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Bees are among the master navigators of the insect world. Despite impressive

advances in robot navigation research, the performance of these insects is still

unrivaled by any artificial system in terms of training e�ciency and generalization

capabilities, particularly considering the limited computational capacity. On

the other hand, computational principles underlying these extraordinary feats

are still only partially understood. The theoretical framework of reinforcement

learning (RL) provides an ideal focal point to bring the two fields together

for mutual benefit. In particular, we analyze and compare representations of

space in robot and insect navigation models through the lens of RL, as the

e�ciency of insect navigation is likely rooted in an e�cient and robust internal

representation, linking retinotopic (egocentric) visual input with the geometry

of the environment. While RL has long been at the core of robot navigation

research, current computational theories of insect navigation are not commonly

formulated within this framework, but largely as an associative learning process

implemented in the insect brain, especially in the mushroom body (MB). Here

we propose specific hypothetical components of the MB circuit that would

enable the implementation of a certain class of relatively simple RL algorithms,

capable of integrating distinct components of a navigation task, reminiscent of

hierarchical RL models used in robot navigation. We discuss how current models

of insect and robot navigation are exploring representations beyond classical,

complete map-like representations, with spatial information being embedded in

the respective latent representations to varying degrees.

KEYWORDS

insect navigation, reinforcement learning, robot navigation, mushroom bodies, spatial

representation, cognitive map, world model

1 Introduction

The purpose of this paper is 2-fold: First, we offer a perspective that links our current

understanding of spatial navigation by insect navigation researchers together with that

of robotics researchers. We do this largely with the help of the theoretical framework of

reinforcement learning (RL), which is a central theme in modern robotics research but

has so far had relatively little impact in the field of insect navigation or more broadly in
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insect learning. We focus on an analysis of spatial representations

in current robot and insect navigation models through the lens of

RL. Second, we propose neural mechanisms by which the anatomy

and physiology of the insect brain may implement RL-like learning,

and finally offer a hypothesis on how recent models describing

distinct components of insect navigation can be combined into a

hierarchical RL model.

Reliably navigating the world in order to acquire essential

resources while avoiding potentially catastrophic threats is

an existential skill for many animals. In the insect world,

central-place foragers like many bee and ant species stake the

survival of the entire colony on individuals’ ability to return

to the nest after extensive foraging trips. Their remarkable

navigational capabilities allow them to do so after only a few

learning flights or walks under vastly varying environmental

conditions. This is so far unrivaled by any artificial autonomous

system. Recent years have seen substantial advances in

understanding the underlying mechanisms of insect navigation

(INav), tentatively converging on what was coined the “insect

navigation base model” (INBM) in a comprehensive review by

Webb (2019).

This model and its components – rooted in a rich history

of behavioral experiments, modeling, and the neuroanatomy of

the insect brain – possess substantial explanatory power and offer

a mechanistic, bottom-up picture of navigation. Nevertheless, it

is only implicitly related to the high-level objective of efficiently

exploiting the resources provided by the environment. On the other

hand, robot navigation (RNav) research is driven by the practical

goal of enabling robots to perform specific spatial tasks, making

reinforcement learning a dominant theoretical framework: An RL

agent is trained to optimize its interaction with the environment

by accumulating positive rewards while avoiding punishment

(negative rewards), which it achieves by learning a specific policy:

what is the optimal action to take, given the agent’s current state?

In contrast to other training paradigms, RL requires no additional

external supervision. If the task involves a spatial component,

this implies learning a navigational strategy which is optimal for

achieving the high-level task.

Successful and reliable navigation depends on a robust

and efficient choice of the agent’s internal representation of

its environment (mapping) and its own relative pose therein

(localization), which will be derived from sensory input but

otherwise arbitrarily complex. This spatial representation of sensory

input then serves as the basis to determine a sequence of suitable

actions to accomplish a certain objective (planning). Until recently,

the dominant approach in RNav decoupled the question of finding

a suitable spatial representation from the planning phase in

modular architectures: a fixed, feed-forward architecture (usually

some variety of ‘simultaneous localization andmapping’, SLAM, see

Fuentes-Pacheco et al., 2015 for a review) is used to infer an explicit

spatial representation from sensory input based on which a policy

is optimizing its actions using e.g., classical planners or learned

RL methods. In current research, however, end-to-end learning

approaches are increasingly gaining traction, where differentiable

neural network architectures are trained to learn policies directly

from the sensory input. In order to do so efficiently, these networks

usually form latent spatial representations within hidden layers of

the network as an intermediate step. These latent representations

are not pre-determined but learned in order to most efficiently

solve the navigation task within the constraints of a specific network

architecture.1

Spatial representations can be further characterized by their

“geometric content,” i.e., how much of the geometric structure

of the environment is encoded in the spatial representation: as

a biological example, spatial firing fields of hippocampal place-

cells (O’Keefe and Dostrovsky, 1971) in mammals tile the entire

(accessible) environment of the agent, giving rise to a dense spatial

representation akin to grid-like spatial maps used in RNav, although

geometry is generally not thought to be preserved accurately. On

the other hand, similarity gradients on a retinotopic (pixel-by-

pixel) level, as proposed for visual navigation in insects (Zeil et al.,

2003), carry no geometric information about the environment at

all. This mirrors the long-standing debate among insect navigation

researchers whether insects use cognitive maps for navigation

(Dhein, 2023). Following a common negative characterization of an

animalwithout a cognitive map: "At any one time, the animal knows

where to go rather than where it is [. . . ]" (Hoinville and Wehner,

2018), we can restate the question in the language of RL as follows:

What is the geometric content (“where the animal is”) of

the - latent or explicit - spatial representation (“what the animal

knows”) of the RL agent?

Free of anatomical and physiological constraints, recent RNav

research has produced a plethora of end-to-end learned navigation

models with different architectures and policy optimization

routines, as discussed in Section 3.2. The resulting pool of

“experimentally validated” latent spatial representations can serve

as theoretical guidance when thinking about the way space is

represented in the insect brain for successful navigation – both

in terms of behavioral modeling and in the experimental search

for neural correlates of such representations. Conversely, evidence

about certain components of spatial representations in insects, like

the existence of spatial vectors encoded in the brain, may guide

the design of network architectures for artificial agents. To this

end, we will analyze what geometric information is represented

(Section 2) and how it is represented in recently successful robot

navigation models (Section 3) and in the “insect navigation base

model” (Section 4).

Going beyond the conceptual considerations outlined above,

the question naturally arises whether a link between insect

navigation and RL can be established on a more fundamental

level. After a brief formal introduction to RL (Section 5.1), we

will investigate how the neuroanatomical components involved

in the insect navigation base model, the mushroom bodies (MB)

and central complex (CX), could support computations similar

to certain simple RL algorithms like SARSA or Q-learning. We

present current models of MB neural computation (Sections 5.2.1,

5.2.2), to propose specific hypothetical neural connections and their

physiological properties by which the models could be augmented

1 Although other training paradigmswith varying degrees of supervision are

being used as well, most of the models discussed can be trained in an end-

to-end RL fashion, and we will interpret their latent representations within a

common RL framework for conceptual clarity.
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to support temporal difference learning. In Section 6, we sketch

a how such a model could be integrated with a recent MB based

visual homing model (Wystrach, 2023) into a full RL-based visual

navigation model. Finally, we discuss in Section 7, what kind

of spatial representation would result from such a model, its

implication for the cognitive map debate and how it aligns with

models currently used in robot navigation.

2 Representations of space from a RL
perspective

In robot navigation, the problem of navigation has traditionally

been partitioned into the subtasks of localization, mapping, and

planning. Mapping and localization operations take (potentially

multimodal) sensory input to infer a map of the environment

and the agent’s pose. It has long been acknowledged that the

localization problem is most easily solved by reference to locations

of salient landmarks in the world—i.e., a map and conversely,

constructing a coherent map requires accurate estimates of the

agent’s pose. This led to the breakthrough of a suite of techniques

collectively known as “simultaneous localization and mapping”

(SLAM) (Mur-Artal and Tardós, 2017; Engel et al., 2014; Endres

et al., 2012; Fuentes-Pacheco et al., 2015). Most SLAM techniques

combine landmark/feature recognition with odometry to maintain

a joint (often probabilistic) representation of the environment and

the agent’s pose therein, which we will refer to as the spatial

representation φ ∈ 8 of the sensory input v ∈ V . We denote

sensory input with v, since the paper will focus on visual navigation,

for simplicity. Multimodal input spaces are of course possible and

highly relevant for a realistic understanding of insect navigation.2

Based on φ, the planning stage then determines a sequence of

actions a ∈ A in order to achieve the objective of the navigation

task (see Figure 2A). This in turn can be based on planning-

based or learned methods. In the following, we analyze the spatial

representations 8 found in current robot and insect navigation

models. Since these representations differ in many aspects, we

first define two dimensions along which our analysis is structured:

“What is represented?” and “How is it represented?”.

2.1 What is represented? The geometric
content of the spatial representation φ

Confining our discussion to 2D, the simplest, “geometrically

perfect” representation of the environment could be imagined as

an infinitely extended and infinitesimally spaced grid, filled with

binary “occupancy” values. While it may prove useful to enrich the

map with layers of meaning (object categories, valuations, etc.) by

adding semantic channels, the geometric information is captured

fully by this single layer.3 Any practical representation of space,

however, must be an abstraction of this ideal to varying degrees,

2 Note the definition of “visual input” may di�er between INav and RNav

and go beyond pure RGB pixel values. For example, insects can visually infer

compass cues from celestial polarization patterns, while depth information

obtained from RGB-D cameras is often used RNav.

trading off density and geometric accuracy for improved coding

efficiency and storage capacity (see Figure 1).

2.1.1 Grid-based maps
The most straightforward simplification is a grid with finite

extent and resolution. Grid-based occupancy maps have a long

history in SLAM approaches to robot navigation (e.g., Gutmann

et al., 2008; Mur-Artal and Tardós, 2017; Engel et al., 2014; Endres

et al., 2012) where a probabilistic occupancy grid map is predicted

from a time series of observations, as a joint estimate for both

the agent’s position (localization) and layout of the environment

(mapping). More recent methods use hierarchical multi-scale

approaches (Zhu et al., 2021), neural radiance fields (Rosinol

et al., 2023) or Gaussian splatting (Matsuki et al., 2023) for highly

accurate reconstructions. Grid-based maps are both spatially dense

and geometrically faithful. The first aspect of such a representation

is also reflected in the spatial firing fields of the so-called place-

cells in the mammalian hippocampus (O’Keefe and Dostrovsky,

1971). For example, Rich et al. (2014) show that place field density

is uniform across a given environment, indicating that all regions

of the environment are represented. There is, however, no hard

evidence that place-cell representation preserves the geometry of

the environment. Furthermore, recent interpretations (Fenton,

2024) of observed “remapping” of spatial fields view place-cell

like firing patterns as particular projections of conjoint, collective

population activity on a neural attractormanifold, as opposed to the

original view, where spatial position was thought to be encoded by

dedicated single-neuron activity. It is currently unknown whether

insects also possess neuronal populations with similar place-cell

like activity. We discuss potential candidate cell types in the insect

brain in Section 7.

