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Introduction: As emerging technologies enable measurement of precise details 
of the activity within microcircuits at ever-increasing scales, there is a growing 
need to identify the salient features and patterns within the neural populations 
that represent physiologically and behaviorally relevant aspects of the network. 
Accumulating evidence from recordings of large neural populations suggests 
that neural population activity frequently exhibits relatively low-dimensional 
structure, with a small number of variables explaining a substantial fraction of 
the structure of the activity. While such structure has been observed across 
the brain, it is not known how reduced-dimension representations of neural 
population activity relate to classical metrics of “brain state,” typically described 
in terms of fluctuations in the local field potential (LFP), single-cell activity, and 
behavioral metrics.

Methods: Hidden state models were fit to spontaneous spiking activity of 
populations of neurons, recorded in the whisker area of primary somatosensory 
cortex of awake mice. Classic measures of cortical state in S1, including the LFP 
and whisking activity, were compared to the dynamics of states inferred from 
spiking activity.

Results: A hidden Markov model fit the population spiking data well with a 
relatively small number of states, and putative inhibitory neurons played an 
outsize role in determining the latent state dynamics. Spiking states inferred 
from the model were more informative of the cortical state than a direct readout 
of the spiking activity of single neurons or of the population. Further, the spiking 
states predicted both the trial-by-trial variability in sensory responses and one 
aspect of behavior, whisking activity.

Discussion: Our results show how classical measurements of brain state relate 
to neural population spiking dynamics at the scale of the microcircuit and 
provide an approach for quantitative mapping of brain state dynamics across 
brain areas.
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1 Introduction

Since the earliest electrophysiological measurements, it has been 
widely acknowledged that the brain undergoes gross changes in 
activity across a wide range of conditions related to sleep, arousal, 
attention, behavior, etc., collectively referred to as reflecting “brain 
state.” These changes are qualitatively apparent in measures such as the 
local field potential (LFP) and electroencephalogram (EEG) and have 
been conventionally quantified through changes in the spectral 
content across distinct frequency bands (Berger, 1929; Loomis et al., 
1937; Başar, 1988; Steriade et al., 1993; Fernandez et al., 2016). Indeed, 
these measures have been shown to be  strongly correlated with 
externally observable behavior, and thus capture, to some extent, 
behaviorally relevant changes in intrinsic brain activity. Although it 
has been shown in numerous studies that these measures of brain state 
are predictive of general levels of excitability, it remains unclear how 
they relate to the spiking activity of neural populations.

Descriptions of cortical state derive from decades of observations 
of behavior and careful circuit dissections of fluctuations in neural 
activity and behavior (McCormick et al., 2020). Multiple studies have 
shown fluctuations in metrics of cortical activity are related to 
fluctuations in cognitive and sensorimotor behaviors in humans 
(Monto et al., 2008; He and Zempel, 2013) as well as in animal models 
(Pinto et al., 2013; Engel et al., 2016; Beaman et al., 2017; Speed et al., 
2019; Salkoff et al., 2020). A key model system for such studies is the 
mouse somatosensory cortex, in which states of wakefulness have 
been extensively characterized using the LFP and the activity patterns 
of single neurons (Petersen et al., 2003; Poulet and Petersen, 2008; 
Bennett et  al., 2013; Eggermann et  al., 2014; Vinck et  al., 2015; 
Fernandez et al., 2016; Pala and Petersen, 2018; Sederberg et al., 2019; 
Senzai et al., 2019). In the somatosensory cortex, “state” changes in 
spontaneous activity may be  described on a continuum, from 
“deactivated” to “activated” (Poulet and Crochet, 2019), with the 
deactivated state characterized by local field potential (LFP) activity 
dominated by low-frequency components (1–10 Hz). The cortical state 
prior to sensory stimulation is predictive of trial-by-trial variation in 
the sensory response (Haslinger et al., 2006; Sederberg et al., 2019), 
and LFP state is informative of behavioral metrics, including whisking 
activity (Fernandez et  al., 2016). Studies of single neurons have 
revealed cell-type-specific changes in firing rates with fluctuations in 
activation level (Gentet et al., 2010, 2012; Pala and Petersen, 2018), 
suggesting that the conventional notion of cortical state may 
be directly reflected in correlated fluctuations across the neuronal 
population, but this has not been studied in detail.

A picture that is emerging from analysis of simultaneous 
recordings of large populations of neurons is that, in many systems, a 
small number of latent variables explain much of the spatiotemporal 
structure of neural activity (Köster et al., 2014; Okun et al., 2015; 
Musall et al., 2019; Stringer et al., 2019), and that frequently these 
latent variables are related to observed behavior (Musall et al., 2019; 
Stringer et al., 2019). Analytic approaches based on inferring these 
latent dynamical variables can predict future neural activity as well as 
improve decoder performance in brain-machine interface applications 
(Pandarinath et al., 2018). However, the connection between inferred 
latent variables and established measures of brain state is not 
well understood.

Here, we use unsupervised learning to model spontaneous spiking 
activity recorded in mouse somatosensory cortex during wakefulness 

and relate the population spiking states inferred from the model to 
classical LFP-based measures of state in mouse S1. We  adopt an 
approach previously used to examine population spiking state 
dynamics under both sensory-driven and spontaneous conditions 
(Radons et al., 1994; Abeles et al., 1995; Fontanini and Katz, 2008; 
Mazzucato et al., 2015). We ‘open up the black box’ of the model to 
examine the structure of learned states, finding that putative inhibitory 
neurons play a determinative role in defining the population spiking 
state. We further examined the relationship between spiking states and 
classic signatures of cortical state in S1 of awake mice, finding that 
spiking states are highly informative of whisking activity as well as 
predictive of fluctuations in sensory responses. Our results 
demonstrate how unsupervised statistical modeling of populations of 
individual neuron spiking activity dynamics extends classical metrics 
of brain state.

2 Results

2.1 Latent state model of spiking activity

We developed a data-driven modeling framework to relate latent 
states of spontaneous spiking activity to LFP and whisking behavior 
characteristics and trial-by-trial variations in sensory-evoked 
responses. Recordings of the LFP and single-neuron spiking activity 
were acquired using linear multi-electrode arrays (Neuronexus 
A1x32-5mm-25-177-A32) in the primary somatosensory cortex (S1) 
of the awake, head-fixed mouse while monitoring whisking activity 
with videography (Figure 1A, see Methods). We analyzed spiking 
activity from an average of 26 neurons in each recording (range 9 to 
32, N = 6 recordings, see Table  1; see Methods for spike sorting 
metrics) distributed across layers 2 through 5 and categorized as FS 
(fast-spiking) inhibitory neurons and RS (regular-spiking) putative 
excitatory neurons as a function of their spike waveform 
(Figures 1B,C).

