotic arm could trigger mechanisms associated with neuroplasticity 
(Cantillo-Negrete et  al., 2021). Moreover, a BCI-controlled robot-
assisted therapy system was proposed by researchers, demonstrating 
promising efficacy in advancing recovery of lower limb function among 
stroke patients (Johnson et al., 2018). Moreover, adaptive closed-loop 
BCI systems utilizing EEG serve as valuable tools for neural monitoring 
without the need for invasive procedures. These systems are able to 
analyze brain signals in real-time, assessing movement status and 
individual requirements. They automatically adjust feedback modes, 
intensity, control strategies, difficulty levels, monitoring indicators, and 
standards based on unique variations and training progress, resulting in 
more effective and personalized limb movement rehabilitation exercises 
(Laiwalla and Nurmikko, 2019). A study conducted by Mansour et al. 
found that alpha rhythms are linked to motor learning, while beta 
rhythms are involved in facilitating communication between the motor 
cortex and the paralyzed upper limb in BCI-assisted robot interventions, 
indicating a compensatory function of the cortical layer in stroke 
patients with severe motor deficiencies (Mansour et al., 2022). Research 
by Ang et al. demonstrated that tDCS May potentially enhance motor 
imagery in stroke patients when combined with robot feedback in the 
context of MI-BCI applications (Ang et al., 2015). Additionally, Rea 
et al.’s study showed that utilizing functional near-infrared spectroscopy 
technology in combination with BCI for gait training could provide new 
insights on correcting gait abnormalities in stroke patients (Rea et al., 
2014). The integration of BCI technology with these therapeutic 
methodologies offers valuable guidance for treating movement 
disorders resulting from neurological conditions.

4.2 Promote recovery of sensory function

Skin sensory input plays a vital role in motor control, as it is 
necessary for flexible grasping and manipulation of objects. Sensations 
serve as important indicators during object interaction, providing key 
information on slip or contact force to enhance human-machine 
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interactions (Johansson and Flanagan, 2009). Adaptive colsed-loop 
BCI systems, which interpret brainwave signals, achieve bidirectional 
information transmission, facilitating sensory function recovery for 
patients. Lower limb amputees face challenges in activities like stair 
climbing and walking on uneven terrain due to decreased sensory 
feedback, whereas BCIs using EEG data show high accuracy in 
recognizing lower limb movements (Dillen et al., 2022). Integrating 
BCI with intelligent control algorithms allows for adaptive adjustments 
based on individual differences and rehabilitation progress, improving 
rehabilitation efficiency and accuracy. A major goal is to develop 
responsive prostheses that can transmit essential sensory information 
to the brain. Stimulating the central nervous system for sensory signal 
input involves transmission from the cerebral cortex along the spinal 
cord, or direct stimulation of the dorsal root ganglia or rootlets. Dorsal 
root ganglia have distinct advantages as they activate sensory pathways 
independently from motor efferents, avoiding interference with 
electromyographic control. Additionally, different minimally invasive 
methods make it easier to reach the dorsal ganglia roots. Furthermore, 
a study conducted by Cui and colleagues highlights the distinct ability 
of BCI rehabilitation systems to offer two-way stimulation at the site 
of spinal cord injury, leading to favorable results for individuals with 
total spinal cord injuries (Cui et al., 2023). The intensity of sensations 
can be  categorized according to the strength of the stimulus, and 
comparable results have been obtained through surface-based 
stimulation or EEG, both of which can provide sensory feedback for 
specific tasks or enhance bodily awareness in prosthetics. Relevant 
studies have demonstrated that intracortical microstimulation in the 
primary somatosensory cortex region 1 of individuals with limb 
paralysis can elicit natural feelings (Flesher et al., 2016). Over time, 
these feelings stabilize and can be directed to specific fingers, with the 
intensity being adaptable. Additionally, Collins and colleagues noted 
that the feeling of owning prosthetic devices can be  induced by 
simultaneously stimulating the hand region of the somatosensory 
cortex and experiencing tactile sensations from interacting with a 
rubber hand (Collins et al., 2017). It is important to mention that when 
the stimulation targets somatosensory cortex regions not associated 
with the hand, it does not create illusions, emphasizing that 
multisensory integration follows basic spatial and temporal guidelines. 
These research findings emphasize the brain’s ability to merge “natural” 
visual input with direct cortical-somatosensory stimulation, creating 
a multisensory perception that attributes the prosthetics to the 
individual’s own body. These results indicate that BCIs can trigger a 
sense of ownership over multisensory and prosthetic body parts, 
bypassing the peripheral nervous system, which is essential for patients 
with spinal or nerve injuries lacking peripheral sensory feedback.