While more classical approaches focus on binary occupancy

or probabilistic occupancy encodings as inputs to motion

planners, learning based methods have also encompassed higher-

dimensional contexts such as semantics (Wani et al., 2020;

Schmalstieg et al., 2022; Younes et al., 2023) or potential

functions (Ramakrishnan et al., 2022) as additional channels in

these maps.

2.1.2 Vector maps
As a next level of abstraction useful for sparsely populated

maps, one could store only the grid indices of occupied cells,

instead of an occupancy value for every cell. Increasing the accuracy

by replacing grid indices with actual (Cartesian) coordinates with

respect to some common origin, we arrive at a vector map, in which

geometric relations in the world are represented by relative vectors

between salient locations (vector nodes). Stemmler et al. (2015)

show how a vector-like spatial representation can be decoded from

grid-cell4 activity in the mammalian medial enthorinal cortex by

3 Depending on the choice of origin and orientation of the grid axes, this

map could be either allocentric or egocentric. Any sensory (visual) input is by

definition egocentric.

4 Grid-cells have (spatially) periodic firing fields, which can serve as a basis

for representing spatial vectors. This is not to be confused with a grid-like

spatial representation, which would be more compatible with (non-periodic)
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FIGURE 1

(A) Representations of space with varying degrees of geometric accuracy (geometric content) (B–H) explicit and latent spatial representations in

robot and insect navigation. (B–D) Visual SLAM methods use a combination of odometry and landmark/feature tracking and matching to construct

explicit topological maps (B), vector/landmark (C), or grid-based (D) maps. (E) Scene-graphs (Hughes et al., 2022; Werby et al., 2024; Honerkamp

et al., 2024) construct hierarchical, object-centric graph representations to disassemble large scenes into regions, objects, etc., based on SLAM-like

mapping approaches. Edges usually encode predefined, i.e., explicit, relational, and semantic attributes. (F) the insect navigation base model uses two

distinct mechanisms which result in two spatial representations: an explicit vector map, built from visual odometry alone without the need for

landmark recognition and mapping, and latent directional cues learned from a view memory. It is not clear if and how these two are linked to form a

unified representation of space. (G–I) more recent approaches in robot navigation use latent representations. (G) topological latent representations

(Shah et al., 2023 e.g., RECON) (H) grid-based latent representations can be built from an explicit view-memory based architecture using RNNs

(Henriques and Vedaldi, 2018, e.g., MapNet:) or a learnable mapping module as in CMP (Gupta et al., 2019). While the grid structure is fixed, the

content of the grid (i.e., the interpretation of the values stored in the grid) is latent, as opposed to an explicit occupancy or semantic grid map (D). (I)

Unstructured memory based approaches like SMT (Fang et al., 2019) or unstructured RNNs (like Beeching et al., 2019) learn a completely abstract

latent spatial representation, which defies classification along the vertical axis in the figure.

combining populations representing different spatial scales. As we

discuss below, the insect navigation base model assumes a vector-

based representation of the global geometry of the environment,

using a different neural implementation based on phasors (Stone

et al., 2017; Lyu et al., 2022).

2.1.3 Topological graphs
If the vector information between connected nodes becomes

inaccurate, the vector map gradually loses geometric information

and transforms into a topological map, to the extreme case

where nodes are connected only by binary “reachability” or

place-cell like activity, where the receptive field corresponds to a particular

position within the spatial grid.

“traversability” values. A less extreme case would be a “weighted

graph” representation, where edge weights could represent the

Euclidean (or temporal) distance between nodes, preserving some

geometric information, but not enough to uniquely reconstruct

the map. Besides the obvious advantage of memory efficiency,

a topological representation may be preferred over geometric

maps (as argued for by Warren et al., 2017 in humans) for a

different reason: It is more robust to inaccurate or corrupted

measurements and therefore a more reliable representation of the

coarse structure of the environment, which can then be combined

with other mechanisms for local goal finding. Many outdoor

navigation approaches in RNav construct topological graphs of

the environment (e.g., Shah et al., 2023; Shah and Levine, 2022;

Engel et al., 2014). The gradual transition between the map types

described above is illustrated in Figure 1A.
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2.1.4 Scene-graphs
As another alternative to dense maps, scene graphs (Figure 1E)

have arisen as sparse environment representations that disassemble

large scenes into objects, regions, etc., and represent them

as nodes (Hughes et al., 2022; Gu et al., 2023; Werby et al.,

2024). The resulting representation provides a hierarchical and

object-centric abstraction that has proven useful in particular

in higher-level reasoning and planning (Rana et al., 2023;

Honerkamp et al., 2024). In contrast to pure geometric

representations, edges mainly focus on semantic or relational

attributes, resorting back to grid-based maps for more detailed

distance calculations.

All of the above representations establish a relation between

multiple salient locations in the world, including the agent’s own

position, and therefore represent knowledge about where the

agent is.

2.1.5 Directional cues relative to salient
location(s)

On the other hand, one could imagine a spatial representation

of sensory input that encodes a relation between the agent

and salient locations, without knowledge about how these relate

to each other. For example, the insect navigation base model

proposes the use of view memories, which are not attached to

any specific location, as discussed in more detail in Section 4.

One can interpret visual similarity as a proxy for the distance

to the stored view and the similarity gradient as a directional

cue (Zeil et al., 2003) toward the location of the snapshot. More

recent models based on visual familiarity (Baddeley et al., 2012;

Ardin et al., 2016) allow visual homing based on stored view

memories regardless of the temporal sequence or locations of

the stored views. Wystrach (2023) proposes a visual steering

model that categorizes current views into left/right facing with

regard to a specific location. These models demonstrate that

spatial representations that tell the agent where to go, rather

than where it is, are sufficient to support surprisingly complex

navigation behavior.

2.2 How is it represented? Explicit and
latent representations of space: φexp and
φlat

We introduce some formal definitions to pose the navigation

task as a reinforcement learning problem. Note that while we

illustrate the following considerations in the context of RL, they

equally apply to other learning paradigms used in the robot

navigation literature. RL is usually formalized as aMarkov Decision

Process (MDP),5 which is specified as a 4-tuple (S ,A, P,R): State

space S and action space A characterize the agent, while the

5 Technically, most classical RL navigation problems are formulated as

partially observable MDPs (POMDP), which operate on probabilistic belief

states about the unobservable true state.

environment6 is specified by the (probabilistic) transition function

P(s′|s, a), s, s′ ∈ S , a ∈ A (1)

between states s and s′, given action a, and a reward function

R(s, a), s ∈ S , a ∈ A. (2)

At each timestep, the agent moves across the state space by

choosing an action, which determines the next state according

to Equation 1, and receives rewards according to Equation 2. The

agent’s objective is to learn a (probabilistic) policy

π(a|s), s ∈ S , a ∈ A (3)

over actions given the agent’s current state, such that under repeated

applications of π , starting from any state s, it maximizes the

expected discounted cumulative reward, which we will discuss in

more detail in Section 5.1. Note that our notation is meant to

implicitly include policies over temporal sequences of states, e.g.,

eligibility traces (Sutton and Barto, 2018).

In the context of a navigation task, as outlined in Section 2.1,

there are now two possible choices for the state space S of the agent:

the conventional approach was to use modular SLAM methods to

construct a spatial representation from the sensory input, and then

use this explicit representation as the state space of the agent: S ≡

8exp (see Figure 2B). The agent effectively only solves the planning

sub-problem by either planning or learning a policy over a space of

spatial representations whose geometric content is pre-determined

by the specific SLAM implementation (e.g., Figures 1B–D).

The other possibility is to model the navigation task as an

end-to-end RL (or generally end-to-end learning) problem. This

more recent approach takes the raw sensory input as the RL

state space: S ≡ V (Figure 2C). The policy learned in this

case represents a joint implementation of all the sub-problems

of the navigation task. In order to achieve this, a sufficiently

expressive network architecture needs to be chosen for learning

π . For example, Deep Reinforcement Learning (DRL) leverages

deep neural networks as trainable function approximators (see

Zhu and Zhang, 2021; Zeng et al., 2020 for reviews of DRL for

navigation tasks). Crucially, successful end-to-end learning of a

navigation task implies the existence of an implicit, or latent spatial

representation 8lat 6= S within the network architecture for π

(Figures 1G–I). Notably, this representation is learned dynamically,

ideally converging toward a representation that most efficiently

encodes spatial features, not (fully) determined prior to training,

relevant for the navigation task. However, the space of possible

representations is constrained by the network architecture, which

allows imposing certain structural characteristics.

From a biological perspective, the distinction between latent

and explicit spatial representation is largely a question of plasticity,

recurrent connections, and time scales: In order for a latent (i.e.,

learned) representation to emerge, sufficient synaptic plasticity is

required in the neuronal populations that encode it. Modulation of

the synaptic connections based on a training error would require

6 “Environment” in this context may also include the sensory processing

apparatus.
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FIGURE 2

Navigation as a Markov Decision Process (MDP). (A) The three sub-problems of navigation: Mapping and localization operations take sensory input

from an input space V to infer a map of the environment and the agent’s pose, in a space 8 of joint spatial representations. These tasks are usually

solved together using simultaneous localization and mapping (SLAM). Based on the spatial representation, the agent plans a sequence of actions

from action space A to achieve the objective of the navigation task. (B) In modular robot navigation, only the planning stage is represented as an

MDP: existing SLAM methods are used to construct an explicit spatial representation 8exp, which serves as the state space S of the MDP. The learned

policy π (A|8exp) then “plans” the action. (C) End-to-end RL navigation directly uses the input space V as the MDP state space S. Localization,

mapping, and planning are jointly solved by learning policy π (A|V). The spatial representation 8lat is now latent in the hidden layers of the learnable

(deep) policy network.

some recurrent connectivity to convey that signal (see Section 5).