Spontaneous spiking activity in a population of FS (blue) and RS 
(red) neurons (10-s sample, Figure 1D) was used to fit a Poisson-
emission hidden Markov model (HMM, see Methods), which has 
previously been used to capture coordinated firing rate changes across 
populations of neurons (Radons et  al., 1994; Abeles et  al., 1995; 
Fontanini and Katz, 2008; Mazzucato et  al., 2015). The fitted 
parameters, estimated on half of the recording (Methods), are 
comprised of firing rates spk(n sλ ) (spikes per 40-ms time bin) for each 
state spks  and single neuron n (Figure  1E) and the transition 
probabilities ijA  between states (Figure 1G). In Figure 1, the states are 
ordered by the average firing rate across cells, and the cells are grouped 
with the FS neurons (blue) and RS neurons (red) together.

Under the fitted model, we computed the probability that the 
population is in a particular state at each point in time, shown over 
the 10 s epoch for this example (Figure 1F). To get a qualitative sense 
of the structure captured by the model, note the “state 6” segments in 
the population raster shown in Figure 1D: these periods are marked 
by higher rates in the FS neurons (cells 26 to 32) and a few of the RS 
neurons (Figure 1C). Some spike-states have overall lower firing rates 
than others (e.g., state 1 with 0.13 spikes/bin versus state 7 with 0.54 
spikes/bin), but the distinction between states also derives from 
differences in the pattern of firing, as quantified by the Bhattacharyya 
coefficient, a generalized measure of differences between multinomial 
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FIGURE 1

Multi-state dynamics of population spiking activity are primarily driven by FS cells. (A) Spontaneous activity was recorded in awake mouse S1 using a 
32-channel laminar array. (B) Average waveform for single units identified at regular spiking (RS, red) and fast spiking (FS, blue) based on the trough-to-
peak distance (“T-to-P”). (C) Distribution of trough-to-peak distances across recorded single units showing. T-to-p values less than 0.4  ms were 
classified as FS units and greater than 0.5  ms as RS units. (D) Spontaneous spiking activity recorded across 32 cells in awake mouse S1. Spikes from FS 
cells in blue; from RS cells in red. (E–G) The HMM used for inferring states in panel (F) is characterized by the pattern of firing rates in each state E and 

the probability of transitioning from one state to the other (G). (E) Firing rate parameters ( )spkλ  
 

sn  across the population of cells, including FS cells 

(blue) and RS cells (red). Bar length is the rate in spikes per 40-ms bin. (F) States inferred under a Hidden Markov Model (HMM) during the spontaneous 
segment in (A). Each row is a state, and each column is a time bin. The shading (white to black) indicates the inferred probability of being in each state 
at each point in time. (G) Matrix of state transition probabilities (Aij). States in E–G have been ordered based on average state-dependent firing rate 
across all cells. (H) Gain in the log-likelihood relative to the one-state model for each recording (bold, example in D–G). All recordings were better fit 
by a model with multiple states than by the one-state (constant rate) model. Error bars are suppressed for clarity and are approximately 0.15 based on 
the variance across segments of the data (Methods). (I) Impact of individual cells on the fit to the population was assess by shuffling spike counts 
across time for each single neuron, then recomputing the likelihood using the single-neuron shuffle. Single-neuron shuffle log likelihood is plotted 
separately for FS neurons (blue) and RS neurons (red). Top horizontal line: full-population (no shuffle) likelihood for the 7-state model (shown, D–G). 
(J) Average single-neuron shuffle loss in the log-likelihood for all recordings. Shuffling an FS neuron decreased the log-likelihood more than shuffling 
an RS neuron.

https://doi.org/10.3389/fncom.2024.1445621
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sederberg et al.� 10.3389/fncom.2024.1445621

Frontiers in Computational Neuroscience 04 frontiersin.org

distributions, which ranges from 0 (no overlap) to 1 (full overlap). For 
instance, state 4 and state 5 have similar average firing rates (0.29 
spikes/bin and 0.36 spikes/bin, respectively), but are highly 
distinguishable based on spiking pattern (Bhattacharyya coefficient of 

132.8 10−⋅ ; see Methods).
To assess model fit quality, we computed the likelihood on the 

reserved test set for models with 1 to 15 states. For all recordings, a 
multi-state model had a higher likelihood than either the 1-state 
model or the shuffled model (Figure 1H; Table 1). However, it was not 
possible to identify a clear best choice for the number of states based 
on a cross-validated likelihood estimate. Thus, in subsequent analyses, 
we continue to show examples from the seven-state model, as after this 
point, the gain from additional states is minimal. All subsequent 
analyses were carried out for models fit with 2 to 10 states, with results 
shown in summary for different numbers of states.

We next examined the contribution of individual neurons to the 
model fit using a shuffle test. For each neuron, we shuffled the spike 
counts across time, thus creating a surrogate dataset preserving 
structure in all neurons except the shuffled cell. We recomputed the 
data likelihood using this surrogate set and compare the single-neuron 
shuffle likelihood to the original likelihood computed in Figure 1H. In 
the example recording (Figure 1I), we find that likelihood dropped 
more when an FS neuron was shuffled than when an RS neuron was 
shuffled, and this trend held across all recordings (p < 0.01, z = 7.0, 
hierarchical bootstrap over N = 6 recordings, with 104 shuffles, 
Figure 1J). This effect was not entirely explained by the higher firing 
rates of FS neurons relative to RS neurons, as we observed the same 
difference between FS and RS neurons when comparing the coefficient 
of variation of state-dependent firing rates extracted from model 
parameters ( spk(n sλ ); pboot < 0.01; z = 3.1, hierarchical bootstrap). 
We conclude that FS neurons played a larger role within the model 
than RS neurons.

Finally, to assess overall model fit quality, we compared the 
likelihood computed for the test set to an idealized case, in which 
observations were generated from the fitted model. Using models 
( ( )spk,ij nA sλ , with 1 to 15 states) that were fit to the data as 
previously described, we simulated observations, matched to the 
data length of the original recording. Qualitatively, we found that 
a seven-state model (Figure 2A; parameters from Figure 1) exhibits 
coordinated fluctuations in activity observed across multiple single 
neurons. Such co-fluctuations and temporal modulation are 
missing in the one-state model (Figure 2B). In the simulation, the 

sequence of states (simulation ground truth, Figure 2C, top) was 
known, and was accurately inferred from the simulated 
observations (inferred states, Figure  2C, bottom). Thus, 
qualitatively, the multi-state Poisson-HMM captures the structure 
across single neurons and across time observed in the 
recorded data.

To quantitatively assess model fits, we compared likelihood of 
decoded states in the data to that from ideal simulations and null tests 
generated by shuffling data. We  first compared the likelihood of 
observations from simulated spontaneous S1 spiking (from the known 
model) to that of the recorded data (using a model fit on the reserved 
training set). Simulation length was matched to that of the recorded 
data (see Methods). We plot the log-likelihood (normalized by the 
number of time bins times the number of neurons) for data (filled 
black circles) and simulation (open purple circles) as a function of the 
number of states in the model (Figure 2D). For this recording, the 
log-likelihood of the data matched that of the simulated data, within 
the margin of error expected for finite recording length, for models 
with five states and more, indicating a fit that is as good as if the model 
were the “true” generating model for the data.

