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Prenatal alcohol exposure (PAE) refers to the exposure of the developing

fetus due to alcohol consumption during pregnancy and can have life-long

consequences for learning, behavior, and health. Understanding the impact

of PAE on the developing brain manifests challenges due to its complex

structural and functional attributes, which can be addressed by leveraging

machine learning (ML) and deep learning (DL) approaches. While most ML and

DL models have been tailored for adult-centric problems, this work focuses

on applying DL to detect PAE in the pediatric population. This study integrates

the pre-trained simple fully convolutional network (SFCN) as a transfer learning

approach for extracting features and a newly trained classifier to distinguish

between unexposed and PAE participants based on T1-weighted structural

brain magnetic resonance (MR) scans of individuals aged 2–8 years. Among

several varying dataset sizes and augmentation strategy during training, the

classifier secured the highest sensitivity of 88.47% with 85.04% average accuracy

on testing data when considering a balanced dataset with augmentation for

both classes. Moreover, we also preliminarily performed explainability analysis

using the Grad-CAM method, highlighting various brain regions such as corpus

callosum, cerebellum, pons, and white matter as the most important features in

themodel’s decision-making process. Despite the challenges of constructing DL

models for pediatric populations due to the brain’s rapid development, motion

artifacts, and insu�cient data, this work highlights the potential of transfer

learning in situations where data is limited. Furthermore, this study underscores

the importance of preserving a balanced dataset for fair classification and

clarifying the rationale behind themodel’s prediction using explainability analysis.
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1 Introduction

Prenatal alcohol exposure (PAE) can result in structural brain damage

in children, potentially leading to persistent abnormalities in physical,

behavioral, and cognitive development along with various post-natal health

issues such as fetal alcohol spectrum disorder (FASD) (Larkby and Day,

1997). Early detection of the exposure may allow clinicians to initiate earlier

interventions tailored to the specific requirements of the children, guidance on
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effective parenting strategies, medication to reduce the risk of

post-natal disorders, etc. Moreover, an objective marker of alcohol

exposure might be crucial in cases where children lack accurate

prenatal history, assisting in diagnosis and understanding of

potential risks.

Magnetic resonance (MR) imaging has become an effective tool

that non-invasively provides numerous structural and functional

measures of the brain to study developmental processes and

potential abnormalities associated with PAE (Moore and Xia, 2022).

Moreover, the integration of machine learning (ML) and deep

learning (DL) in MR imaging has enhanced its applicability in

terms of supporting clinical diagnosis and decision-making (Rana

and Bhushan, 2023).

However, developing ML and DL models is challenging for

the pediatric population due to the rapidly developing nature

of the brain, and due to motion artifacts that can distort the

signal intensities of the scan, resulting in poor acquisition quality.

Moreover, there is a significant obstacle in developing DL models

because of insufficient training data.

This study aims to incorporate a pre-trained DL model to

perform feature extraction followed by training a new classifier

to distinguish between unexposed participants and participants

with PAE based on T1-weighted structural brain MR scans. A

pre-trained feature extractor is utilized as a transfer learning (TL)

approach to address the drawbacks of limited data and enhance

generalizability by leveraging the knowledge and patterns learned

from large, diverse datasets. TL refers to a technique that transfers

the knowledge obtained from addressing one problem to another

(Raghu et al., 2019). In this study, we considered a particular

type of TL that includes learning generic features from a large

dataset, which entails employing a pre-trained model on a more

minor, targeted dataset to adapt to a new task. In addition, we

performed explainability analysis through heatmap visualization to

understand the rationale behind the model’s prediction, identifying

themost relevant brain portions responsible for the predictions that

might be crucial for clinical decision-making.

The novelty of this work lies in introducing a pre-trained

model to perform feature extraction as a TL technique followed

by a preliminary approach to incorporate explainable artificial

intelligence (AI) technique (Qian et al., 2023) to visualize the

brain portions that are considered the most important features in

the model’s prediction, supporting the transparency and reliability

of the DL approach in PAE analysis. Unlike the majority of

experiments focused on adult data, this study contributes to

the application of the DL technique tailored to the pediatric

population (2–8 years), supported by the TL approach and heatmap

visualization that may assist in performing further analysis of the

PAE condition.