Spatial representations in biological agents likely contain both

explicit and latent components. For example, visual processing in

the insect optic lobes shows relatively little experience-dependent

plasticity, but the mushroom body, which receives high-level

sensory input from the visual and other sensory systems, is known

as the locus of much insect learning. From a more conceptual

point of view, one could argue that the entire neuronal circuit is

plastic on an evolutionary timescale. The full spatial representation

can then be interpreted as a latent representation shaped by

ecological constraints over many generations (see Section 4.6).

While modeling explicit neuronal implementations of learning

mechanisms would be nonsensical in this case, it may be interesting

to explore evolutionary computation approaches to RL (see Bai

et al., 2023 for a recent review) to serve as normative models for

a unified spatial representation in navigating insects. Realistically,

the ecological constraints under which such an evolutionary

model learns would entail the full behavioral task space of a

particular species, potentially giving rise to efficient representations

which generalize well to tasks other than navigation. This is

generally regarded as a distinguishing feature which sets biological

representations apart from most machine learning models.

3 Spatial representations in robot
navigation

Having discussed what is represented, here we discuss how

space is represented in robots.

3.1 Explicit spatial representations:
variations of SLAM

For completeness, we will very briefly discuss traditional robot

navigation models that construct explicit spatial representations

using some variation of SLAM. Fuentes-Pacheco et al. (2015)

provide a concise review of popular visual SLAM approaches,

which operate on different modalities (monocular, stereo, multi-

camera, or RGB-D vision) and use different probabilistic [Extended

Kalman Filter (EKF), Maximum Likelihood (ML) or Expectation

Maximization (EM)] or purely geometric (“Structure from

Motion”) approaches to maintain a joint representation of the

agent’s pose within a map of the environment. These map

representations come in any of the flavors discussed above.

Egocentric occupancy grid maps (Gutmann et al., 2008; Xiao et al.,

2022; Schmalstieg et al., 2022 see Figure 1D) are common for dense

indoor environments where obstacle avoidance is paramount.

Vector maps (e.g., Klein and Murray, 2007, see Figure 1C),

only encode the relative locations of salient features (landmarks)

which are tracked in the (retinotopic) camera view across time.

Typically, these methods (Mur-Artal and Tardós, 2017) use a loop

of (visual) odometry based on these landmarks7 and landmark

prediction based on self-motion estimates to maintain a joint

probabilistic estimate of robot and landmark positions. Loop-

closure – the recognition of previously visited locations—allows

for the correction of accumulated errors from imperfect odometric

information (drift). In contrast to the vector memory in the INBM

7 The landmarks encoded in themap and the ones used for odometry need

not be identical.
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discussed below, this concept of landmark based maps goes beyond

our earlier conceptual definition of vector maps: not only are the

physical landmark locations stored in the vector map, but they are

also linked to their retinotopic locations in the camera frame.

Topological SLAM methods (Konolige et al., 2009; Engel et al.,

2014; Greve et al., 2023; Vödisch et al., 2022, see Figure 1B)

are particularly useful for mapping larger areas: the world is

represented as a graph in which nodes are key-frames (“sensor

snapshots”) representing the camera pose. Nodes are connected

by edges which represent the relationship between poses obtained

from odometry or loop-closure. Global optimization ensures

convergence of the topological map. Nevertheless, Fuentes-Pacheco

et al. (2015) state that due to “the lack of metric information, [. . . ]

it is impossible to use the map for the purpose of guiding a robot”,

a limitation which has been overcome by using latent topological

representations as in Shah et al. (2023), discussed below.

3.2 Latent representations

Recently, the attention of RNav research has shifted toward

end-to-end learning approaches. While these offer the possibility

of abstract spatial representations, some implementations choose

architectures that constrain the spatial representation to known

templates. In the following, we will map out (see Figures 1G–I). the

space of possible latent representations along a (non-exhaustive)

selection of instructive examples:

The Cognitive Mapper and Planner (CMP) model (Gupta et al.,

2019) uses a fully differentiable encoder-decoder architecture to

create a gridmap of the environment. Instead of occupancy (or pre-

defined semantic) values, however, ‘The model learns to store inside

the map whatever information is most useful for generating successful

plans’, making the map a latent representation.8 Earlier, the same

authors (Gupta et al., 2017) suggested a latent representation

that combines grid-based with vector (landmark) based maps

by synthesizing a global allocentric grid-map from multiple

local egocentric grid maps at salient locations. Learning a map

from egocentric observations can be viewed as storing encoded

egocentric views in a map-like memory. Explicit memory-based

models like MapNet (Henriques and Vedaldi, 2018) use a Long

Short-Term Memory (LTSM) type Recurrent Neural Network

(RNN) with convolutional layers to encode and continually

update a grid-map-like state vector by egocentric observations (see

Figure 1H).

The RECON (Rapid Exploration Controllers for Outcome-

driven Navigation) model by Shah et al. (2023) uses a network

architecture whose latent representations capture the topology of

a large-scale environment. The map is represented as a graph with

egocentric views (“goal images”) at specific locations as nodes (see

Figure 1G), which are determined by a goal-directed exploration

algorithm.9 The model employs a variation of the information

bottleneck architecture (Alemi et al., 2019): an encoder-decoder

8 This is in contrast to (e.g., neural SLAM Chaplot et al., 2020), which is

explicitly trained to produce an occupancy map against a ground truth.

9 Akin to the “key-frames” in pose graphs (Engel et al., 2014).

pair, conditioned on the current egocentric view—learns to

compress the goal image into a latent representation (conditional

encoder), which is predictive of both the (temporal) distance

to the goal, and the best action to reach it (conditional

decoder). The encoder and decoder are trained together in a self-

supervised manner to learn the optimal (most predictive) latent

representation, with the actual time to reach the goal as ground

truth. Crucially, the resulting conditional latent representation now

encodes the relative distance to the nodes, and thus the topology

of the environment. In contrast to topological SLAM models,

goal-directed actions are learned alongside the topology, enabling

successful robot navigation.

Memory-based approaches like MapNet are based on the

insight that all spatial representation is inherently contained

in the history of previous observations. However, these need

not necessarily resort to fixed grid-like spatial representations.

Unstructured end-to-end RL approaches using RNNs (e.g.,

Beeching et al., 2019) build completely abstract latent

representations. Similarly, the Scene Memory Transformer (SMT)

architecture (Fang et al., 2019) learns an abstract representation

free of inductive biases about the memory structure. Instead of

updating an RNN state vector with each observation, an efficient

embedding of every observation is stored in an unstructured scene

memory. This serves as the state space for an attention-based

policy network based on the Transformer architecture (Vaswani

et al., 2017), which enables the model to transform the embedding

of each memory item according to a specific context. In a nutshell,

the transformer blocks are used to “[. . . ] first encode the memory

by transforming each memory element in the context of all

other elements. This step has the potential to capture the spatio-

temporal dependencies in the environment” (Fang et al., 2019).

Thus, the encoded scene memory contains a completely abstract

latent spatial representation without any preimposed structure

(Figure 1I). A second attention block is then used to decode the

current observation in the context of the transformed (encoded)

scene memory into a distribution over actions. The lack of prior

assumptions about spatial representation makes this model very

versatile and allows applications in a variety of navigation domains.

Wani et al. (2020) compare models using map-based and map-less

spatial representations on a multi-object navigation task.

It is important to note that in most of the above approaches,

latent representations are built based on a large store of

memories of past experiences, which are then transformed

into representations most suitable for navigation. One might

argue that in this case, learning the navigation task end-to-end

effectively ’reduces’ to the optimization of a memory storage and

retrieval process. This makes sense in silicon-based agents, where

storage capacity comes cheap. However, for biological brains—

especially in insects—storage capacity is very limited, and solving

complex tasks must rely more on computational efficiency rather

than memory. One possible exception is RECON, where the

memory is explicitly compressed into an efficient topological

representation, bearing some similarity to how insects might

solve navigation: As we will summarize in the next chapter,

the insect brain has evolved to compute very effective vector

representations of space, and we will sketch in Section 6 how a

RL mechanism could be built on top of this innate representation

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2024.1460006
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lochner et al. 10.3389/fncom.2024.1460006

to combine the flexibility of memory based learning with

computational efficiency.

4 Spatial representations of the insect
navigation base model

In this section, we discuss how space is represented in

insects. We describe constituent components of the proposed

insect navigation base model INBM (Webb, 2019) and analyze

inherent spatial representations in the light of the previous

discussion for artificial agents (see Figure 1F). Current INav

research has identified three main mechanisms as the minimal

set of assumptions that may be sufficient to explain observed

navigation behavior.

4.1 Path integration

Central place foraging insects are able to maintain a reasonably

accurate estimate of their position with respect to a central

nest location as a vector-like representation, known as the

path integration (PI) home vector. Stone et al. (2017) propose

an anatomically constrained model for path integration in the

central complex (CX) region of the bee brain: a self-stabilizing

representation of the current heading direction is maintained in

the ring-attractor architecture of the protocerebral bridge (PB):

Neuronal activity of TB1 neurons in eight (per hemisphere)

columnar compartments of the PB encodes heading direction

relative to the sky compass, projected onto eight axes shifted by

360/8 = 45◦, leading to a periodic, sinusoidal activity pattern.10

Another population of CX neurons (CPU4) accumulates a speed

signal derived from optic flow, modulated by the current heading

direction signal from the PB neurons. As a result, the PI home

vector is again (redundantly) encoded by its projection along eight

axes. This representation essentially amounts to a (discrete) phasor

representation of the home vector, with the amplitude and phase of

the periodic signal representing its length and angle, respectively.

The home vector can then be used to drive the animal back

toward the nest. Note that this ring attractor structure can be

viewed as an example of a broader class of attractor networks

used to represent spatial information across species, such as head-

direction or grid-cell activity in the mammalian enthorinal cortex

(for a comparative review see Khona and Fiete, 2022). In the

context of this work, we want to stress two important aspects

of PI in flying navigators: First, it must rely to a large extent

on vision alone, since proprioceptive modalities used by walking

insects like desert ants are highly unreliable due to wind drift

and other atmospheric parameters. We can therefore interpret

the PI home vector as a predominantly visual representation of

space.11 Secondly, for the same reason, basing PI on heading

direction is an oversimplification since heading and traveling

10 This can be interpreted as a redundant - and thus more robust -

generalization of simple Cartesian encoding (along two axes).

11 The role of vestibular-like inertial sensory information in PI is largely

unknown.

direction will often differ. Lyu et al. (2022) proposed a circuit

model of the fly (Drosophila melanogaster) CX, demonstrating

how a representation of the allocentric traveling direction can be

computed from heading direction and egocentric directional optic

flow cues by a phasor-based neural implementation of vector

addition. However, this important implementation detail does not

invalidate the general PI mechanism outlined above.