2.2 Relationship of LFP and spiking states

We next quantified the relationship between spiking states and the 
LFP, using an established metric for defining ‘states’ of the LFP (Poulet 
and Crochet, 2019). Here LFP state is determined by calculating a 
power spectrogram of the LFP (Methods) and comparing the power 
in low-frequency (LF, 1–10 Hz) components to the power in high-
frequency (HF, 30–90 Hz) components (Figure 3B). We refer to these 
as “LFP state L” (LF-dominant, with high LF/HF, green, Figures 3A,B) 
and “LFP state H” (HF-dominant, with low LF/HF, black, 
Figures 3A,B). The spiking states inferred during a segment of LFP 
state H (Figure 3C) and LFP state L (Figure 3D) are shown with the 
population spike raster overlaid. Transparent overlay (graded from 
black to green) represents distinct spiking states during the recording 
intervals for which spike-state was assigned with >80% probability. 
This example illustrates a tendency toward observing spiking states 1 
and 2 during LFP state H (Figure  3C) and a tendency toward 
observing spiking states 5, 6, and 7 during LFP state L (Figure 3D).

To quantify the tendency of specific spiking states to occur more 
often during LFP state H or L, we divided the recording based on LFP 
state, then computed the histogram of inferred spiking state restricted 
to state H (Figure 3E, left) or state L (Figure 3E, right). The color map 
used for spiking states in Figure 3 was ordered based on the LFP, using 
the ratio of time each spiking state was in LFP state H to LFP state 
L. This ordering differs from that used in Figure 1, in which states were 
sorted by average firing rate, which produced a transition matrix with 
many off-diagonal elements (Figure  3F). In contrast, LFP-based 
sorting revealed nearly block-diagonal structure in the spiking state 
transition matrix (Figure  3G). We  visualized the spiking state 
transition matrix as a directed graph (Figure 3H), with a node for each 
state and in which the thickness of the arrows between spiking states 
represents the probability of a transition. Spiking state 1 is directly 
connected to spiking state 2 (both more likely in LFP state H) but 
moving from spiking states 1 and 2 to states 5, 6, and 7(more likely in 
LFP state L) requires multiple steps. This indicates that while 
traversing the graph according to the transition matrix probabilities, 

TABLE 1  Log likelihood calculations under Poisson-HMM.

Recording Data 
(1-state 
model)

Data 
(7-state 
model)

Simulation 
(7-state)

Shuffled 
(7-state)

1-1 −428,549 −399,075 −401,893 −437,928

1-2 −295,463 −279,170 −269,299 −287,421

2-1 −426,533 −400,726 −401,244 −431,003

3-1 −255,510 −220,216 −217,860 −252,243

3-2 −508,583 −469,814 −448,926 −500,754

4-1 −198,327 −185,925 −184,549 −200,262

Comparison of data (or simulated data) log-likelihoods under the Poisson-HMM, for the 
recorded data (1-state), recorded data (7-state), simulated data (7-state), shuffled simulated 
data (7-state). Simulation length is matched to recorded data length, so comparisons can 
be made within each row, but not directly across rows.
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the system will tend to stay in LFP-H spiking states or LFP-L spiking 
states for long periods of time.

Based on the tendency for spiking states to align with one LFP 
state or the other, we expected that using the state representation of 
spiking activity would predict the LFP state (H or L). Thus, we built a 
binary classifier (Figure 4) to predict the LFP state (H or L) based on 
either direct spiking metrics (single neuron spike count, summed 
population spike count, or population vector) or on the inferred 
spiking states obtained using the HMM. Because LF/HF required a 1-s 
window to compute, for this analysis 40-ms time bins were sampled 
at 1 Hz across the experiment, then divided randomly into training 
and test sets, balancing the number of observations associated with 
each LFP state so that chance-level performance was 50%. For 
decoding, we  used an SVM classifier with a linear kernel 
(see Methods).

To examine what aspects of population activity were informative 
of LFP state, we built a series of decoders. In the simplest decoder, the 
predictor was the summed spike counts across the full population 
(single recording example, “summed population rate,” Figure  4A, 
dashed black line), which was a poor predictor of LFP state (accuracy, 
54% ± 5%, range across 6 recordings 46 to 59%). To utilize the 
structure in the population firing pattern, we next constructed a linear 
classifier based on the population rate vector. The population vector 
classifier performed better than the summed-activity classifier 
(Figure 4A, “population vector,” solid black line), with performance in 
this example recording of 66% ± 3% (across cross-validation folds). 
Finally, we predicted LFP state using as input the spiking state inferred 
under models having from 2 to 10 spiking states (Figure 4A, “spiking 

states,” solid purple line). The highest decoding performance was 
achieved by models with at least 4 states, above which decoding 
performance leveled off.

To determine whether the accuracy of decoding LFP state was 
explained by a minority of high-performing cells, we classified LFP 
states using as predictors spike counts from single FS or RS neurons 
(Figure 4B). A few FS neurons were informative of LFP state (accuracy 
of best FS in each recording, 58 ± 7%, range 53 to 70%), but most 
neurons decoded LFP state poorly. There was no overall difference in 
average decoding accuracy of RS neurons compared to FS neurons 
[average decoding accuracy: 50% ± 2% (RS), N = 119; 52% ± 4% (FS), 
N = 39]. Across five of six recordings, the best-performing decoders 
were based on classifiers that used inferred spiking states (Figure 4C), 
achieving an average accuracy of 71% ± 10% (n = 6 recordings, range 
61 to 85%). Figure 4C shows the decoding accuracy using 7 spiking 
states. In comparison, decoding with the population vector was lower 
by 14 percentage points (n = 6 recordings, 57% ± 7%).

2.3 Spiking states are predictive of 
trial-by-trial variability in sensory-evoked 
responses

Given previous reports of the predictive nature of ongoing LFP 
activity on sensory evoked responses in this pathway (Sederberg et al., 
2019), the relationship between spiking states and the LFP suggests 
similar predictive capabilities through the latent spiking states. 
We now directly examine the extent to which latent spiking states are 

FIGURE 2

Neural data was fit by the HMM as well as surrogate data generated directly from the model. (A) Seven-state model simulation for 32 cells and 10  s 
duration using model fit (parameters shown in Figures 1C,D). A sequence of states was generated from the transition matrix (Figure 1D) and 
observations drawn according to the emission distributions (Poisson spiking, rates in Figure 1C). (B) One-state model simulation for 32 cells and 10  s 
duration. (C) Top: the ground-truth state sequence used to generate spiking pattern (B). Bottom: inferred state probabilities, where dark purple 
indicates high probability. (D) Log-likelihood of test-set (reserved) data under models fit with 1 to 15 states (filled black circles). Log-likelihood of 
simulated data, using the fitted model and matching data length (open purple symbols; error bars are the standard deviation across repetitions of the 
simulation).
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predictive of trial-by-trial variability in sensory-evoked responses in 
single neurons.