2 Related work

There are relatively few studies using ML and DL techniques to

understand brain alterations associated with PAE.

Little and Beaulieu (2020) conducted a study utilizing T1-

weighted brain MRI to differentiate children with FASD from

controls based on regional brain volumes. Two separate datasets

containing MR scans of participants aged 5.2–19.5 years were

considered where 87 regional brain volumes were extracted using

Freesurfer followed by performing a multivariate support vector

machine (SVM) classification model. The model achieved 77%

accuracy, 64% sensitivity, and 88% specificity on the test data.

Moreover, they separately trained two different models on male

and female data where the accuracy was 70 and 67% for male and

female groups, respectively. Rodriguez et al. (2021) also considered

SVM as the traditional ML approach to classify PAE in rodents

using resting-state functional MR imaging (fMRI). Their findings

demonstrated the efficacy of SVM in detecting PAE in females, with

an accuracy rate of 79.20%, whereas the accuracy on male data was

58.30%. Cortical networks and the hippocampus were implicated

in the classification, leveraging SVM weight analysis. Fraize et al.

(2023) investigated cerebellar volumetric abnormalities in FASD

based on MR data from 89 individuals with FASD and 126 controls

aged 6–20 years. The study incorporated a logistic regression

classifier that discriminated FASD from controls by considering

the allometric scaling relationship between various cerebellar

volumes and total brain volume. Their findings advocated that

intracerebellar gradient might serve as a potential feature to

enhance the model’s specificity.

In the recent past, only a few investigations were conducted

focusing on deep neural networks in the brain MR-based PAE

or FASD study. Duarte et al. (2021) presented an experiment

assessing an artificial neural network (ANN) to distinguish children

with FASD from controls based on psychometric, saccade eye

movement, and diffusion tensor imaging (DTI) data. The study

investigated several configurations of ANNwith dense layers where

the best performance with an 88.46% accuracy was achieved for

psychometric data. On the other hand, another configuration of

ANN with a feature layer was able to achieve 75% accuracy for

DTI data. Their findings showed the potentiality of ANN over

traditional ML methods. Instead of using MR modalities, Liu et al.

(2023) investigated the correlation between PAE and children’s

facial shape utilizing 3D facial images of individuals aged from

9 to 13 years. The study employed a convolutional network for

non-linear dimensionality reduction. The findings illustrated that

facial shape may correlate with low-to-moderate levels of PAE, with

lessening trends experienced while children get older.

Prior studies lack the extensive investigation of DL approaches

to extract features from brain MR scans to further analyze

individuals with PAE. Moreover, there is a lack of clarity regarding

the explainability of the classification results, leaving a knowledge

gap about the brain regions that are responsible for a particular

prediction. Our experiments intended to address these limitations

by introducing DL techniques, specifically for the pediatric

population, where TL was employed to utilize a pre-trained model

for feature extraction followed by classifying between participants

with PAE and unexposed and introducing explainability to support

the reliability of our proposed DL approach in the PAE study.

3 Materials and methods

3.1 Dataset

The dataset incorporates 279 publicly available T1-weighted

structural brain MR scans from unexposed controls (Reynolds

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1434421
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Das et al. 10.3389/fncom.2024.1434421

et al., 2020) and 122 MR scans from individuals with PAE,

where the T1-weighted scans are not publicly accessible. However,

Kar et al. (2021) presented the data collection process for the

PAE participants, where the identification of PAE was confirmed

through caregiver support groups, early intervention services, and

Alberta Children’s Services in Alberta, Canada. In this study, an

annotated dataset for both groups was incorporated, where the

annotation indicated whether each scan belonged to an unexposed

control or a PAE participant.

The scans were acquired from both male and female

participants aged between 2 and 8 years for unexposed controls

and PAE participants aged from 2 to 7 years. Using the Fast Spoiled

Gradient Echo (FSPGR) BRAVO sequence with a 32-channel head

coil, the General Electric 3T MR750w scanner generated brain MR

scans, with a matrix size of 512 × 512 with 210 slices and a field of

view of 23.0 cm based on the flip angle = 12o, TR = 8.23 ms, TE

= 3.76 ms, TI= 540 ms, isotropic voxel size= 0.9×0.9×0.9mm3

(Reynolds et al., 2020).