4.2 Vector memory

Efficient navigation entails more than returning to the nest:

Foragers need to be able to reliably revisit known food sources. The

INBMposits that whenever insects visit a salient location, they store

the current state of the home vector in a vector memory. Le Moël

et al. (2019) suggest a mechanism where an individual vector

memory is stored in the synaptic weights of a memory neuron,

which forms tangential inhibitory synapses onto all directional

compartments of the CPU4 population. Activation of this neuron

when the home vector is zero would leave a negative imprint of

the memorized PI vector (i.e., the vector from the nest to the

remembered location) in CPU4 activity, driving the animal to

recover a CPU4 activity corresponding to a zero vector (which is

now the case at the remembered location, where vector memory

and home vector are equal). If the initial home vector is not zero,

this mechanism for vector addition effectively computes the direct

shortcut to the remembered location, an ability frequently cited

as strong evidence for the existence of a cognitive map.12 The

neuronal mechanisms for storing, retrieving, and choosing between

multiple vector memories remain speculative. For the former, the

authors suggest dopaminergic synaptic modulation directly at the

CPU4 dendrites, providing direct reinforcement from extrinsic

rewards (food).

This combination of accurate path integration and vector

memories constitutes a vector map, i.e., a geometrically accurate

(within limits of PI accuracy) representation of the world, which

the insect can access for navigation, as long as the PI vector is

not corrupted or manipulated. Unlike landmark-based maps in

vSLAM, the vector locations are not associated with any visual

landmarks or features in retinotopic space.

4.3 View memory

A large body of INav research has been concerned with the

ability to return to the nest when an accurate PI vector is not

accessible to the animal, making it reliant on visual homing and

route-following mechanisms. Originating from the snapshot model

(Cartwright and Collett, 1983) which matched the retinal positions

of landmarks between the current view and stored snapshots,

more recent models suggest retinotopic representations of a low-

resolution panoramic view, with only elementary processing like

edge filters, and without the need for explicit landmark recognition.

12 Another implementation of a vectormemorymay be sustained neuronal

“phasor type” activity of (unknown) cell types in the CBU, and performing

vector arithmetic as in Lyu et al. (2022).
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Zeil et al. (2003) showed that similarity gradients based on pixel-

by-pixel intensity differences are sufficient for successful visual

homing. Combining multiple view memories along frequently

traveled routes allows for complex routes following toward the nest.

Webb (2019) emphasizes that no information about the location

or temporal sequence of the stored views is necessary: Baddeley

et al. (2012) proposed a computational familiarity model, which

encodes the entire view memory in an InfoMax (Lee et al., 1999;

Lulham et al., 2011) neural network architecture. From a scan

of the environment, the agent can then infer the most familiar

viewing direction over all stored memories. If the view memories

are acquired during inbound routes (i.e., linked to a homing

motivational state), this will guide the agent toward the nest.

Ardin et al. (2016) proposed a biological implementation of a

familiarity model based on the insect mushroom body (MB), a

learning-associated region of the insect brain discussed in more

detail in Section 5. In RL, different neural network approaches to

assess view familiarity have been used e.g., in Random Network

Distillation (Burda et al., 2018). Instead of a homing signal, it

serves as motivation for exploring unknown states (cf. discussion

Section 7).

4.4 Discussion: spatial representation in
the insect navigation base model

As presented thus far, the base model entails two independent

spatial representations: A vector map, which is not linked to

specific egocentric views, and directional cues based on view

memories, which are not linked to any geometric information from

the vector memory (see Figure 1F). According to our previous

classification, the vector map is an explicit spatial representation: It

is evolutionarily pre-determined by the path integration circuitry,

just like classical SLAM architecture by a pre-defined inference

algorithm. The construction of the vector representation differs

from SLAM methods in that exact localization is assumed,

based on PI, and the map is constructed based on that ground

truth, obviating the need to maintain correspondences between

retinotopic and geometric locations of features and landmarks. On

the other hand, a crude latent spatial representation in terms of

directional cues is implicit in the view memory.

For example, the visual features used by the InfoMax

architecture for familiarity discrimination are latent in the learned

network weights. Figure 1F illustrates how the INBM aligns

with our classification of spatial representations used for robot

navigation. As mentioned, the base model explicitly does not link

view memories to vector memories.

4.5 Beyond the base model

How these two distinct representations are linked is an active

research question, covering two major aspects: First, how do

insects balance conflicting information from the two systems? Sun

et al. (2020) proposed a unified model inspired by joint MB/CX

neuroanatomy, combining PI, visual homing, and visual route

following. The model balances off-route (PI and visual homing)

with on-route (visual route following) steering outputs based on

visual novelty and uncertainty of the PI signal. Goulard et al. (2023)

recently proposed a different mechanism to integrate view based

and vector based navigation, based on an extended concept of

vector memories: Positing vector computations as the fundamental

scaffold for integrating navigational strategies, they exploit the fact

that both PI home vector and the current heading direction are

represented in ring attractor networks within the CX (c.f. Stone

et al., 2017; Le Moël et al., 2019). In addition to location specific

vector memories [i.e., imprints of the home vector, as in Le Moël

et al. (2019)] they introduce direction specific memories, which

store the current heading direction via inhibition by a second set

of “memory neurons.” View familiarity is again assumed to be

learned in the MB, producing a binary signal which is used to

store the instantaneous heading direction as a vector memory,

whenever a familiar view is encountered. View familiarity is thus

translated directly into a directional vector memory, which is

anchored in an allocentric coordinate frame using the PI based

home vector (or other location specific vector memories). This

makes the resulting steering output more robust to overshooting

and temporary disappearance of the visual cue. In theory, this

mechanism could also be used to stabilize directional cues obtained

from other, possibly more volatile, sensory modalities such as

odor gradients.

Conceptually more interesting is a second aspect: is the view

memory truly independent of the geometry of the vector memory?

This is closely related to a question not thoroughly addressed in

the work cited above: When and where does an animal form a

view memory? Most models just assume that views are stored

regularly along a homeward-bound route. Ardin et al. (2016)

suggest that “the home reinforcement signal could [. . . ] be generated

by decreases in home vector length”. Note that this already associates

the stored views with a specific node in the vector map. Wystrach

(2023) recently proposed a neuroanatomically constrained model

for visual homing which obviates the need for storing individual

view memories: during learning, views are continuously associated

with facing left or right with respect to the nest, using the

difference between PI vector and current heading direction for

reinforcement. We will discuss this model in detail in Section 6.1.

The spatial representation of egocentric views is now decidedly

conditioned on a specific vector. One could easily imagine an

extension of this model by vector memories, enabling learnable

visual guidance along arbitrary vectors encoded in the vector map,

essentially using each vector as a motivational state. Note that such

a mechanism would be different from ‘reloading’ a PI state from

the viewmemory, although the expected behavior is similar: Insects

would be able to recover previously known ‘shortcuts’ based on

visual guidance alone. The joint spatial representation would be a

topological latent representation similar to Shah et al. (2023), see

the discussion in Section 7.

4.6 An evolutionary perspective: insect
inspired RL as a normative model

Conceptually, such a unified spatial representation could

itself be viewed as a single, latent embedding of visual input,
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learned over evolutionary time to best adapt to ecological

constraints, i.e., reap the largest long-term reward from the

environment. The dichotomy between static, explicit versus plastic,

latent components of the representation would then be relaxed

to a continuum of plasticity for different model components,

realized via differential learning rates. We propose to design an

end-to-end RL-learnable navigation model constrained by the

insect navigation base model, in the sense that the resulting

spatial representation is compatible with its basic assumptions.

This will be instructive for both the field of insect and

robot navigation: For the former, it can serve as a normative

model for a possible unified spatial representation that goes

beyond the base model, providing theoretical guidance for how

vector and view-based representations may interact to support

efficient navigation.

On the level of sensory processing, having the network

learn representations that match, e.g., PI based vector maps

may yield valuable insights into which visual features are

useful in intermediate processing steps to reliably support

such computations in a variety of visual conditions and

environments. These model predictions would yield testable

hypotheses for further neuroanatomical, physiological, and

behavioral experiments, as discussed in Section 7. Given the

superior performance of insect navigators in terms of training

efficiency, robustness, and generalization capability, robot

navigation may profit from this biologically inspired and

constrained spatial representation. Pre-training such a network

extensively under varying conditions and then freezing the

slow components may yield a highly robust, adaptive spatial

representation for applications similar to natural insect task

spaces, e.g., visual outdoor navigation for ground or aerial

autonomous agents. Implementing network architectures that

support phasor representations may be a useful avenue for robotic

navigation research.

5 Reinforcement learning with an
insect brain

Given the success of reinforcement learning as a framework

for robot navigation, it seems reasonable to ask if and how

navigation could be implemented based on actual RL-type

computations in the insect brain. Furthermore, extensive

literature involving dopamine, learning, and reward prediction

errors exists in the mammalian neuroscience community

but despite these topics being relevant in insect learning and

navigation, the discussion of potential connections is limited.

To explore this line of thought, we will first continue our

formal treatment of RL (Section 5.1). In Section 5.2 we will

discuss how current computational models of the MB - the

prominent learning associated region of the insect brain -

could be augmented to support simple RL algorithms. This

will allow us to discuss the recent MB/CX based visual

homing model by Wystrach (2023) in the context of RL

and extrapolate it to roughly outline a neuroanatomically

inspired end-to-end RL model for insect navigation in

Section 6.

5.1 RL formalism

Starting from the definitions from Section 2.2, RL methods

find the optimal policy (Equation 3) which may maximize the

expectation of the temporally discounted sum of instantaneous

rewards (Equation 2) over time:

Vπ (s) = Eπ

[
T∑

k=0

γ kRt+k+1

∣∣∣∣∣ St = s

]
(4)

= Eπ

[
Rt+1 + γVπ (St+1)

∣∣ St = s
]

(5)

=
∑

a

π(a|s)

[
R(s, a)+ γ

∑

s′

p(s′|s, a)Vπ (s′)

]
(6)

for all initial states s. This function is therefore called the value

function of s under policy π , with a temporal discount factor γ ∈

[0, 1]. Equations 5, 6, versions of the Bellman equation, illustrate the

recursive nature of the value function: it can be decomposed into

the average immediate reward from the current state s under policy

π , plus the discounted value of the subsequent state, averaged over

all possible successor states s′. Maximization of V with respect to

π can now be understood intuitively: For a single time step, the

optimal policy π∗ for the recursion (Equation 6) would be simply

choosing the action which maximizes the term in square brackets.