Between periods of spontaneous activity, we recorded sensory-
evoked responses to simple punctate single-whisker stimuli as 
described previously (Sederberg et al., 2019; Pala and Stanley, 2022). 
We first established that the state of pre-stimulus activity, classified 
under the spiking state model developed for spontaneous activity 
(Figure  1), was predictive of single-trial evoked responses. 
We  quantified the sensory-evoked responses, conditioned on the 
pre-stimulus state, and identified neurons with state-dependent 
sensory-evoked responses at a statistically significant level (see 
Methods). Briefly, using 1 s of pre-stimulus activity, we classified each 
trial based on the pre-stimulus spiking state that was the most 
probable state immediately prior to stimulus delivery. Trials were 
partitioned based on pre-stimulus spiking states, with population rate 
parameters plotted in Figure 5A and sensory responses plotted in 
Figure  5B. For comparison, black-outlined bars show the 

peri-stimulus time histogram (PSTH) averaged across all trials 
(Figure 5B). Qualitatively, in some states (state 1, Figures 5A,B) the 
sensory response was less than in other states (e.g., state 4, 5), both in 
terms of the absolute number of spikes in the post-stimulus window 
and the size of the evoked (i.e., subtracting the pre-stimulus spike 
count) response (Figure 5B).

To quantify significance of apparent state-dependence in sensory 
responses of single neurons, we used a shuffle test. A distribution of 
average response size by state was generated by randomly assigning 
trials to each state. The empirical average state-dependent sensory 
response was then compared to the shuffle distribution, represented as 
the percentile of the magnitude of the state-dependent average evoked 
response within the boot-strapped distribution (FS neurons, Figure 5C, 
and RS neurons, Figure 5E; in a 7-state model). For reference, if there 
were no dependence of sensory response on the spiking state, the 
distribution of percentiles would be  uniform (dashed black lines, 
Figures  5C,E). Based on this percentile value, state-dependent 

FIGURE 3

LFP states are coordinated with distinct states of spiking activity. (A) Example period of spontaneous activity in which LFP state transitioned from  
state H to state L, defined using Fourier amplitudes spectrum features (B). (B) Fourier amplitude spectrum of the LFP, showing the LF frequency band 
(1–10  Hz) and HF frequency band (30–90  Hz). Division into states (L, green; H, black) is by comparing average amplitude in LF to that in HF (“LF/HF”), 
following previous studies (Poulet and Crochet, 2019). (C,D) Inferred spiking states (colors) with overlaid spike raster during segment 1 (LFP state  
H, panel C) and segment 2 (LFP state L, panel D). White indicates state probability was less than 80%. (E) Distribution of spiking states observed during 
LFP state H (left) and during LFP state L (right). Spiking states 1 and 2 are more likely during LFP state H, while spiking states 5, 6, and 7 are more likely 
during LFP state L. (F) The transition matrix (Aij, reproduced from Figure 1D) ordered by firing rate. (G) Transition matrix re-ordered using relative 
fraction of time the LFP state was H or L while spiking activity was inferred to be in state i. Reordered transition matrix (right) has nearly block-diagonal 
structure. (H) Directed graph illustrating transition matrix. Common transitions ( 0.05Aij > ) between states (circles, color as in B,C) are indicated by 
directed arrows between nodes (states) in the graph. Self-connections (Aii) and transitions with low rates ( 0.05Aij < ) are not shown.
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FIGURE 4

Decoding LFP state from spiking activity. (A) Decoding accuracy (chance level, 50%) of determining LFP state (H or L) from inferred spiking states 
(purple), population vector (solid black), and summed population rate (dashed) for an example recording (1-1). (B) Decoding accuracy, using single 
neuron activity (FS, left/blue; RS right/red), across all neurons. (C) Across 5 of 6 recordings, decoding accuracy is higher from inferred spiking states 
than from the population vector.

FIGURE 5

Population spiking states are predictive of variability in sensory responses in single neurons. (A) Patterns of firing rates across neurons in each state. 
Bars represent the model rate parameter (spikes per second) in single neurons in a 40-ms bin (as in Figure 1). State colors as in Figure 3. (B) Responses 
to whisker stimulation (punctate deflection at time indicated by gray line) when trials are sorted by the decoded pre-stimulus state. The single neuron 
shown as an example in B is marked in panel A. PSTH bin width is 5  ms. Significant state-dependence is indicated by a purple star (facilitated) or yellow 
star (suppressed). This is defined relative to the sensory response averaged across all trials (black outline) based on p  <  0.01 in a 2-sided shuffle test 
(Methods). (C) Distribution of percentile values for state-averaged responses for FS neurons from all recordings for pre-stimulus-sorted (color). Black 
dashed line shows uniform (chance-level) distribution of percentile values. (D) Number of FS neurons with detected state-dependent responses using 
models with increasing numbers of states. Yellow/purple indicate suppressed/facilitated. Trial-shuffle control is shown in light colors. (E) Same as C, for 
RS neurons from all recordings. F: Same as D, for RS neurons from all recordings. (G) State transition graph (as in Figure 3), with purple/yellow 
indicating presence of facilitated/suppressed evoked responses in that state. Thicker outline represents more neurons with significant state 
dependence. Table 2 reports counts of facilitated/suppressed neurons for each recording. (H) Cumulative count of observed values of ratio of time 
spent in LFP state L to time spent in LFP state H for spiking states identified as suppressed (yellow) and facilitated (purple). Note the log scale, so 
negative (positive) values are states more frequently associated with LFP state H (state L). States with suppressed responses tended to be associated 
with LFP state H. Totals do not match the neuron counts in D and F because some individual neurons had facilitated (or suppressed) responses in more 
than one state.
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responses were categorized as “suppressed” (percentile <0.5; yellow 
star) or “facilitated” (percentile >99.5; purple star), or not significantly 
different from the distribution of responses across all trials. Across the 
population of neurons, more than half of neurons (for 7-state mode: 
91 of 158 total, range 8 to 24 per recording, from N = 6 recordings) had 
at least one state-dependent sensory-evoked response, exceeding the 
false-positive rate expected by our criterion for rejection (1%).

The organization of state-dependence across cells was non-random, 
with state-dependent responses more common in the FS population 
than the RS population. For instance, using the 7-state model, 58% of all 
FS neurons were facilitated in at least one state (range across individual 
recordings: 37 to 80%, N = 6 recordings) and 70% of all FS neurons were 
suppressed in at least one state (range: 37 to 100%, N = 6 recordings), 
while 21% of RS neurons were facilitated (range: 9 to 31%) and 39% of 
RS neurons were suppressed (range: 23 to 54%). For this analysis, cells 
were only counted once, so if there were two states with suppressed 
responses (as in Figure 5B), the neuron contributed once to the count 
in Figure 5D. We note that, while we show the seven-state model for 
illustration, this choice was not critical for the detection of state-
dependent responses. Models with four or more states show a relatively 
constant proportion of neurons with state-dependent responses 
(Figures 5D,F). We verified that this is not simply a consequence of 
limited trial numbers by repeating the analysis for trial-shuffled controls 
with matched trial counts per state (gray, “trial-shuffled,” Figures 5D,F).