3.2 Data preprocessing

Several preprocessing steps were executed, including skull

stripping (SS), registration, bias field correction, intensity

normalization, and resizing. Based on the findings of our previous

study on the efficiency of SSmethods for pediatric populations (Das

et al., 2023), we utilized FSL-BET (Smith, 2002) and SynthStrip

(Hoopes et al., 2022) for SS, where the skull and other non-brain

tissues were eliminated. A pediatric-specific atlas was considered to

register all scans to a common space using FSL-FLIRT (Jenkinson

et al., 2012). The N4 technique (Elyounssi et al., 2023) was

implemented with a Python-based package called SimpleITK

for bias field correction, where no additional acquisitions were

considered for bias estimation. Finally, voxel intensities were

standardized within a range of 0–1 using min-max normalization

followed by resizing scans to meet the input shape requirement

of the deep learning model for feature extraction. Additionally,

random rotation was employed using MONAI transform (Cardoso

et al., 2022) with the default angle value of 10 degrees across three

axes as an augmentation approach to increase the training set

volume. The probability value was set to 1, ensuring the rotation of

all scans in the training set.

3.3 Feature extraction

To perform feature extraction, we utilized the simple fully

convolutional network (SFCN) model that was previously trained

on the UK-Biobank dataset containing adult data and initially

created for precise brain age prediction and biological sex

classification in the Predictive Analysis Challenge (PAC) in 2019

(Gong et al., 2021). The SFCN model was considered due to the

consistent preprocessing steps between the UK-Biobank dataset

and our preprocessing setting, ensuring effective utilization of TL

in feature extraction. In this study, we removed the classification

layers from the SFCN architecture and only retained the feature

extraction part comprising six convolutional blocks, shown in

FIGURE 1

The architecture of the SFCN model’s feature extraction part

includes six blocks of convolution where each of the first five blocks

contains a 3D convolutional layer, a batch normalization, a max

pooling, and ReLU activation layers; whereas the max pooling layer

is absent in the final block, providing with a feature map.

Figure 1. A 3× 3× 3 3D convolutional layer, a batch normalization

layer, a max pooling layer, and a ReLU activation layer are all

present in each of the blocks (Gong et al., 2021). As it moves

deeper into the layers, the model’s design swiftly shrinks the spatial

dimensions of the input data by reducing them to 5 × 6 × 5 in

just five blocks. The sixth block skips the max pooling layer and

adds a 1× 1× 1 3D convolutional layer, which boosts non-linearity

while maintaining the spatial dimensions of the feature map. In our

study, the pre-trained SFCNmodel’s weight and biases were frozen,

thus not altering the feature extraction part, highlighting the TL

approach by leveraging the previously trained feature extractor to

operate on pediatric data. Each preprocessed brain MR scan was

fed into the pre-trained feature extractor, and the result from the

final convolutional layer was a feature representation flattened to a

one-dimensional vector.

3.4 Classification

We added a new classifier layer on top of the pre-trained

feature extractor to classify unexposed controls vs. children with

PAE. The classifier has 512 fully connected nodes in its first layer.

A ReLU activation (Lin and Shen, 2018), a dropout layer with a

dropout rate of 0.5, and a final fully connected layer with a single

output node with sigmoid activation for binary classification. We

utilized binary cross-entropy loss and Adam optimizer (Khan et al.,

2021) with a learning rate of 0.001 to train the classifier with 100

epochs. To prevent overfitting, the classifier was trained with 5-

fold stratified cross-validation, where the dataset was divided into

80, 10, and 10% for training, validation, and testing, respectively.

We performed classification comprising four different cases by

considering distinct augmentation approach and varying sizes of

the dataset.

Case I: Imbalanced sataset with augmenting both classes - In this

case, we considered the entire dataset containing 279 unexposed
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scans and 122 scans of PAE participants, resulting in an imbalance

between the two classes. The augmentation was performed on both

classes during the classifier training.