Iterating through the recursion then leads to the Bellman optimality

equation for the optimal state value function

V∗(s) = max
a

[
R(s, a)+ γ

∑

s′

p(s′|s, a)V∗(s′)

]
(7)

= max
a

E
[
Rt+1 + γV∗(St+1)

∣∣ St = s,At = a
]

(8)

Another way to interpret Equation 6 would be as a policy

average over a state-action value function Qπ (s, a):

Vπ (s) ≡
∑

a

π(a|s)Qπ (s, a). (9)

By the same logic, recursive (optimality) relations can be

derived for Q:

Qπ (s, a) = Eπ

[
Rt+1 + γQπ (St+1,At+1)

∣∣ St = s,At = a
]

(10)

Q∗(s, a) = E

[
Rt+1 + γ max

a′
Q∗(St+1, a

′)

∣∣∣∣ St = s,At = a

]
(11)

5.1.1 Value-based, policy-based, and actor-critic
methods

One way to find the optimal policy π∗ is by trying to solve

it directly. This is most commonly done using policy gradient

methods which parameterize the policy π(a|s; θ) and then perform

gradient ascent on a suitable performance metric, like the average

reward per timestep: 1θ ∝ ∇θE[Rt].

We will not dwell on pure policy-based methods further,

for more detail see Sutton et al. (1999) and Williams (1992).

Alternatively, one can estimate the value function V(s) or Q(s, a)

and infer an optimal policy indirectly. For example, assuming an

optimal Q∗ is found, the optimal policy is simply

π∗ = argmaxaQ
∗(s, a) (12)
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These value-based approaches have the strongest connection to

insect neuroscience and will therefore feature prominently in the

rest of this paper.

Last, so-called actor-critic methods constitute a hybrid

approach, involving both a policy (actor) and value (critic)

estimation. The policy gradient is then computed to maximize the

advantage of an action derived from the policy over the estimated

baseline value. Actor-critic methods play an important part in

robot navigation.

5.1.2 Temporal di�erence methods: SARSA and
Q-learning

TD methods approach the problem of value estimation by

deriving single-timestep update rules from the recursive relations

(Equations 10, 11) for Q or Equations 5, 8 for V : for each timestep,

the squared difference between the LHS and RHS is treated as a

prediction error to be minimized. For Equation 10, this leads to the

update rule

Qπ (St ,At)← Qπ (St ,At)+ α ·1t , (13a)

1t =
[
Rt+1 + γQπ (St+1,At+1)− Qπ (St ,At)

]
(13b)

with learning rate α ∈ [0, 1]. This update rule is known as SARSA

due to the tuple (St ,At ,Rt+1, St+1,At+1) required to compute the

update. In order to accommodate exploration, the agent follows

a non-deterministic policy based on the current estimate of Q,

making SARSA an on-policy algorithm. The most common choices

are ǫ-greedy (choose the argmaxa(Q) with probability 1 − ǫ,

random action with probability ǫ) and softmax policies (choose

an action from a Boltzmann distribution based on Q, with inverse

temperature β). These policies converge to the optimal policy π∗,

if the stochasticity is reduced systematically toward a deterministic

(greedy) policy (ǫ → 0 or β → ∞) during learning (see Sutton

and Barto, 2018).

Finally, a TD error without reference to a specific policy can be

derived to estimate Q∗ directly from Equation 11:

1t =
[
Rt+1 + γ max

a
Q∗(St+1, a)− Q∗(St ,At)

]
(14)

This is known as Q-learning. Note that in contrast to

Equation 13b, this off-policy update is now independent of the

consecutive action At+1 prescribed by the policy. However, the

policy still determines which action-value pair receives the update.

This effectively decouples the learned policy from the policy

employed during learning. In particular, this also allows for the

agent to perform off-line updates, i.e. updates which are not based

on the current state transition, but e.g., sampled from a replay

buffer of previous experiences. This property was key to the success

of the Deep Q-Network (DQN) by Mnih et al. (2015), an early

milestone of Deep Reinforcement Learning, which has since found

numerous applications in robot navigation.

As we will show, the neural substrate of the insect mushroom

body has the potential to support Q-based TD computations like

SARSA or Q-learning to solve navigational tasks. Conversely,

(Deep) Reinforcement Learning as a key toolset for robot

navigation provides a useful framework to think about the neural

computations underlying insect navigation.

5.2 The mushroom bodies as a neural
substrate for RL

5.2.1 The canonical MB learning model for
classical conditioning

The mushroom bodies are bilateral neuropils in the insect

brain, with homologous structures largely conserved across

different species, whose crucial role in learning and memory

has long been established. Extensively studied in the context

of olfactory learning in Drosophila melanogaster (reviewed in

Cognigni et al., 2018), inputs from other sensory modalities,

in particular vision (e.g., Ehmer and Gronenberg, 2002; Strube-

Bloss and Rössler, 2018; Vogt et al., 2014) likely support general

behavioral learning tasks, including visual-spatial navigation. The

main intrinsic anatomical components of the MB are Kenyon cells

(KC), whose dendrites form the calyx, while the axons constitute

the lobes of the MB. They receive sensory inputs via projection

neurons (PN), which are thought to form non-plastic, sparse and

random (Caron et al., 2013) synapses onto the KCs at the calyx. KC

activity is transmitted tomushroom body output neurons (MBONs)

at the MB lobes. Dopaminergic neurons (DANs), which also target

the MB lobes, induce (usually depressive) modulation of the KC-

MBON synapses and thus enable an adaptive response to the

sensory stimulus. MBON activity is integrated downstream by

(pre)motor neurons (MN) to produce an action. Conventionally,

the reinforcement signal mediated by the DANs is assumed to

encode a direct extrinsic reward. Figure 3A shows the “canonical”

MB circuitry (without the dashed MBON→DAN synapses).

5.2.1.1 Prediction targets and reinforcement signals: RL

vs. associative learning

At first glance, all the ingredients for reinforcement learning

seem to be there: KC activity defines the state space S , based

on which MBON activity encodes some value prediction over an

action space A. DAN activity encodes a reward function R(s, a).

However, there is a crucial difference in the kind of value prediction

which is computed: So far, MB-based learning has been studied

in the context of trial-by-trial associative learning (AL) paradigms

like classical conditioning, where the agent is presented with

isolated stimulus-reward pairs. This is not a full MDP, since neither

future states nor rewards are contingent upon the current state

and action, i.e., the transition function P(s′|s, a) is not specified.

The prediction target of RL, the long-term cumulative reward, is

therefore ill-defined, since it is determined by the experimenter’s

choice of stimulus/reward pairs, and not (only) by the agent’s

action. Instead, the agent is trained to predict the immediate

external reward following an action. This highlights a fundamental

difference in the interpretation of rewards in AL vs. reinforcement

learning: In the former, it serves as an immediate feedback signal

used to evaluate individual actions. The agent does not learn

to maximize future rewards, but merely to react to a stimulus

according to the associated reward. In the latter, rewards define a

long-term objective which the agent learns to achieve by a series of

optimal actions.

Furthermore, the models differ in how the value prediction is

learned: in the canonical MB model, the DAN reinforcement signal

directly encodes the absolute value of the external reward R (direct
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reinforcement), while for TD-RL methods, 1t in Equations 13,

14 encode a prediction error of Q(s, a) (which is a proxy for the

prediction target V(s)). Crucially, an MDP cannot be learned using

direct reinforcement, since there is no directly provided ground

truth for the prediction target. A neural mechanism for computing

prediction errors is therefore a prerequisite to reconcile RLwithMB

based computations.

5.2.2 Prediction errors in the MB
Recent computational studies proposed rate-based (Bennett

et al., 2021) and spiking (Jürgensen et al., 2024) models of the MB

which employ recurrent MBON→DAN connections to compute

a reward prediction error (RPE). They show that the resulting

behavior of the agents in a classic conditioning paradigm aligns

with experimental evidence. The postulated recurrent connections

are supported by anatomical evidence (Bennett et al., 2021) and

are indicated by the dashed arrows in Figure 3A. It illustrates

the simplest iteration of the models investigated by Bennett et al.

(2021): Agent behavior is the net result of approach and avoid

opponent processes within the MB. The two antagonistic behaviors

are encoded by the activity of two distinct sets of MBONs (M±),

whose outputs are integrated by downstream descending neurons.

KC→MBON synapses of these distinct sets are targeted by two

sets of valence specific, i.e., appetitive and aversive, DANs (D±).

The major innovation of this model lies in the interpretation of

M± activity as predictions R̃± of the positive and negative external

reward R±, respectively.
13 The prediction error 1R of the total

reward R = R+ − R− is then computed indirectly by recurrent

excitatoryMBON→DAN connections of opposite valence, i.e., the

prediction of negative reward is added to the direct positive reward,

and vice versa: D± ↔ R± + R̃∓. The difference between D+ and

D− activity then encodes the full RPE:

D = D+ − D− ↔ (R+ + R̃−)− (R− + R̃+) = 1R+ −1R−

= 1R (15)

Since the synaptic modulation by DANs is depressive,

reinforcement is achieved by inhibiting MBONs of the opposite

valence, i.e., appetitive DANs inhibit aversive MBONs and vice

versa. In contrast to the temporal difference errors from SARSA

(Equation 13) and Q-learning (Equation 14), here the RPE reflects

the prediction error of the single-timestep (or “timeless”) total

external reward of the Rescorla-Wager type (Rescorla, 1972). We

propose that only a few additional assumption can turn this MB

circuit into a neural implementation of a TD RL agent.

5.2.3 Temporal dynamics of recurrent
connections in the MB can support temporal
di�erence learning

Once we change the experimental paradigm to an interaction

task that can be modeled as a full MDP, optimizing cumulative

rewards becomes a meaningful objective. The agent’s learning

objective is now no longer the immediate reward R(s, a) following

13 Somewhat confusingly, rewards of opposite valence are often termed

“reward” and “punishment” in the AL literature.

an action, but the long-term value of a state-action pair Q(s, a).

The recursive TD update rules (Equations 13, 14) are prediction

errors of the current estimate of Q(s, a), with a more complex

prediction target: R(s, a) plus the agent’s estimate for Q(s′, a′) in the

next timestep. This temporal link is the core principle allowing TD

methods to compute estimates of cumulative rewards over time. As

before, we can interpret the activity of distinct sets of MBONs as

predictions, now for Q instead of R.