Finally, we  examined the extent to which specific pre-stimulus 
spiking states were associated with facilitated or suppressed responses. 
As in Figure 3, we show state transition graphs, annotated to show the 
organization of facilitatory and suppressive pre-stimulus states. Rings 
around each state indicate the fraction of single neurons with either 
facilitated (Figure  5G, purple) or suppressed (Figure  5G, yellow) 
responses, relative to the average evoked response across all trials, where 
thicker rings represent more neurons with significant state dependence. 
Suppressed states (yellow) were consistently found in the LFP-state-H 
associated spiking states (black), and a subset of LFP-state-L spiking 
states (lighter green) were associated with facilitated responses (purple). 
Across all recordings (Figure 5H, using 7 spiking states), facilitated 
spiking states were more likely to be  observed during LFP state L 
(median time ratio, 1.6), while suppressed spiking states were more 
likely to be observed during LFP state H (median time ratio, 0.6).

2.4 Spiking states track whisking activity

During wakefulness, LFP state (quantified by LF/HF) is correlated 
with whisking behavior (Fernandez et al., 2016). Thus, we expect that 

inferred spiking states are informative of whisking behavior as well, 
illustrated by aligned trajectories of LFP (Figure 6A), spiking states 
(Figure 6B), and whisking behavior (Figure 6C) over an example 25-s 
period. As in Figures 3, 5, spiking states are ordered based on the LFP 
state observed but utilizing a color map to enable easier discrimination 
between spiking states. Spiking states 1 and 2 are those for which low 
LF/HF is most likely. In the example shown in Figures 6B,C, spiking 
states 1 and 2 (dark blue shades) appear during bouts of whisking 
(Figure  6C), but rarely otherwise, suggesting that spiking state 
dynamics were closely tied to whisking behavior. Across the full 
recording, the onset of whisking coincided with an abrupt transition 
of the inferred spiking states into spiking states 1 or 2 (post-onset state 
is 1 or 2  in 25 of 38 detected onsets; Figure 6D). By comparison, 
we observed a much slower decrease in LF/HF (Figure 6E).

To quantify this observation across datasets, we calculated mutual 
information (MI) between whisking activity and (a) LFP states (based 
on LF / HF) and (b) the inferred spiking states (see Methods). For the 
example recording in Figure 6D, we  found that the spiking states 
inferred using a model with at least three states were more informative 
of whisking/non-whisking behavior (0.25 ± 0.02 bits/bin, whisking-
spike states, bin of 40 ms) than the LFP state was (0.15 ± 0.02 bits/bin, 
Figure 6G). In all recordings, inferred spiking states (with at least 4 
states, showing 4, 7, and 10 states in Figure  6E, “whisk—spiking 
states”) were more informative of whisking activity than the LFP state 
(“whisk—LFP”), as shown in Figure 6H. We conclude that modeling 
the latent dynamics of spontaneous population spiking activity 
provides a useful metric of cortical state in awake mouse S1 that is 
related to traditional LFP-based metrics and contains information 
about the representation of sensory information and changes in 
behavior with high temporal resolution.

3 Discussion

Here we applied a latent state modeling framework to recordings 
from the awake mouse somatosensory cortex and compared the latent 
states inferred from population spiking activity to standard metrics of 
brain state. We found that latent spiking states captured structure in 
population spiking activity and were closely linked to slow-changing 
LFP states, predictive of fluctuations in single-trial sensory-evoked 
responses, and informative of whisking activity. Fast-spiking neurons 
had higher impact on the latent state than regular-spiking neurons, 
reflecting a large role of inhibitory cell activity in determining state.

3.1 Latent dynamics of population spiking 
activity in mouse S1

The latent-state representation of population activity inferred using 
a Poisson-HMM was highly informative of the state of wakefulness, 
quantified by the standard measures of LF/HF and whisking behavior. 
Spiking states were even more informative of whisking activity than the 
LF/HF metric. Moreover, LFP states (based on LF/HF) were more 
accurately decoded from the latent state representation of spiking 
activity than they were from more direct measures, such as the summed 
firing rate across the population or even the population rate vector. The 
improvement of the inferred spiking states from the HMM over the 
population rate vector likely arises due to the temporal information 

TABLE 2  Number of state-dependent evoked responses detected in each 
recording, under the 7-state model.

Recording (total 
count)

7-State model 
facilitated count

7-State model 
suppressed count

1-1 (32) 12 14

1-2 (32) 9 12

2-1 (28) 5 8

3-1 (11) 7 12

3-2 (36) 19 34

4-1 (19) 9 15

https://doi.org/10.3389/fncom.2024.1445621
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sederberg et al.� 10.3389/fncom.2024.1445621

Frontiers in Computational Neuroscience 09 frontiersin.org

FIGURE 6

Spiking state dynamics are related to whisking activity. (A) LFP state metric [log10 (LF/HF)  −  1] during spontaneous activity. Gray shaded regions show 
where LF/HF  <  10 and white for LF/HF  >  10. (B) Spiking activity across 15 neurons and the inferred latent state during the same period of spontaneous 
activity. Colormap (differing from Figures 3, 5) was chosen for higher contrast between states. (C) Whisking activity, quantified from motion energy 
(frame-to-frame changes, see Methods) in videography. (D–F) Onset of whisking is accompanied by a gradual decrease in LF/HF and rapid change of 
spiking states. (D) Onset times were identified using whisking energy, requiring a period of no whisking over 400  ms followed by crossing a threshold. 
(E) LFP state metric [log10 (LF/HF)  −  1] gradually decreases at the onset of whisking. Gray lines: individual events. Solid black is the average. (F) Spiking 
state dynamics before and after onset of whisking, for 38 detected whisking events. State transition graph is shown for reference. (G) For this example, 
information between spiking state representation and whisking activity, for state models with 2 to 10 states. Information carried by comparing LF/HF to 
10 is marked by the black line. (H) Information about whisking activity calculated on all six recordings for 4-state, 7-state, and 10-state models are all 
higher than the information carried by LF/HF  >  10. Error bars estimated by resampling half of the data and repeating information calculation (50 repeats) 
and are typically smaller than the markers.
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embedded in the inferred spiking state, indicating the importance of 
accounting for correlations in time for analysis of spiking data.

We also found that inferred spiking states were predictive of single-
trial sensory-evoked responses. In past work, we built a framework for 
predicting single-trial sensory-evoked LFP responses in awake mouse 
S1, in which features of the pre-stimulus LFP recording were identified 
based on their ability to predict response characteristics (Sederberg 
et al., 2019). There, we found that our most predictive LFP features 
were equivalent to LF/HF, which had been used previously as a metric 
of state in S1 (Fernandez et al., 2016; Poulet and Crochet, 2019). Thus, 
in the current study, we  expected that pre-stimulus spiking states 
would also be predictive of single-trial sensory-evoked responses in 
single neurons, and that is what we found (Figure 5). The tendency of 
the “suppressed response” pre-stimulus states to align with low LF/HF 
is consistent with the predictive features examined in our previous 
study, which found smaller LFP responses in a low-LF/HF state. Thus, 
the Poisson-HMM framework produces a representation of population 
dynamics that captures enough of the spatial (across cells) and 
temporal (across time) structure in cortical activity to enable accurate 
decoding of the LFP state and whisking behavior and to predict single-
trial fluctuations in sensory responses in single neurons.