5 Challenges in practical application 
development

5.1 Classifier design and signal processing

5.1.1 Challenges of online and offline classifiers
While most classification methods have been validated in offline 

settings, practical BCI systems require real-time online operation 
(Abiri et al., 2019). Consequently, classifiers must demonstrate high 
computational efficiency, rapid calibration capabilities, and robust 
resistance to EEG signal noise in real-world environments. Online 

evaluation should be the standard practice in classifier development 
rather than an exception. Although many classification methods have 
been assessed exclusively under offline conditions, the primary utility 
of BCI applications lies in their online, real-time operation (Lotte 
et al., 2018). Therefore, it is imperative that these classifiers be studied 
and validated in online settings to ensure they meet the demands of 
computational efficiency, ease of rapid calibration, and robustness 
against EEG noise in practical environments (Perdikis et al., 2016). 
Indeed, the routine online evaluation of classifiers is essential, as 
classifiers that cannot function effectively in real-time environments 
hold limited research value.

5.1.2 Complexity of signal processing and 
decoding

Despite extensive research on decoding methods and signal 
processing algorithms, extracting useful information from EEG signals 
remains challenging due to the inherently low signal-to-noise ratio 
(SNR), particularly in the context of controlling multi-degree-of-
freedom neuroprosthetic systems (He and Wu, 2020). This challenge 
underscores the need for the development of more robust, accurate, and 
fast online algorithms. While current approaches predominantly rely on 
static classifiers, adaptive classifiers and decoders offer the potential to 
enhance performance by compensating for the nonstationary 
characteristics of EEG signals. Recent studies have explored advanced 
techniques, such as EEG source localization and active data selection 
(Yger et  al., 2017), which May further improve classification 
performance. Additionally, advanced machine learning and deep 
learning methods hold promise for extracting additional features, 
thereby increasing classification accuracy (Yin et al., 2017; Wang et al., 
2023). Addressing the nonstationarity of EEG signals through the use 
of adaptive classifiers and decoders represents a significant advancement 
(Zanini et al., 2018). Moreover, standardized systems are crucial for 
evaluating the performance of decoding algorithms across specific 
applications and BCI systems (Zeyl et al., 2016).

5.1.3 Challenges of transfer learning and domain 
adaptation

Transfer learning and domain adaptation techniques are regarded 
as critical for achieving zero calibration in BCI research. However, 
these technologies require substantial development and optimization 
before they can become standard tools. Current research primarily 
focuses on scenarios where tasks in the source and target domains are 
identical, particularly in motor imagery tasks, facilitated by the 
availability of BCI competition datasets (Lotte and Guan, 2011; 
Arvaneh et al., 2013; Wu et al., 2022). Additionally, other paradigms, 
such as P300 spellers and visual/spatial attention tasks, have also 
attracted research interest. Nevertheless, variability in data between 
subjects or sessions remains a significant challenge for transfer learning 
and domain adaptation techniques (Kindermans et  al., 2014). To 
address these challenges, adaptive classification methods have been 
integrated into the field of transfer learning. For example, researchers 
have enhanced classification performance by learning dictionaries of 
spatial filters and adapting them to the resting-state EEG characteristics 
of target subjects (Morioka et al., 2015). Another approach involves 
transferring features from target domain data to the source domain, 
thereby enabling classifiers trained on source domain data to be applied 
effectively to target data. Recently, the application of optimal transport 
methods in domain adaptation has gained traction, particularly in the 
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session-to-session transfer of P300 data, which facilitates the effective 
transformation of probability distributions across different domains 
(Courty et  al., 2017). Transfer learning is crucial for improving 
decoding performance across sessions and subjects, thereby reducing 
the calibration demands of BCI systems and enhancing their usability 
and user acceptance (Shao et al., 2015). Although transfer learning 
methods are not yet perfected, their robustness, combined with 
adaptive classifiers, represents a cutting-edge direction in BCI research, 
and is pivotal in realizing zero-calibration operational modes.