To illustrate the key differences to the RPE model discussed

above, let us consider the simple case of SARSA learning

on a discrete n-dimensional action space {ai} beyond binary

approach/avoid behavior—representing for example the choice of

a navigational sub-goal (“vector memory,” see Section 6.2). Unlike

in standard “computational” SARSA, positive and negative rewards

in the MB model are encoded in valence-specific pathways, leading

to a valence-specific decomposition Q = Q+ − Q−, represented

by the activity of two distinct sets of n MBONs: M
(i)
± ↔ Q±(s, ai).

In order to implement the SARSA update rule via dopaminergic

modulation, the following differences to the RPE model are crucial:

(i) To convey estimates of Q at subsequent timesteps, recurrent

MBON→DAN connections would have to carry activity traces, for

example via multiple pathways with different temporal dynamics,14

synaptic strength and potentially different effective signs. Eschbach

et al. (2020) have demonstrated the existence of these different

kinds of pathways in larval Drosophila in the context of classical

conditioning. It would be interesting to investigate whether they

converge in a way that enables the computation of TD errors.

(ii) The TD-error (Equation 13b) only involves predictions of

Q(s̄, ā) corresponding to the actually experienced state-action pair

(s̄, ā), chosen according to a value-based (probabilistic) policy:

ā ∼ π(Q(s̄, ai)) (see Section 5.1). Since MBON population activity

{M
(i)
± } encodes the entire function Q(s̄, ai), this would require

selective MBON→DAN feedback, reflecting the implementation

of π . (iii) Finally, synaptic modulation must selectively affect

only KC→MBON synapses corresponding to Q(s̄, ā), according to

Equation 13a.

Action selection and policy implementation The simplest way

to implement a policy-dependent action selection is directly at the

level of MBON activity. For example, a winner-take-all type lateral

inhibition mechanism between MBONs would correspond to a

(greedy) argmax policy (cf. Equation 12). Accounting for noise in

the circuit, this could be interpreted as a non-deterministic policy,15

potentially giving rise to an ǫ-greedy or softmax-like selection

mechanism. As a result, only the ‘conjugate’ MBON pair M̄±
would be active, reflecting the value Q̄± ≡ Q±(s̄, ā) of the chosen

(experienced) action in the given state. This ensures that unspecific

recurrent MBON→DAN connections would still convey only the

14 Technically, Equation 13 looks forward in time, while an activity trace

only gives access to previous states. This could be reconciled by simply

shifting the time index such that Q(St−1 ,At−t) is updated at time t. In the

neural model, this could be captured by the temporal dynamics of synaptic

modulation.

15 This could even account for adaptive exploration, with an increasingly

exploitative policy as the signal-to-noise ratio increases, i.e. the agent

becomes more evaluation of a state-action pair becomes more informative

(larger in absolute value).
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FIGURE 3

Anatomical [(A), adapted from Bennett et al., 2021 licensed under CC-BY 4.0] and computational (B) components of MB model for AL: KCs receive

sensory input vt from the PNs, encoding a decorrelated and sparse representation of the sensory environment st. KCs synapse onto distinct sets of

approach/avoid MBONs (M±) driving opposing responses, which are integrated in downstream (pre)motor neurons, (p)MN, to produce an e�ective

action, according to a “policy” π . MBON activity can be interpreted as a prediction R̃ of external reward R, stored in KC→MBON synaptic weights.

These are depressively modulated by reinforcement signals 1± from distinct sets of aversive/appetitive (D∓) DANs of opposite valence. In the

canonical model, DANs encode direct (external) positive or negative reinforcement 1 = R. Including recurrent MBON→ DAN connections (dashed)

enables DANs to compute an RPE signal for reinforcement: 1 = R− R̃ (see Section 5.2). (C, D) MB as a neural substrate for RL (Section 5.2.3): When

the state-action loop is closed, st are valid states of an MDP. A discrete action space (here: n = 2) is represented by corresponding sets of MBONs (in

“conjugate” valence pairs). A value-based policy could be implemented by lateral inhibition between MBONs (schematic illustration only). The MB

circuit can support TD-RL with the additional assumption that high-latency recurrent MBON→DAN connections can carry an activity trace. DAN

activity can then encode a TD error (Equation 16) and MBON activity reflects the agent’s current estimate of Q̄, the value prediction for the current

state-action pair (s̄t, āt).
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relevant Q-prediction such that joint DAN activity represents the

TD error (Equation 13b): Extrapolating from the RPE computation

(Equation 15), this could be implemented by assuming low-latency

(t), excitatory recurrent connections between DANs andMBONs of

equal valence and high-latency (t′), excitatory connections between

opposite valence compartments:

D = D+ − D− ↔
[
R+(t)+ Q̄+(t)+ Q̄−(t

′)
]
− [+ ↔ −]

=
[
R+(t)+ Q̄+(t)− Q̄+(t

′)
]
− [+ ↔ −]

=1+t′ −1−t′ = 1t′

(16)

If we additionally assume a DAN gated 3-factor plasticity rule at

the KC→MBON synapse, depending on both presynaptic KC and

postsynaptic MBON activity, updates to the value prediction would

apply selectively only to Q(s̄, ā), see (ii) above. Both lateral MBON

inhibition (e.g., Huerta et al., 2004) and effective 3-factor plasticity

rules (e.g., Huerta and Nowotny, 2009; Faghihi et al., 2017) have

been employed in MB learning models, summarized nicely in a

recent review byWebb (2024). Other combinations of mechanisms

presented therein may be equally viable to effectively perform RL

with a MB inspired circuit. Alternatively, action selection may take

place downstream of theMB, for example in the CX which has been

suggested as a potential substrate for action selection in Drosophila

(Hulse et al., 2021). The recurrent MBON→DAN connections

described by Eschbach et al. (2020) also include multi-synaptic

pathways, which would be necessary for such a more indirect

action-selection and reinforcement mechanism. In any case, the

agent’s current estimate of the function Q is fully captured by the

KC→ MBON synaptic weights, learned by synaptic modulation

through the DANs. Figure 3 illustrates how a full TD model can

be obtained by augmenting the canonical classical conditioning

model of theMB, and how anatomical and algorithmic components

map onto each other. If rewards are given only externally at sparse

locations, successful learning in such an RL agent will require

training over many episodes.

Note that while we will continue to discuss the proposed

circuit in the context of navigation, it may well be applicable to

other MB based learning functions. For example, the spiking MB

model for motor skill learning in Arena et al. (2017) interprets

MBON output as modulation to the parameters of a central

pattern generator. Similar to our model, learning isv achieved

by optimizing cumulative rewards (c.f. Equation 4), essentially

optimizing a MDP. However, the learning rule is based on direct

comparison of cumulative reward between episodes. It would

be interesting to modify this model to instead implement a

continuous, value-based TD learning rule (Equations 13b, 14) via

the recurrent connections postulated above.

5.2.4 Experimental assessment of MB based RL
So far, we have treated the premise of RL—the agent trying

to optimize cumulative rewards in a MDP over time—as given

and asked how the MB architecture could provide the neural

substrate for the necessary computations. However, experimental

validation of the underlying assumption, as well as conjectures

about possible neural implementations, requires a paradigm that

goes beyond simple associative learning (which has been the

dominant approach in MB learning experiments, e.g., Liu et al.,

2012; Aso et al., 2014; Felsenberg et al., 2017) and is instead

capable of capturing the full action-state feedback (transition

function) of a MDP. Ideally, the experimental setup would grant

direct control over states, transition and reward functions. For

example, one could imagine a closed-loop virtual reality setup

with a tethered insect on a treadmill, similar to the setup used

by Lafon et al. (2021) or Geng et al. (2022). The simplest way

to encode (purely visual) states would be as uniform visual

input of different color/intensity/polarization which changes along

predefined gradients (the transition function) according to the

walking direction of the animal.16 Reward could be delivered

optogenetically at specific locations in this artificial state space.

This setup would allow a direct comparison between observed

and modeled behavior (also using different RL algorithms).

Computational techniques like inverse reinforcement learning

(Kalweit et al., 2020, 2022) would allow a direct comparison of the

inferred Q-function of the agent with the one learned by the model.

In combination with electrophysiology or calcium imaging, DAN

activity in the behaving and learning animal could be compared

to the TD error of SARSA or Q-learning models. In particular,

one would expect increased DAN activity in states close to (but

distinct from) a change in the reward landscape, which could not

be explained by associative learning mechanisms alone. Finally,

assuming that a healthy animal exhibits behavior consistent with

a RL model, targeted disruption of MBON→DAN connectivity

could be used to probe whether the proposed connections are

indeed necessary for the computations underlying this behavior.

6 Reinforcement learning for insect
navigation

6.1 Visual homing with vector-based
internal rewards

Wystrach (2023) proposed an MB/CX based visual homing

model that uses an internal reward signal to alleviate this problem.

Figure 4A illustrates how the model consists of two antagonistic

copies (one in each hemisphere) of the “canonical” MB circuit in

Figure 3 which receive internal reward signals computed in the CX:

comparing the agent’s current compass heading κ and PI home

vector (with compass angle Pi) by a mechanism similar to the one

described by Lyu et al. (2022), a set of two reward signals rl/r is

computed, encoding whether the nest is located to the left/right of

the agents current heading direction. These provide input for two

sets of dopaminergic neurons Dl/r , assuming the role of external

rewards in the canonical model (Figure 3A). However, they don’t

encode a rewarding experience coming from the environment, like

the agent reaching a food source, but relate to an internal state of

the agent, the home vector. Since the latter is continually updated,

the rewards are no longer sparse whichmakes learning considerably

more efficient. DANs convey copies of the respective reward signal

to MBs in both hemispheres, giving rise to double opponent

processes: In each hemisphere, rr/l serve as direct reinforcement

16 More naturalistic visual state spaces could be used, as long as they are

easily parameterized along the action dimensions.
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FIGURE 4

(A) The MB/CX model for vision-based homing (adapted from Wystrach, 2023, licensed under CC-BY-NC 4.0) can be viewed as two competing MB

AL agents (Figures 3A, B) in the left (L) and right (R) hemisphere, receiving internal rewards provided by vector computations in the CX (B). Instead of

positive/negative external rewards, the set of DANs now encodes whether the nest is located to the left or to the right (Dl/r) as a direct reinforcement

signal. No RPE computation is assumed in this model. This “ground truth” is computed in the CX based on the current compass heading κ and a PI

home vector (whose compass angle we denote as 5, such that 5 < κ means that the nest is located to the left). In each hemisphere, competition

between “steer left” and “steer right” MBONs (Ml/r) is integrated ipsilaterally by neurons in the Superior Intermediate Protocerebrum (SIP) to generate

a steer left/right command in the left/right hemibrain, respectively. Opposing valence of the steering commands between hemispheres is achieved

by inverting excitation/inhibition of the SIP inputs. Note that visual steering is learned “o�-policy,” i.e., the agent does not use the policy it learns

during learning but is instead driven by an “o�-policy” metacontroller (In Wystrach, 2023 the agent was simply made to retrace experimental

trajectories of learning walks).

to associate representations of the current view (encoded in KC

activity) with populations of MBONs,Ml/r , corresponding to “steer

left/steer right” responses respectively. In either hemisphere, Ml/r

activity is integrated by downstream neurons, but with inverted

signs, leading to competing “steer left” and “steer right” premotor

commands from the left/right hemisphere, respectively.17 This

double opponent architecture increases performance robustness as

there are now two sets of MBONs that independently encode the

appropriate behavioral response.