3.2 FS neurons, laminar organization, and 
population spiking states in mouse S1

We found that activity of FS neurons, which are more likely to 
be inhibitory cells (Barthó et al., 2004), was more strongly linked to 
the overall population spiking state than the activity of RS neurons, 
beyond any dependence based on firing rate alone. For instance, 
model fit quality degraded substantially more when the temporal 
structure of FS neuron activity was disrupted compared to that of RS 
neuron activity. Further, a larger fraction of FS neurons than RS 
neurons exhibited state-dependent sensory response patterns. Our 
general finding that spiking activity in inhibitory neurons is tightly 
linked to population spiking state and, by extension, the LFP, is 
consistent with past work focused on single-neuron contributions to 
the LFP that suggested that LFP primarily reflects inhibitory activity 
(Teleńczuk et  al., 2017). There is variability across single neurons 
within FS and RS classifications, however: for example, not all FS 
neurons are tightly linked to the latent state. It is possible that some of 
this variation arises from how cells were sampled across cortical layers 
(Methods, 4.1.4), as studies in other systems have demonstrated layer-
specific signatures of cortical responsiveness (Wang et al., 2020, 2024). 
Understanding the circuit dynamics that underlie the emergence of 
population spiking states will require more detailed characterization 
of cell type- and layer-specific factors, possibly enabled by new 
datasets with more specific cell-type identity information (de Vries 
et  al., 2020) and by computational models permitting cell-type 
classification based on single-neuron spiking statistics (Schneider 
et al., 2023).

3.3 Insights from a simple latent-state 
model

In the Poisson-HMM used here to model spiking states, all cells 
were assumed to be linked to a single hidden state at any moment of 

time, and this state is assumed to have Markovian dynamics, with 
dependence only on the current state. While these assumptions limit 
the flexibility of the model, inferred spiking states from the model 
were successful in predicting LFP state, sensory-evoked responses, 
and whisking activity. Several previous studies have used the 
Poisson-HMM framework to describe population activity patterns 
and dynamics (Jones et al., 2007; Mazzucato et al., 2015; Engel et al., 
2016; Prentice et al., 2016). For instance, the Poisson-HMM captured 
the structure of fast sequences of population activity patterns in rat 
gustatory cortex, demonstrating step-like rather than ramping 
behavior during a sensory-decision-making task (Jones et al., 2007). 
We used a coarser time bin, lasting 40 ms rather than 1–2 ms in the 
Jones study. We chose this bin size because our analysis concerned 
spontaneous activity over relatively long (minutes) segments of data. 
Thus, our aim in using the Poisson-HMM is to obtain a relatively 
simple representation of spatial and temporal dynamics. The same 
model was also used to capture spontaneous activity states in the 5 s 
preceding a sensory-evoked response (Mazzucato et al., 2015), and 
there it was argued that the identified states reflect underlying 
attractor dynamics. Due to the prevalence of FS neurons in the 
spiking patterns that determined spiking states, a different 
interpretation of states may be more appropriate in our study. An 
intriguing idea, raised by a recent modeling study, is that PV 
interneurons are poised to switch the cortical network in and out of 
an inhibition-stabilized network (ISN) dynamical state (Bryson et al., 
2021). Such state switches would be  reflected in differences in 
sensory-evoked responses to well-controlled stimuli, as we observed, 
suggesting that changes in ISN dynamics may parsimoniously account 
for the state-dependent patterns of sensory-evoked responses 
we observed.

3.4 Limitations of Poisson-HMM for spiking 
dynamics

While the Poisson-HMM has the advantage of a small number of 
parameters and simple state dynamics, the assumption that all neurons 
are in the same state likely breaks down in populations spanning larger 
regions of cortex. For this reason, extending the approach to 
moderately sized populations (hundreds to thousands) from the small 
(average, 26 neurons) ensembles examined here poses significant 
challenges. One approach would be to sample subsets of neurons to 
determine when the model fit quality breaks down, which would 
provide a measure of the spatial extent of coordinated population 
states across cortical areas or across cortical layers. An alternative 
approach, more commonly used in non-sensory brain areas (motor, 
prefrontal, hippocampus) is to embed neuronal activity patterns in a 
low-dimensional manifold upon which population activity smoothly 
evolves. For example, latent structure in task-driven 
(non-spontaneous) population dynamics inferred utilizing a 
dynamical system improved decoding of movement intention 
(Pandarinath et  al., 2015), and other studies have identified 
low-dimensional structure in prefrontal cortex (Mante et al., 2013) 
and hippocampus (Nieh et al., 2021). Responses in visual cortex to 
visual inputs appear to live in a distinct subspace from spontaneous 
activity (Stringer et al., 2019). Determining which latent state model 
to use in which recording would be clarified by developing rigorous 
“null” computational models, in which latent dynamics and 
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population responses can be  carefully controlled (Sederberg and 
Nemenman, 2020; Morrell et al., 2021).

3.5 Future directions

Understanding of the dynamics of local brain state has advanced 
tremendously through careful dissection of modulatory circuit 
mechanisms in primary sensory areas. Experiments utilizing patch-
clamp electrophysiology in awake mice have revealed state-dependent 
changes in the activity of single neurons of specific cell classes (Gentet 
et al., 2010; Pala and Petersen, 2018), shared patterns of variability 
across small numbers of cells (Arroyo et  al., 2018), and control of 
excitability through specific cell type activation (Fu et al., 2014). In the 
large-scale multi-single-neuron recordings enabled by modern high-
density multielectrode recordings, such fine-scale anatomical 
information is rarely available. On the other hand, highly parallel 
recording methods reveal functional relationships across the population 
that are not observable from recordings of single neurons, and may 
carry rich information on the functional roles of specific anatomical cell 
types. The latent dynamics uncovered by these approaches may also 
provide functionally meaningful and pragmatic targets for control of 
circuit and network activity as tools for applying control theory to 
neural circuits continue to emerge (Bolus et al., 2021; Weiss et al., 2024). 
A clearer understanding, through quantitative frameworks such as that 
presented here, of these features of cortical dynamics will ultimately 
provide an invaluable tool to map individual-specific differences in the 
neural signatures of behavior, perception, and cognition.

4 Materials and methods

4.1 Experimental data collection

Data presented here were previously reported in (Pala and Stanley, 
2022) and (Sederberg et al., 2019) and is available. All procedures were 
approved by the Institutional Animal Care and Use Committee at the 
Georgia Institute of Technology and agreed with guidelines established 
by the National Institutes of Health. Four nine- to twenty-six-week-old 
male C57BL/6 J mice were used in this study. Mice were maintained 
under 1–2% isoflurane anesthesia while being implanted with a 
custom-made head-holder and a recording chamber. The location of 
the barrel column targeted for recording was functionally identified 
through intrinsic signal optical imaging (ISOI) under 1–1.25% 
isoflurane anesthesia. Recordings were targeted to B1, B2, C1, C2, and 
D2 barrel columns. Mice were habituated to head fixation, paw 
restraint and whisker stimulation for 3–6 days before proceeding to 
electrophysiological recordings.