Case II: Imbalanced dataset with augmenting only PAE class -

This case also included the entire dataset to train, validate, and test

the model. However, we performed augmentation only on the PAE

class, while keeping the unexposed scans without augmentation

during training.

Case III: Balanced dataset with augmenting both classes - In

this case, we constructed a balanced dataset by considering an

equal number of scans from both classes which contains randomly

selected 122 unexposed scans and 122 scans of PAE. Subsequently,

augmentation was employed in both classes.

Case IV: Balanced dataset with no augmentation - In this setup,

we considered the balanced dataset for the classification. However,

no augmentation was introduced to the training dataset.

3.5 Explainability analysis

To evaluate the explainability of the feature extraction step,

we utilized gradient-weighted class activation mapping (Grad-

CAM), a method of visualizing the most relevant areas of a scan

that the model considers during prediction as a heatmap (Zhang

et al., 2021). The selection of Grad-CAM can be corroborated

by its ability to clarify the reasoning behind the complex model’s

decision-making process without sacrificing accuracy, maintaining

a balance between model explainability and high accuracy. The

heatmap was constructed by leveraging the gradient flow across

the convolutional layer and weighing the feature map using the

gradient. Consequently, the heatmap was resized to the input

scan size to generate a blended scan by overlaying the heatmap

and input MR scan. Grad-CAM based heatmap highlights specific

brain regions since it identifies areas where the model’s activation

is highly influenced by the presence of patterns associated with

unexposed and PAE data. The heatmaps were generated using

feature maps before performing different classification settings

which allowed us to obtain uniform heatmaps across all cases

and observe the brain regions that were considered as important

features in classification layers.

3.6 Statistical analysis

A statistical t-test (Moore, 1996) was introduced to observe

the significance level of the brain regions that were important in

the model’s prediction process between unexposed controls and

PAE individuals. We considered an independent two-sample t-test

based on the mean volume of the segmented region to compare

the significance of brain area (feature) between the two groups.

Finally, t-statistic and p-value were utilized to understand whether

the observed differences were statistically significant or not.

4 Results

Table 1 illustrates the classifier’s performance on the testing

dataset by considering sensitivity, specificity, and average accuracy

TABLE 1 Comparison of sensitivity, specificity, and average accuracy with

standard deviation on the testing dataset for four di�erent cases where

case I and case II experienced a higher specificity but a lower sensitivity

score. Conversely, cases III and IV exhibited a higher sensitivity and a high

average accuracy and deviation.

Cases Sensitivity
(%)

Specificity
(%)

Avg. acc. (%)
± Std. dev.

I. Imbalanced

dataset & Aug. both

classes

69.55 94.73 86.29± 3.64

II. Imbalanced

dataset & Aug. only

PAE class

66.13 95.86 85.91± 3.97

III. Balanced

dataset & Aug. both

classes

88.47 82.14 85.04 ± 5.44

IV. Balanced

dataset & No aug.

88.60 84.34 86.29± 4.54

across 5-fold. In case I, a sensitivity of 69.55% and specificity

of 94.73% along with an average accuracy of 86.29% and a

standard deviation of 3.64 were experienced, where training

data of both classes were augmented. In case II, the model

achieved 66.13% sensitivity along with a 95.86% specificity score,

resulting in an average accuracy of 85.91% with a deviation of

3.97, when only the PAE data was augmented during training.

In case III, the sensitivity and specificity scores were 88.47

and 82.14%, respectively when we considered an equal number

of augmented scans during training. In this case, the model

secured an average accuracy of 85.04% with a comparatively

higher deviation of 5.44 on the testing dataset. However, a

slightly higher sensitivity of 88.60% and specificity of 84.34%

along with an average accuracy of 86.29% were experienced

in case IV, where no augmentation was introduced to the

training dataset.

The average losses on the validation dataset across 5-

fold were also analyzed, illustrated in Figure 2, where we

observed an inconsistent decrease in the average loss for

case I, case II, and case IV. On the other hand, case III

initially experienced a higher loss for the second fold. However,

a gradual decrement in the loss was experienced in the

following folds.