5.1.4 Limitations of information transfer rate
The ITR of current BCI systems is relatively low, constraining their 

application range and efficiency. ITR is a key metric for evaluating BCI 
performance, and its enhancement depends on various factors, 
including the number of targets, classification accuracy, and target 
selection duration (Zhang and Guan, 2010). In motor imagery tasks, 
precise classification of movements involving the hands, feet, and 
tongue is essential, with multi-dimensional continuous control needed 
to expand the target range. To reduce the number of flashes required 
for character recognition, a P300-BCI system utilizing a 12 × 7 matrix 
with unique flashing character patterns has been proposed (Jin et al., 
2011). Furthermore, traditional multiplexing methods, such as time-
division multiplexing (TDMA), frequency-division multiplexing 
(FDMA), code-division multiplexing (CDMA), and spatial-division 
multiplexing, have been successfully applied to BCI systems, effectively 
reducing target selection time (Chen et  al., 2014). Improving 
classification accuracy is crucial for increasing ITR, which can 
be achieved through two main approaches: first, by implementing 
advanced signal processing algorithms, such as artifact removal, spatial 
filtering, and SNR enhancement, to strengthen task-related EEG 
signals; and second, by leveraging machine learning techniques for 
feature selection, combination, and classification (Bin et al., 2011). 
Enhancing SNR directly influences target detection accuracy, thereby 
improving the ITR of BCI systems. To further elevate ITR, researchers 
can explore increasing category diversity and developing more complex 
BCI applications. Additionally, adaptive methods such as dynamic 
stopping and machine learning techniques, including single-trial 
classification, can effectively reduce target identification time, thereby 
further enhancing the ITR of BCI systems (Schreuder et al., 2013).

5.2 User experience

5.2.1 User compliance and fatigue issues
The prolonged training requirements of BCI systems can lead to 

user fatigue and reduce compliance (Holz et  al., 2015). Due to 
individual differences and session-to-session variability, BCI systems 
often require calibration data before each use. This calibration process 
is time-consuming and cumbersome, further exacerbating user fatigue 
(Sellers et al., 2010). Although zero-training or universal BCI models 
have been proposed in recent years to reduce the reliance on individual 
calibration, these methods are still under development and not yet 
fully mature. Additionally, the user’s subjective experience is a critical 
factor influencing training outcomes; a lack of interest and engagement 
May undermine the effectiveness of the training. Research indicates 
that EEG-based BCI systems, particularly those integrating motor 
imagery, play a significant role in clinical rehabilitation (Padfield et al., 
2019). To shorten training time, some studies have explored predictive 

models based on resting-state EEG and dynamically adjusted 
interaction modes between the user and the machine, leading to 
co-adaptive learning models (Blankertz et al., 2010). These approaches 
show potential for reducing training time and enhancing user 
experience, but they require further validation and optimization.

5.2.2 Challenges in closed-loop control systems
Closed-loop BCI systems aim to achieve co-adaptation between 

the user and the machine, optimizing system control performance 
through mutual learning and adjustment (Meng et al., 2016). In an 
ideal closed-loop BCI system, the user should act as a minimally 
involved guide, providing high-level supervisory control, while the 
BCI system, as an intelligent agent, handles lower-level control tasks 
(Li et  al., 2014). However, current EEG-based BCI systems 
predominantly rely on visual feedback, and other forms of artificial 
sensory feedback require further exploration to enhance the 
perception capabilities of closed-loop control systems. Closed-loop 
control systems are often described as “dual-learner systems,” where 
both the user and the computer participate in executing control tasks 
(Iturrate et al., 2013). This system employs shared and hybrid control 
mechanisms, with the user generating high-level commands and the 
traditional control system managing low-level tasks (McMullen et al., 
2014). The ideal closed-loop BCI system would position the user as a 
supervisor, overseeing the autonomous external system through 
cognitive monitoring rather than directly participating in every 
control command (Cunningham et al., 2011). To achieve this advanced 
level of closed-loop control, researchers are exploring various feedback 
mechanisms, such as brain stimulation, haptic feedback, and 
somatosensory stimulation, to enhance control accuracy and user 
experience (Broccard et al., 2014; Yuan and He, 2014).