4.1.1 Electrophysiology
Local field potential and spiking activity were recorded using 

silicon probes (A1x32-5mm-25-177, NeuroNexus, USA) with 32 
recording sites along a single shank covering 775 μm in depth. The 
probe was coated with DiI (Invitrogen, USA) for post hoc identification 
of the recording site. The probe contacts were coated with a poly(3,4-
160 ethylenedioxythiophene) (PEDOT) polymer (Ludwig et al., 2006) 
to increase signal-to-noise ratio. Contact impedance measured 
between 0.3 MOhm and 0.5 MOhm. The probe was inserted with a 

35° angle relative to the vertical, until a depth of about 1,000 μm. 
Continuous signals were acquired using a Cerebus acquisition system 
(Blackrock Microsystems, USA). Signals were amplified, filtered 
between 0.3 Hz and 7.5 kHz and digitized at 30 kHz.

4.1.2 Recording of spontaneous and 
sensory-evoked activity

Mechanical stimulation was delivered to a single contralateral 
whisker corresponding to the barrel column identified through ISOI 
using a galvo motor (Cambridge Technologies, USA). The galvo motor 
was controlled with millisecond precision using a custom software 
written in Matlab and Simulink Real-Time (Mathworks, USA). The 
whisker stimulus followed a sawtooth waveform (16 ms duration) of 
various velocities (1,000, 500, 250, 100 deg/s) delivered in the caudo-
rostral direction (Wang et  al., 2010). Whisker stimuli of different 
velocities were randomly presented in blocks of 21 stimuli, with a 
pseudo-random inter-stimulus interval of 2 to 3 s and an inter-block 
interval of a minimum of 20 s. The total number of trials across all 
velocities presented during a recording session ranged from 196 to 
616. Recordings were acquired in 10-min segments, and the end of 
each 10-min segment was 1 min of spontaneous activity. All 
spontaneous segments of 10 s or longer were analyzed.

4.1.3 LFP pre-processing
For analysis, the LFP was down-sampled to 2 kHz. Using the same 

quality criterion as previously (Sederberg et al., 2019), we screened for 
channels that drifted or had excessive 60-Hz line noise. Only layer-4 
LFP was analyzed in this study. Layer 4 was determined using the 
sensory-evoked MUA activity and current source density profiles as 
described previously (Sederberg et al., 2019; Pala and Stanley, 2022).

4.1.4 Spike sorting and single unit quality criteria
Spike sorting was performed using Kilosort2 (Pachitariu et al., 

2016) with manual curation of spike clusters in Phy (Rossant and 
Harris, 2013). The quality criteria for identifying single unit activity 
were the same as in (Pala and Stanley, 2022), summarized by these six 
requirements: (i) units had more than 500 spikes, (ii) spike waveform 
SNR was greater than 5, (iii) the trough-to-peak amplitude of the unit 
had a coefficient of variation less than 0.2 averaging over 120-s 
windows, (iv) firing rate (over 120-s windows) had a coefficient of 
variation of less than 1, (v) fewer that 1% of inter-spike intervals were 
shorter than 2 ms, and (vi) the Maholonobis distance between the unit 
waveform and the closest waveform that was not assigned to that unit 
was larger than 55 in the space of the first three principal components.

Units were classified as RS or FS based on the time elapsed from 
the waveform trough to waveform peak, with values larger than 0.5 ms 
classified as RS units and those smaller than 0.4 as FS units (Poulet 
and Petersen, 2008; Poulet and Crochet, 2019). Intermediate 
waveforms (about 3% of units) were not included in the analysis. 
Overall, we analyzed 39 FS units and 119 RS units across six recordings 
(average of 26 units per recording, range 19 to 36) in four different 
mice. Units were distributed across layers 2 to 5, with the large 
majority in layer 5 (L2/3, 13; L4, 24; L5, 117; L6, 4), precluding layer-
dependent analyses in this study.

4.1.5 Whisking quantification
Video recordings of whisking activity were acquired under 

infrared illumination at 25 Hz using a camera (6.8 pixels/mm, 
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HQCAM) positioned below the mouse’s head, acquiring a view of 
whiskers as well as of the galvanometers used for stimulus control. For 
each movie, the portion of the field of view including the whiskers was 
extracted. Whisking activity was extracted by first identifying motion 
components using non-negative matrix factorization of the square 
difference between frames. Up to 20 components were identified and 
these were manually scored as representing whisker motion, nose 
motion, or galvanometer motion. Galvo traces were used to verify 
temporal alignment of movies and electrophysiology. Whisking 
activity was quantified as the sum over whisker-motion components.

4.1.6 Whisking onset analysis
To identify the transition from non-whisking to whisking 

behavior (analyses in Figures  6D–F), we  analyzed the whisking 
motion time series, obtained by summing over projections of the 
whisking moving into NMF modes described above. A fixed threshold 
for whisking was identified for each recording. To identify a transition, 
we required 400 ms of non-whisking followed by a minimum of two 
frames of whisking behavior. During the 400 ms of non-whisking 
behavior, at least 90% of frames (9/10 frames) had to be below the 
detection threshold. Transition points occurring within 500 ms of the 
beginning or end of a recording segment were discarded.

4.1.7 Experimental design and statistical analysis
Multiple statistical analyses were used in this study and are 

described in detail below. All statistical analyses were conducted in 
MATLAB 2019b and 2022a (Mathworks).

4.2 Cortical state and spiking state model 
fitting and validation

4.2.1 Cortical state characterization
To describe cortical state in S1 of awake mice, we calculated LF/

HF and separated recordings into periods with high (greater than 10) 
and low values of LF/HF, following a convention used in earlier studies 
(Fernandez et  al., 2016; Poulet and Crochet, 2019). Specifically, 
we compute the spectrogram at 1-s intervals and defining LF (HF) as 
the average Fourier amplitude between 1 and 10 Hz (30 and 90 Hz, 
excluding 58 to 62 Hz).

4.2.2 Hidden Markov Model of cortical spiking 
activity

To describe cortical spiking states, we fit a Hidden Markov Model 
with Poisson emission distribution (Radons et al., 1994; Abeles et al., 
1995; Jones et al., 2007; Mazzucato et al., 2015). This model assumes 
that the next state ( ) [ ]spk 1,2,+ ∆ ∈ … Ss t N  only depends on the 
current state ( )spks t , and this is characterized by the transition 
matrix A:

	
( ) ( )( )spk spk|= + ∆ = =ijA P s t j s t i

We assuming firing is Poisson and conditionally independent 
across neurons. Specifically, the distribution of spike counts { }ny  over 
a time bin of duration ∆  ( 40ms∆ = ) across the population 
( 1 Cn N= …  neurons) while in spiking state spks , is given by
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where each state { }spk 1,2, Ss N∈ …  is characterized by rate 
parameters ( )spk

n sλ . We  binned spike counts at a temporal 
resolution of 40 ms to match the resolution (25 Hz) of video 
monitoring of whisking activity. In other works, the temporal 
resolution of spiking states has ranged from 1 ms (Jones et al., 2007) 
to 500 ms (Abeles et al., 1995).