The explainability of the feature extractor is shown in Figure 3,

by visualizing the heatmap for all scan planes using Grad-

CAM. In this study, the pre-trained feature extractor recognized

a few brain portions, such as corpus callosum, cerebellum,

pons, and brain white matter denoted by warm red color, as

the most relevant brain areas for leading the decision-making

process and distinguishing between unexposed and participants

with PAE.

While brain white matter appeared as one of the

important tissues in the model’s prediction process, a

volume-based statistical t-test to compare the significance

of the white matter region between the unexposed and

PAE groups resulted in a t-statistic of −0.73 and a

p-value of 0.47.
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FIGURE 2

Visualization of average validation loss across 5-fold for three di�erent cases, where case I (blue), case II (green), and case IV (purple) experienced an

inconsistent loss whereas case III (red) shows a continuous reduction in loss after the second fold.

FIGURE 3

Heatmap visualization using Grad-CAM, where corpus callosum, pons, cerebellum, and white matter were identified as the most relevant features of

the brain (warm red color), involved in the model’s decision-making process.

5 Discussion

The pediatric brain develops rapidly which creates challenges

regarding model sensitivity. Most of the ML and DL tools have

been developed for adults. Therefore, introducing DL techniques to

work on pediatric problems may have a notable impact on pediatric

research and clinical practice. This study aimed to employ DL for

the pediatric population which involves constructing a classifier

that can distinguish between unexposed and PAE participants

based on the features extracted from brain MR scans with a pre-

trained model.

The performance of the classifier on the testing dataset in four

different contexts revealed that augmenting only the PAE data

(case II) resulted in a reduction in sensitivity while preserving a

consistent specificity score. This finding highlights the importance

of augmenting scans of both classes, since augmenting a single class

may not adequately represent the diversity of the dataset.

However, the model’s sensitivity may not be enhanced solely by

augmenting scans of both classes if the model is trained on a class-

imbalanced dataset. Case III and case IV, where an equal number of

scans from both classes were considered during training, exhibited

higher sensitivity of the model than the other two cases on the

testing dataset, emphasizing the importance of addressing the class

imbalance in training data.

Moreover, imbalanced class distributions such as in case I and

case II may introduce confounding factors in evaluating themodel’s
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performance. A high specificity, particularly for the unexposed

class, might inflate testing set accuracy. As a result, these metrics

may not fairly represent the model’s ability to generalize across

classes. Conversely, in case III and case IV, the convergence of

the sensitivity and specificity along with nearly identical test set

accuracy indicates that the model may identify necessary patterns

and fairly classify both unexposed and PAE when the dataset is

balanced.

Additionally, in case I and case II, despite exhibiting higher

specificity and test set accuracy, the sensitivity score (true positive

rate) was noticeably lower than case III and case IV which indicates

that the model struggled to distinguish PAE scans accurately,

resulting in inconsistent performance. On the other hand, the

model’s consistency on the well-balanced dataset (cases III and

IV) can be underscored by its higher sensitivity score along with

nearly similar specificity and average accuracy, leading to a superior

classification setting compared to the other two cases.

Furthermore, the investigation of average losses across 5-fold

on the validation dataset presents insights into the reliability of

the model for different experimental settings. The inconsistent

trend of average losses for case I and case II suggests potential

challenges encountered by the model during the learning phase

due to the imbalanced dataset and the absence of augmentation

for both classes. On the other hand, although case IV performed

slightly better than case III on the test dataset, it is also noticeable

that the average validation loss exhibited greater inconsistency

when augmentation was absent, referring to the importance of

augmentation in a limited data setting to ensure consistent learning

across 5-folds. However, despite experiencing an initial higher loss,

a decreasing trend in the validation loss for case III indicates a

more steady learning process and the reliability of the model in

the well-balanced augmented dataset. Although the augmentation

might not be representative of higher accuracy, it could play a

critical role in reducing the validation loss and ensuring consistent

performance.