5.3 Device technology

Although EEG technology has been extensively researched due to 
its advantages of portability, low cost, and high temporal resolution, 
its practical applications continue to encounter significant challenges. 
Notably, issues such as user discomfort and vulnerability to artifacts 
persist, particularly in dry electrode technology, where signal quality 
deteriorates with prolonged use. This deterioration poses a substantial 
barrier to the widespread application and commercialization of BCI 
technology (Mridha et  al., 2021). To address these limitations, 
advancements in EEG technology are being actively pursued, with a 
specific emphasis on the development of mobile BCI systems. These 
systems have attracted considerable attention within the research 
community. Alternative approaches, such as the use of ear electrodes 
or intra-aural electrodes, have been proposed to enhance the accuracy 
of signal acquisition (Wang et al., 2017). Furthermore, the integration 
of advanced classification algorithms, including support vector 
machines, neural networks, and decision trees, has markedly 
improved the effectiveness of feature extraction (Gao et al., 2023). In 
parallel, the ubiquity of mobile devices like smartphones has created 
new opportunities for the deployment of mobile BCI systems. For 
instance, Sun et al. introduced a smartphone-based brain-computer 
interface home care system (HCS) that utilizes a single electrode to 
capture EEG signals, providing daily support for patients with motor 
impairments and demonstrating significant usability potential (Sun 
et al., 2020). Similarly, another smartphone-driven BCI system shows 
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promise as an effective tool for restoring communication capabilities 
in patients with severe motor impairments by establishing robust 
communication and control links between brain signals and external 
devices (Velasco-Álvarez et al., 2021).

5.4 Standardization

The issue of standardization is particularly pressing in the field of 
EEG-based BCIs, especially regarding data analysis and performance 
evaluation (Dal Seno et al., 2010). Currently, there is a significant lack of 
unified standards for EEG data analysis. This absence of standardization 
hinders the comparison of research findings, as different studies May 
utilize varying data processing workflows and analytical methods. Such 
inconsistency not only impedes researchers’ ability to interpret existing 
results but also creates uncertainty for new investigators in choosing 
suitable analytical approaches, potentially influencing the trajectory of 
their research (Silvoni et al., 2011). Moreover, the lack of standardized 
data analysis methods obstructs the fair comparison of research 
outcomes, complicating the synthesis and evaluation of results across 
studies (Lebedev and Nicolelis, 2006). Therefore, the establishment of a 
recognized and standardized framework for BCI evaluation metrics is 
critically important. A unified evaluation system would provide clear 
guidelines, ensuring the comparability of different research outcomes 
and thereby facilitating overall progress in the BCI field. In addition, the 
inconsistency in performance evaluation standards poses another 
significant challenge. Different studies often adopt performance metrics 
tailored to their specific research needs, making cross-study comparisons 
difficult (Pfurtscheller and Neuper, 1997). For instance, while some 
studies May prioritize classification accuracy, others might focus on 
system response time or user experience (Ramos-Argüelles et al., 2009). 
This diversity in evaluation criteria complicates the comparative analysis 
of research findings, thereby slowing technological advancement and 
innovation within the field. Consequently, the development of 
standardized BCI evaluation criteria would not only help to align 
research efforts but also promote the overall advancement of the field by 
enabling effective comparison and synthesis of research outcomes. A 
standardized evaluation framework would allow researchers to assess 
technologies against a common benchmark, thereby improving the 
transparency and reproducibility of research findings.

6 Conclusion

In summary, EEG-based adaptive closed-loop BCI systems present 
significant potential for advancing neural rehabilitation, offering 
crucial opportunities to enhance the quality of life and social 
interactions of patients with motor impairments. However, several 
challenges must be addressed to maximize their effectiveness. First, 
improvements in the control and design of BCI systems are essential to 
increase their variability and adaptability, which can help mitigate user 
fatigue and overcome implementation barriers. Additionally, 
addressing the interference caused by abnormal signals is critical for 
improving the accuracy of EEG data. Incorporating a range of signal 
types, including electromyographic and ocular activity, is vital for 
obtaining a comprehensive understanding of users’ physical and 
emotional states, thus enabling a more personalized interaction 
approach. Second, as research into BCI applications is still in its early 

stages, establishing a comprehensive database with standardized 
parameters is essential to facilitate training and application among 
researchers. Finally, the efficacy of BCI applications is heavily reliant 
on advanced deep learning models, underscoring the need for progress 
in training methodologies for EEG data to further enhance BCI 
performance. Future research should concentrate on developing 
multimodal hybrid closed-loop BCI models aimed at improving 
cognitive and executive functions related to motor tasks, promoting 
brain plasticity, and addressing the diverse rehabilitation needs of 
various patient populations. As advancements in artificial intelligence 
continue to unfold, we can anticipate the development of increasingly 
sophisticated BCI systems that not only transform rehabilitation 
practices but also deepen our understanding of brain functions, 
thereby expanding their applications across healthcare, entertainment, 
and educational sectors.
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