The model was implemented by adding a conditionally independent 
Poisson observation model to the pmtk-3 (probabilistic models toolbox, 
https://github.com/probml/pmtk3). To fit the model, we  split each 
recording into two halves as follows. A recording consisted of a set of 8 
to 12 segments, each of 10 min duration. Each segment had 10 periods 
of spontaneous activity (duration, 10 s to 70 s) with no controlled whisker 
stimulation, interspersed with periods of controlled whisker stimulation 
during which evoked responses were obtained. Model parameters were 
estimated on a training set consisting of spontaneous periods from half 
of the segments (1st, 3rd, 5th, etc.). Using the estimated model for each 
recording, states ( )is t  at time t  in each spontaneous period in the test set 
(the remaining half of long segments: 2nd, 4th, 6th, etc.) were decoded by 
estimating ( ) ( )( { 1: )|ip s t y T  using standard methods (forward-
backward algorithm). Reported likelihood values are computed across 
all spontaneous periods in the test set.

We used two controls to interpret the data likelihood under the 
fitted model. First, to estimate the ceiling of model performance, 
we simulated an HMM using the fitted state transition matrix and 
drew observations from the emission distribution at each point in 
time according to the simulated state. We  then computed the 
likelihood of these simulated observations under the model. 
Second, we verified that we could not obtain the same result in 
shuffled data. Thus, we shuffled the simulated observations in time 
and recomputed the likelihood of shuffled observations under the 
fitted model. Likelihood calculations for all recordings are listed in 
Table 1.

For the analysis of pre-stimulus state, we extracted the sensory-
evoked from all segments, and using the 500-ms pre-stimulus time 
window, we inferred HMM state using the model previously fit on the 
spontaneous periods. The pre-stimulus state was assigned to the state 
with the highest probability in the final pre-stimulus time bin (−40 ms 
to 0 ms pre-stimulus).

4.2.3 Quantifying differences between spiking 
states

To analyze the differences between states identified by the spiking 
state model, Bhattacharyya coefficients and distances were computed 
for pairs of spiking state emission distributions. The Bhattacharyya 
coefficient between two (potentially non-Gaussian) distributions 
quantifies their overlap and determines the Bhattacharyya distance 

BCD  through the relationship ( )exp BCBC D= −  (Bhattacharyya, 
1946). For each cell i and pair of states ( ),a b , the state-dependent 
emission distributions are Poisson distributions of rates ( )i aλ  and 
( )i bλ , for which the Bhattacharyya distance is.

	
( ) ( ) ( )( )21, ,

2
λ λ= − ∆BC i iD a b i a b t
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and ∆t  is the time bin (40 ms). Because we have assumed conditional 
independence within each state, the full distribution across cells is a 
product distribution, and the distances add across cells. The 
Bhattacharyya coefficient between states a and b is then

	
( ) ( ), exp , ,

 
= −  

 
∑ BC

i
BC a b D a b i

This ranges from 0 to 1, where 1 indicates complete overlap 
( ( ) ( )i ia bλ λ= ) and 0 is no overlap.

4.2.4 Statistical tests for cell type differences 
across recordings

To compare the effects of FS and RS neurons on model fit quality, 
we compare two metrics. First, we compare the loss in the likelihood 
relative to the original data in single-neuron-shuffle surrogate 
datasets. For each single neuron, we generate a surrogate dataset from 
the reserved test-set population raster, in which spike counts are 
shuffled in time for that neuron only. This surrogate preserves the 
overall firing rates of all neurons in the population, enabling direct 
comparison to the original data likelihood. For each neuron, 
we obtain the loss in the log likelihood per time (T , total number of 
bins) by estimating the likelihood of the new state sequence inferred 
from the surrogate dataset. The difference between single-neuron 
shuffle surrogate log likelihood and the original log likelihood is 
taken as an estimate of how correlated each neuron was with the 
population state.

The second metric we computed was the coefficient of variation 
(CV) of the rate parameters ( ( )i mλ ) across states m for each neuron i.  
This metric is an estimate of how much the rate for a neuron varied 
with the learned states; higher CVs indicate that the rates vary more 
across states.

For both statistics, we assess the overall difference between RS and 
FS neurons across recordings using a hierarchical bootstrap test and 
report p-values and z-scores (Saravanan et al., 2020).

4.3 Analyses of inferred spiking states

4.3.1 Ordering spiking states by LFP states
We ordered spiking states based on whether LFP state H or LFP 

state L was more likely to be observed during the periods in which that 
spiking state was inferred (Figure 3). Specifically, we computed ( )iP x|s ,  
where is  is the spiking state and x is the LFP state (either H, if LF/
HF < 10, or else L), and sorted states by the ratio: ( ) ( )i iP H|s / P L|s .

4.3.2 Decoding analysis of LFP-spiking state 
relationships

Multiple classifiers were fit in Figure 4. For all classifiers, the target 
response is whether LF / HF 10> . Observations were balanced so that 
50% accuracy is chance and divided into test and training sets. The 
inputs to the different types of classifiers are (i) summed spike count 
across the population, (ii) the population spike count vector, (iii) the 

inferred spiking state, or (iv) the single neuron spike counts. The 
classifier was a linear SVM.

4.3.3 Spiking state-dependent analysis of 
sensory-evoked responses

The evoked response was quantified as the difference between 
the spike count in the post-stimulus window [ ]5ms,25ms  and the 
pre-stimulus window [ ]20ms,0ms− . Evoked spike counts were 
computed for each trial, and we  wanted to know if the average 
evoked response in each state was higher or lower than would 
be expected from the null hypothesis that evoked responses have no 
dependence on pre-stimulus spiking state. The number of trials 
assigned to each state was not identical, thus we  determined 
significance using a shuffle test. Specifically, we randomly assigned 
trials to states matching the number of trials that were classified to 
that state and computed the average evoked rate by state in each 
random draw. This was repeated 200 times for each recording and 
for each number of spiking states (2 to 10) to generate the shuffled 
distribution of average evoked response. The empirical mean state-
dependent evoked spike count was compared to this distribution. 
Significance was determined by a two-tailed 1% cut-off, so 
‘facilitated’ responses were those in which the empirical mean state-
dependent evoked spike count scored above the 99.5% percentile of 
all shuffled mean evoked responses.

4.3.4 Information calculation between whisking 
activity and spiking state identity

Mutual information quantifies the difference between the joint 
distribution ( )P X,Y  of quantities X  and Y  compared to the 
distribution ( ) ( )P X P Y  in which X and Y are independent, providing 
a generalized measure of correlation (including non-linear correlation) 
between quantities X  and Y . For each calculation of mutual 
information (Figure 6), X  is the whisking energy, computed in each 
40-ms time bin (i) from videography and discretized into four 
equipartition bins ( { }iW 0,1,2,3∈ ). To compute information between 
whisking and spiking states (“Y” is the spiking state), we identified the 
maximum-likelihood spiking state ( ( ) { }spk Ss i 1,2, N∈ … ) in each 
time bin and estimated the mutual information between iW  and 

( )spks i . To compute information between whisking energy and LFP 
state (“Y” is LFP state), we assigned LFP state to L or H according to 
whether r 0>  or r 0< . Error bars were estimated by resampling over 
half the data.
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