In this study, different brain regions considered in decision-

making were illustrated to provide the model’s explainability

which may assist clinicians in understanding the rationale behind

the model’s prediction. This study highlights the involvement

of the corpus callosum in the model’s prediction, aligning with

a prior investigation conducted by Sowell et al. (2001), which

also indicated the malformations of the corpus callosum due to

alcohol exposure. Moreover, the cerebellum was found in another

experiment managed by Bookstein et al. (2006), indicating its

vulnerability to the effects of alcohol exposure. The cerebellum was

also considered a responsible feature in our experiment. Moreover,

this work emphasizes the further detailed investigation of brain

white matter since the entire white matter was considered the

essential feature in the prediction process. This finding can be

corroborated by introducing a prior work conducted by Kar et al.

(2021), where they observed a slower white matter development in

children with PAE compared to unexposed controls. Furthermore,

the pons is taken into account as an important feature during

decision-making, suggesting that this brain area may be affected

in children due to alcohol exposure. The visual inspection of all

heatmaps confirmed the consistent activation patterns of these

brain regions.

The consistency of the DL approach can be underscored by

its effectiveness in identifying similar features across the dataset.

Moreover, aligning our findings with previous literature highlights

the significance of explainability analysis and further strengthens

the relevance of this study in PAE analysis. Since DL models

are usually considered black boxes (Arrieta et al., 2020), leaving

an information gap regarding the reasoning behind the model’s

prediction. In this study, introducing the explainability technique

enhanced the transparency, trustworthiness, and accountability

of the DL model by enabling insights into its decision-making

process. Moreover, understanding brain biomarkers contributing

to PAE classification may guide targeted screening and treatment

strategies.

While explainability analysis demonstrated various brain

regions responsible for the model’s prediction process, examining

the significance level of those brain regions between unexposed

controls and PAE groups might be crucial. However, the absence

of an age-specific region-based atlas for the pediatric population

(2–8 years old) limits the segmentation of those brain regions. This

study generated only the white matter segmentation followed by

a volume-based t-test, where, a t-statistic of −0.73 indicates that

the mean white matter volume in the PAE group is slightly lower

than in the unexposed control group. However, a higher p-value of

0.47 demonstrates that the difference is not statistically significant,

mentioning that there is a high probability that any observed

difference in white matter volume between the two groups is due to

random chance rather than a true underlying difference. The white

matter alone may not be the differentiator between the two groups.

Instead, other brain regions might need to be considered for more

comprehensive analysis.

Although our findings correlate with prior experimental results,

limitations still exist in the model’s robustness due to limited

pediatric brain MR scans. In addition, the applicability of our

proposed approach to broader pediatric groups with distinct

demographic and clinical characteristics remains unknown.

Obtaining more data will allow us to train the model from

scratch, which may incorporate more relevant features associated

with PAE, potentially leading to improved accuracy in classifying

unexposed and PAE participants. Moreover, the study could be

extended in the future by incorporating other DL models and

explainability techniques to validate the findings and further

investigate the significance level of all relevant features between

unexposed controls and PAE.

6 Conclusion

This study demonstrated the application of DL in the pediatric

population (2–8 years) to distinguish between unexposed and

PAE participants based on T1-weighted structural brain MR

scans. We incorporated the pre-trained SFCN model as a feature

extractor, highlighting the TL approach followed by training a

classifier on the extracted features. Moreover, this work showcased

the rationale behind the model’s decision-making process by

visualizing heatmaps with the Grad-CAM technique. Overall, we

highlighted the potential of DL in analyzing pediatric brains

corroborated by TL while dealing with a limited amount of data.
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This work also emphasized the requirement for a balanced dataset

to achieve higher sensitivity (true positive rate), leading to a

fair classification (consistency between sensitivity and specificity)

for both classes which may ensure the model’s generalizability.

In addition, incorporating explainability analysis enabled us to

observe the most important features considered in the model’s

decision-making process, supporting the transparency of the

model. However, it is essential to note that this analysis has not

been examined on other age groups such as infants or teenagers,

leaving a knowledge gap regarding its extensive applicability. Our

future investigation includes considering other DL models, fine-

tuning the model to improve performance, undertaking a more in-

depth investigation of explainability to observe the rationale behind

the model’s prediction with other explainable AI techniques, and

performing a comprehensive analysis between two groups using

statistical approaches.
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