Evidently, the model implements an associative learning

algorithm: It does not involve computation of a TD error

as proposed above, or even an RPE for the internal reward.

While it may be interesting to extend the model to use RPEs

for reinforcement, a computation of TD errors would serve to

achieve an erroneous objective: The formulation of the underlying

17 The implementation of the actual steering mechanism is again located

in the CX, but we will not discuss this further here. For more detail refer to

the original paper (Wystrach, 2023).

MDP would imply that the agent’s goal is to maximize the

cumulative internal reward. Since the internal reward is higher

(e.g., for steering right) the further off-target the agent is heading,

maximizing it over time would lead to the opposite of the desired

behavior. It would be interesting to investigate if a model with

inverted reward valences could be extended to an RL model

for visual homing. In the following, however, we will explore

a different line of thought, sketching an MB/CX inspired RL

model that integrates all three components of the insect navigation

base model from Section 4—path integration, vector memories,

and view memories—and links them to the behavioral objective

of optimizing external rewards. Finally, note that—in a liberal

interpretation of RL terminology—we can classify the visual

homing model as an off-policy learning algorithm: During the

learning phase, the agent’s actions are assumed to follow an

exploration strategy in agreement with observations (using data

from Jayatilaka et al., 2018; Wystrach et al., 2014) of learning

flights/walks performed by insects after emerging from their nest

for the first time (see, for a recent review).
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FIGURE 5

The visual homing model of Figure 4 can conceptually be turned into a hierarchical MB/CX based RL full navigation model which roughly fits to the

insect navigation base model. This can be done by replacing the o�-policy controller in Figure 4B with an MB RL agent as an “RL meta-controller”

(Figure 3D). As one additional component, it relies on a store of vector memories m, “snapshots” of the PI home vector 5, learned via direct

associative reinforcement with an external reward at salient locations (see Section 4 and Section 6.2 for possible anatomical implementations) which

now form the (discrete) action space of the TD-RL agent. A specific vector memory m̄ ∼ π (m|s) is selected as a navigational subgoal based on a

policy learned from the same external reward as the vector memories on a state space of processed visual input st. The internal reward now encodes

whether the agent is facing left/right with respect to the relative vector to the currently active vector memory selected by the meta-controller. This

vector computation based on current 5, current heading κ , and active m is assumed to be performed in the CX. The rest of the visual homing circuit

is identical to Figure 4. Note that st and 5 could conceptually be viewed as components of a joint representation of the visual input, with di�erent

components of the algorithm acting only on subspaces of this representation.

6.2 Toward an MB/CX based RL model for
(Insect) navigation

The visual homing model discussed above will serve as a

representative of models for view memory. It obviates the need

to decide when to store a view memory by learning continuous

associations, as described above. It makes a very explicit connection

between view memories and the home vector, while other models

only implicitly associate view memories with a motivational

state (Webb, 2019). However, taking into account the proposed

mechanism for storing and recalling vector memories (Le Moël

et al., 2019), one could broadly interpret the presently loaded vector
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memory as a motivational state (feeder vector loaded = “foraging

motivation,” no vector loaded = “homingmotivation”). Loading the

vector memory of a specific location effectively replaces the home

vector in the visual homing model with a relative vector toward

that location, theoretically allowing the agent to associatively learn

visual homing relative to every location in the vector memory, using

internal rewards. Vector memories on the other hand, are learned

by one-shot associative learning from external reward, e.g., the

presence of food. As suggested by LeMoël et al. (2019), this could be

achieved by direct dopaminergic modulation of synapses between

“vector-memory neurons” and the CPU4 integrator neurons in the

CX. Alternatively, specific populations of neurons, each of which

conveys a specific vector in a phasor-like representation, might

be activated. If these hypothetical “vector-memory neurons” are,

or receive excitatory input from, a subpopulation of MBONs, the

pool of vector memories could in turn serve as the action space

for an MB-based implementation of a TD-RL algorithm discussed

above (Figure 4B). This RL meta-controller learns a policy over

sub-goals from the current view and external reward, which may

serve two purposes: Steering the agent toward the selected sub-

goal using PI, and providing sub-goal-directed internal reward

for the low-level AL steering/homing controller. Interestingly,

however, due to the off-policy architecture of the AL controller,

view association with respect to any (inactive) vectormemory could

be learned while homing toward another (active) one (using either

views or PI), assuming a dedicated set of visual homing MBONs

associated with each vector memory. This would be consistent

with our interpretation of vector memories as motivational states,

which are often modeled by distinct MBON populations in the

MB literature [see Webb and Wystrach (2016)]. Theoretically,

this enables the agent to continually learn view associations with

respect to all vectors stored in memory while using a specific

one, or PI, for steering. If we further assume an anatomical link

between “vector memory MBONs” and their corresponding set

of “visual homing MBONs,” the RL-meta controller could select

previously visited vector locations as sub-goals for visual homing.

Figure 5 illustrates how the proposed model is built from the

components discussed above. We argue that a unified MB/CX RL

model along these lines would give rise to a remarkably versatile

spatial representation for navigation, while being relativelymemory

efficient: Each memorized location would require at most three

MBONs per hemisphere to encode it (one for selection plus two

for steering), which would be reasonably within the capacity of e.g.,

honeybees with∼ 200MBONs per hemisphere (Rybak andMenzel,

1993; Mobbs and Young, 1997). This computational efficiency,

rooted in the combination of an innate vector representation

with an adaptive learning and optimization mechanism, could

serve as a blueprint for robotic applications where compute power

and energy are severely limited, like autonomously navigating

aerial vehicles.

7 Discussion

In this paper, we presented reinforcement learning as

a common framework to compare representations of space

(Section 2) in current models for robot (Section 3) and insect

navigation (Section 4). We argue that the insect navigation based

model combines an explicit vector map with a latent spatial

representation based on view memories. This combination of

explicit and latent spatial representations, evidently very successful

for insects, may provide inspiration for future approaches for

robot navigation. We further proposed reinforcement learning

as a novel framework for interpreting and expanding existing

models for insect navigation. In Section 5, we investigated

how existing models of the insect MB circuit could implement

temporal-difference (TD) RL algorithms, and proposed a circuit

model with specific recurrent MBON→DAN connections which

would support TD-like reinforcement at the MBON→KC

synapse via differential temporal dynamics (Section 5.2.3)

In Section 6, we sketched how this could be used to build

a full MB/CX inspired TD-RL navigation model, which has

the potential to link the disjoint spatial representations of

the insect navigation-based model. To conclude, we will

discuss aspects of such a hypothetical model with respect to

spatial representations and RL-based robot navigation models

more generally.

7.1 Task hierarchies, intrinsic rewards, and
exploration

The model we outline here is, in a sense, a hierarchical RL

(HRL) model: A metacontroller selects a sub-goal for a low-

level controller, to provide the latter with dense internal rewards

instead of operating on the sparse external reward landscape.

For similar reasons, hierarchical RL architectures also play an

important role in robot navigation (Schmalstieg et al., 2023;

Nachum et al., 2018; Haarnoja et al., 2018) to avoid “dimensional

disaster.” There are, however, crucial differences: In RL, the

meta-controller usually provides intrinsic rewards for the low-

level agent, designed to facilitate the exploration of complex

environments with sparse external rewards. Oudeyer and Kaplan

(2008) define a situation as “intrinsically motivating [...] if its interest

depends primarily on the collation or comparison of information

from different stimuli and independently of their semantics, [...]

understood in an information theoretic perspective, in which what

is considered is the intrinsic mathematical structure of the values of

stimuli, independently of their meaning”, as opposed to extrinsic

motivation. Intrinsic rewards can be viewed as a formalization

of curiosity, motivating the agent to explore unfamiliar terrain,

and various approaches to model it exist in the RL literature

(Pathak et al., 2017; Burda et al., 2018; Savinov et al., 2019). In

the proposed model, the internal reward – facing left/right of a

location related to external rewards – is inherently extrinsic and

does not motivate the agent to explore, and the low-level controller

is not an RL agent. However, there are biologically plausible

ways to include intrinsic reward in the model. For example, Sun

et al. (2020) proposes a mechanism for switching between on-

route and off-route navigation strategies based on visual novelty.

Such a signal could theoretically serve as an intrinsic reward in

our model.

Finally, it is important to note that so far we have treated

vision in isolation. While it is clear that moving to multi-sensory

state spaces is necessary for a realistic model of insect navigation,
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including other sensory modalities—especially olfaction—also has

great potential to alleviate the problem of sparse rewards in our

model. It may be very useful to consider the “map” defined

by spatially varying odor concentrations (c.f. spatial olfactory

hypothesis in Jacobs, 2012) as a potential source for a spatially

and temporally more dense reward signal. The simplest and least

realistic implementation would be using large-scale gradients of

rewarding odors as a reward signal. For more realistic odor

landscapes, e.g., odor filaments caused by turbulent flow, the

frequency/probability of binary odor detections (enocded for

example by temporally sparse firing of tuned MBONs, as in Rapp

and Nawrot, 2020) could be interpreted as a proxy for odor density.

Matheson et al. (2022) further demonstrated the existence of an

odor-gated representation of the wind direction in the fanshaped

body. Interpreting this is a rough estimate of the direction of a

rewarding location, its deviation from the current heading could

be used as a direct reward signal via recurrent connections from

CX to MB. Such a mechanism could contribute both to increased

learning performance due to denser rewards, as well as improve

exploration by introducing an inherently stochastic element to the

reward landscape.

7.2 A unified spatial representation

The proposed CX/MB inspired RL navigation model would

fuse the disjoint spatial representations of the insect navigation

base model – an explicit vector map and latent directional cues

(Figure 1) – into a unified latent graph-like representation which

could be used in the absence of accurate PI information (while

preserving the vector map for pure PI-based navigation). The

agent learns to select a high-level subgoal—a vector memory—

based on the current view, from the high-level objective of external

reward optimization using an MB/CX RL circuit. This association

defines a latent topological relation between the location of the

current view and nodes represented by the vector memories: the

learned policy will likely reflect distance since learning to visit

distant goals would be less rewarding in the long run. The low-

level MB/CX AL homing circuit learns rough directional cues to

steer the agent toward the selected goal. Although both directional

and distance information are therefore available to the agent, both

are indirect and inaccurate, making the representation topological

rather than geometric.

In light of the cognitive map debate, we can characterize an

agent with such a spatial representation as “knowing where to

go, on different spatial scales”: It can infer from the current view

both where it wants to go, i.e., which vector memory to load,

and how to get there. This would enable behavior commonly

associated with a cognitive map. For example, the agent could

visually infer the direction of a novel shortcut from the present

location A to a previously visited location B stored in the vector

memory, since view memories in the vicinity of A have also been

associated with left/right steering commands with respect to B. By

a change in the policy over vector memories, for example, because a

previously closer food source C has been depleted, the agent could

be incentivized to choose to steer along a novel route (“shortcut”)

toward B.

7.3 Predictions, memory traces, and
internal world models

The previous example shows that our model could support

surprisingly flexible navigation, adapting behavior locally

depending on distant changes in the environment. In RL, this

kind of flexibility is traditionally associated with model-based

algorithms: Unlike the model-free algorithms discussed above,

they learn a model of the environment – i.e., the transition

(Equation 1) and reward functions (Equation 2) – directly and

then infer the optimal policy from them via (Equation 5). Explicit

knowledge about the environment allows them to plan out actions

virtually in order to optimize the policy (see Hafner et al., 2022 for

a current application using Deep Hierarchical Planning). This is

particularly useful to adapt flexibly to changes in the environment,

like changes in reward magnitudes (e.g., an empty feeder) or new

navigational obstacles. Model-based algorithms don’t need to

slowly and incrementally update their state evaluation by repeated

exposure to the change in the environment, but can simply update

their model of the environment and virtually plan a new route

based on that update. A neural implementation of such a predictive

model of the environment presupposes a state representation in

the form of recurrent neural activity, like the (p)replay of spatial

sequences observed in the mammalian hippocampus (Dragoi and

Tonegawa, 2011). The likely insect analog, spontaneous KC activity

in the MB, would be challenging to access experimentally and has

not yet been observed. On the modeling side, Wei et al. (2024)

recently proposed the intriguing idea that adaptive axo-axonal

gap junctions between KCs in the MB calyx could represent the

state transitions of a learned transition function and thus support

model-based RL computations in the MB.

On the other hand, a suitably predictive (latent) representation

can produce similar flexible behavior. E.g., Russek et al. (2017)

show that the successor representation (Dayan, 1993) can link

model-free TD methods to model-based behavior. Abstract

latent representations like in the SMT model (Fang et al.,

2019, see Section 3) can also adapt flexibly to environmental

changes without an explicit model: Adding an observation of a

change in the environment to the scene memory would globally

change the embedding of all other scene memories, and the

latent representation could quickly adapt to reflect the new

environment. Another memory mechanism linking model-free

TD-RL algorithms to seemingly predictive behavior are eligibility

traces (Sutton, 1988). Instead of updating only values of the current

(single timestep) state-action pair with the current reward, a trace

of previous experiences is updated as well. A current negative

reward, e.g., related to an obstacle, would for example affect the

agent’s evaluation of an earlier state, causing it to adapt behavior

early. However, while the behavior looks predictive, it is in fact

reactive: In order to learn to avoid a new obstacle, one would

still have to experience the novel situation a couple of times.

Wystrach et al. (2020) used a very similar concept of memory

trace learning,18 mediated by KC activity traces in the MB, to

show how desert ants learn to avoid new obstacles. Note that

memory traces could potentially also account for other learning

18 This is essentially the AL analog to eligibility traces.
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behavior reported in honeybees, like the delayed match-to-sample

task (Giurfa et al., 2001): traces containing similar (“matching”) and

dissimilar (“non-matching”) stimuli would constitute distinct states

for which different actions are learned, eliciting different behaviors

depending on whether a match is ‘recognized’ or not.

Our MB/CX RL model has the potential to enable fast

adaptation to changes: As discussed in the previous paragraph,

a small change in global high-level policy due to environmental

changes (empty feeder) can lead to sudden change in the local,

low-level behavior (steering toward a different goal): the question

would now be, how fast can the agent adapt the high-level policy

to the environmental change? Since local steering is handled by

the low-level controller, and the agent learns a policy over vector

memories on a relatively large spatial scale, the agent doesn’t need

to constantly reassess said policy, but can do so in larger intervals.

This would effectively increase the temporal scale of the MDP,

and therefore reduce the number of intermediate states between

rewarding experiences. In this “sped-up” MDP with much denser

rewards, policy adaptation due to a local change in the environment

is propagated faster to distant states, through fewer intermediate

states. This effect could be further enhanced by a memory trace

mechanism. Taken together, this would enable the agent to quickly

adapt local behavior based on distant changes in the environment,

by updating its hierarchical, topological spatial representation of

the world, without the need for a predictive internal world model.

7.4 Experimental validation of RL based
insect navigation

In any RL based navigation model, including the hierarchical

MB/CX model proposed above, the agent will learn policies, and

suitable underlying representations of the sensory input, which

optimize long term reward over extended multi-location foraging

trips. While it has been demonstrated in flight cages (Lihoreau

et al., 2010) and in the field (Lihoreau et al., 2012) that bumblebees

are able to optimize their route between multiple artificial feeders

(“traplining”) in an approximate solution to the “traveling salesman

problem” (TSP), the underlying optimization mechanisms are not

yet fully understood. Overly simplistic heuristics like nearest-

neighbor rules have been ruled out based on observed behavior

(Lihoreau et al., 2011). In Lihoreau et al. (2012), the authors

propose an iterative optimization heuristic—reinforcing route

segments when the total length of the foraging bout is shorter than

previous ones—which seems to be in line with observations, but

remain vague on neural mechanisms allowing the bee to compare

total distance traveled between bouts. On the other hand, (deep)

reinforcement learning methods have a long history of application

to variations of the TRP both theoretically (Gambardella and

Dorigo, 1995; Zhang et al., 2023) and in hardware applications

like a drone (Bogyrbayeva et al., 2023). The model we propose

may therefore provide an alternative explanation to the observed

optimization, based on a neuro-anatomically plausible learning

mechanism rather than innate heuristics. As a first step, it will

be useful to replicate the relevant experiments in simulations

based on the proposed architecture and compare observed with

RL based and heuristic behavior. We expect differences mostly

in the way optimal routes are consolidated over time, with a

more gradual transition if the optimal policy is learned continually

as in the proposed RL model. More recent analyses (Kembro

et al., 2019) also revealed that trained bumblebees switch between

exploitative (optimized) and more exploratory trajectories, which

may easily be integrated into the RL model by a variable

“determinism parameter” (c.f. Section 5.1.2). The crucial difference

between the heuristic and the RL model, however, is in the

internal representation of the optimized route: In the former,

it is represented as a probability distribution over sequences of

relative vectors between feeder locations, in the latter it is directly

coupled to sensory input, based on which the optimal next feeder

(vector memory) is learned and chosen. As mentioned earlier,

this is a crucial property of the proposed model, setting it apart

from most current models of insect navigation (Webb, 2019;

Goulard et al., 2023 e.g.,). One way to assess this would be a

displacement experiment with bees that have already learned an

optimized route. Starting from a visually familiar location, but with

a zero home vector, an agent using visual RL would be able to

immediately follow the remainder of the learned route from that

location, while an agent relying on vector sequences alone would

not. Novel outdoor tracking technology using a drone platform

(Vo-Doan et al., 2024) could enable these kinds of experiments,

tracking individual foraging bouts between natural food sources in

unprecedented spatial and temporal resolution.

7.5 Limitations of the proposed model

Besides being a mere model sketch which has not been

implemented and tested yet, some important limitations can

already be identified: A navigation model based purely on vision

and excluding other sensory modalities is a useful simplification

for now, but ultimately a comprehensive, realistic model must take

these into accoun—both as the basis for multi-sensory state spaces

and a potential source for a reward signal (c.f. Section 7.1). The

model can also not account for different behavioral modes like

learning, foraging and exploration flights observed in insects. This

may be possible by using parallel instances of the model operating

on different reward signals associated with those modes, but the

feasibility and biological plausibility of this approach has yet to be

tested. Lastly, our model can currently not account for a biological

mechanism for the eviction and re-assignment of vector memories

to MBONs, which is essential for the stability of the learning

algorithm. We suspect that this could be implemented by activity-

dependent plasticity in combination with temporal decay of the

memory, but a concrete mechanism has yet to be formulated.

7.6 RL as a normative framework:
place-cell like activity in KCs?

So far, we have treated the visual system as a static component of

the model. While this assumption is largely consistent with current

knowledge about plasticity in the insect visual system, we can again

expand the temporal horizon to evolutionary timescales and view

the anatomical components of the insectMB, CX, and visual system
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in the light of end-to-end RL, as outlined in the discussion of

Section 4. Without going into anatomical details of the insect visual

system here, a sensor-motor signal transduction pathway: retina→

lamina → medulla → lobula/lobula plate → visual PNs → KCs

→ MBONs → (pre)motor neurons, could be modeled as a deep

neural network implementing a DRL architecture, whose latent

spatial representation would then correspond to KC activity (the

input layer to the actual policy network, represented by the MB).

The learned representations could be indicative of actual spatial

representations used by navigating insects, and provide guidance

for experimental work. For example, it would be interesting to

see if such a model learns a grid-like spatial representation which

would correspond to place-cell like KC activity. This hypothesis is

compatible with known sparse firing patterns of KCs, but otherwise

speculative given current neurophysiological data. It is also unclear

how such a representation would fit into the existing model for

insect navigation. Since CX based PI is firmly established as a key

component for insect navigation, it seems imperative to eventually

include the CX in such an end-to-end RLmodel. This would enable

representations that embed PI-like components in a more complex

latent space. However, current insect navigation models do not

include CX→KC connections and it is not straightforward how the

CX would be integrated into a MB based end-to-end RL model. It

will also be challenging to strike a balance between expressive power

of the network architecture – essential for gaining new insights

about possible representations – and necessary constraints tomatch

empirically known components of these representations, like the PI

home vector.
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