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Global remapping emerges as
the mechanism for renewal of
context-dependent behavior in a
reinforcement learning model

David Kappel and Sen Cheng*

Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum,

Germany

Introduction: The hippocampal formation exhibits complex and context-

dependent activity patterns and dynamics, e.g., place cell activity during spatial

navigation in rodents or remapping of place fields when the animal switches

between contexts. Furthermore, rodents show context-dependent renewal of

extinguished behavior. However, the link between context-dependent neural

codes and context-dependent renewal is not fully understood.

Methods: We use a deep neural network-based reinforcement learning agent

to study the learning dynamics that occur during spatial learning and context

switching in a simulated ABA extinction and renewal paradigm in a 3D virtual

environment.

Results: Despite its simplicity, the network exhibits a number of features typically

found in the CA1 and CA3 regions of the hippocampus. A significant proportion

of neurons in deeper layers of the network are tuned to a specific spatial position

of the agent in the environment—similar to place cells in the hippocampus.

These complex spatial representations and dynamics occur spontaneously in

the hidden layer of a deep network during learning. These spatial representations

exhibit global remappingwhen the agent is exposed to a new context. The spatial

maps are restored when the agent returns to the previous context, accompanied

by renewal of the conditioned behavior. Remapping is facilitated by memory

replay of experiences during training.

Discussion: Our results show that integrated codes that jointly represent spatial

and task-relevant contextual variables are the mechanism underlying renewal in

a simulated DQN agent.
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hippocampus, global remapping, reinforcement learning, extinction learning, place cell

1 Introduction

Classical Pavlovian conditioning has taught us that animals can learn to emit a

conditioned response (CR) to a conditioned stimulus (CS) when the CS is repeatedly

paired with a physiologically relevant, unconditioned stimulus (US), which usually involves

reinforcement or punishment (Pavlov, 1927). When the CS is subsequently presented

repeatedly without the US, the association between CR and CS weakens, a phenomenon

referred to as extinction learning (Auchter et al., 2017). However, this effect has been found

to be complex and highly context-dependent, which can lead to renewal of learned behavior

under certain circumstances (Dunsmoor et al., 2015).

This effect is most evident in the ABA renewal paradigm (Bouton, 2004; Corcoran,

2004; Ji andMaren, 2008; Fujiwara et al., 2012; Zelikowsky et al., 2013). In this experimental

design, a subject typically acquires a CR to a CS when it is paired with an US in a particular
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context A, e.g., defined by a spatial enclosure, an odor or light

stimulus, and then the response is extinguished in a different

context B in the absence of the US. When the subject returns to

context A (without the US), the CR is restored. The ABA renewal

phenomenon suggests that extinction learning does not completely

erase or overwrite the previously learned association, but rather

forms a new contextual association (Dunsmoor et al., 2015).

The hippocampal formation plays an important role in

extinction learning (Jones et al., 2016; Bernier et al., 2017;

Hainmueller and Bartos, 2020), and it was found that extinction

learning depends on learning mechanisms in the hippocampus

(Peters et al., 2010; Soliman et al., 2010; Rosas-Vidal et al.,

2014; Wang et al., 2018; Bouton et al., 2021). Furthermore,

the hippocampal formation shows context-dependent activity

patterns and complex dynamics, e.g. place cell activity during

spatial navigation in rodents, or place fields, remap between

different environments (Grieves and Jeffery, 2017; Latuske et al.,

2018) (Figure 1A). The latter phenomenon is referred to as

global remapping and means that some place cells are active

only on one environment, and not the other, and some place

cells have place fields in different relative locations in the two

environments (Leutgeb et al., 2005). Hippocampal place field maps

also encode abstract task-relevant variables (Knudsen and Wallis,

2021). Some authors have therefore proposed that remapping is the

physiological basis for task-relevant context variables (Kubie et al.,

2020; Plitt and Giocomo, 2021; Sanders et al., 2020), i.e., that place

field maps jointly encode place and context in an integrated code

(Figure 1C).

Modern machine learning techniques, are now able to solve

behavioral tasks that are comparable in complexity to real-world

behavior and to reach human performance in some specific

domains (Ashraf et al., 2021). These techniques have been used to

model hippocampus functionality on an abstract level (Diekmann

and Cheng, 2023) and to explain the emergence of complex

task-relevant spatial codes (Vijayabaskaran and Cheng, 2022).

Furthermore, in Walther et al. (2021), a simplified abstract ABA

extinction learning paradigmwas tested in a simulated agent. It was

found that the prominent signs of extinction and renewal could

be reproduced in the model, but the underlying representations

of space and context that emerged in the circuit were not

studied systematically.

A number of models for remapping have been proposed. An

early model that focused on place cell remapping described the

phenomenon as neural implementation of a planar path integrator

for spatially tuned neurons (Redish et al., 1996; Zhang, 1996;

McNaughton et al., 1996; Samsonovich and McNaughton, 1997),

but assumed the existence of special signals to represent cues and

contexts, and did not learn from realistic visual input. A related

suggestion by Whittington et al. (2020) is that the remapping is

the result of conjunctive coding in place cells that are driven by

both invariant grid cells and non-invariant visual inputs when

animals move between contexts. Other earlier models proposed to

view the hippocampus as a hierarchical generative model (Stoianov

et al., 2022; Taniguchi et al., 2022; Penny et al., 2013). Following

these models, context can be recovered from network activity

through statistical inference (Fuhs and Touretzky, 2007). A related

idea also underlies an earlier statistical model of memory stability

(Gershman et al., 2017). Based on these results, a general contextual

inference theory of sensory-motor learning has recently been

proposed (Heald et al., 2021). Redish et al. (2007) proposed a

simplified computational model for extinction and renewal based

on the explicit representation of contextual cues. Cochran and

Cisler (2019) proposed an extension of the Rescorla-Wagner model

(Rescorla, 1972) that relies on latent-state inferences to associate

cues and rewards. This model was able to match a number of

behavioral effects, such as spontaneous recovery, which previous

models failed to reproduce. Another approach can disambiguate

identical sensory inputs in two different contexts, if the sequence

of observations differs between the contexts (George et al., 2021).

In contrast to these prior studies we focus here on the

machanisms that enable remapping and renewal in a reinforcement

learning setting. To this end, we develop a simulation environment

that uses naturalistic inputs with implicit contextual information

to study the emergence of representations in an ABA extinction

and renewal paradigm. This allows us to study the emergent

neural codes and behavior in a closed-loop simulation where an

agent interacts with a 3-dimensional (3D) environment. Unlike

previous models that focused mainly on symbolic representations

of the environment and internal state of the agent, we directly use

complex visual inputs to study ABA extinction and renewal. In

our model, context-dependent spatial codes that closely resemble

place cells, as well as a context-dependent remapping of these codes

emerge from the learning rule and task demands.

The context-dependent codes represent task-relevant cues, as

suggested by many previous models of extinction and renewal.

In our model, these representations emerge automatically through

learning in the complex environment. We compare two alternative

hypotheses about the nature of contextual codes: A segmented

code would suggest that separate populations of neurons encode

context and spatial location (Figure 1B), whereas an integrated code

would suggest mixed encoding of space and context (Figure 1C).

We show the simultaneous emergence of spatial representations

and task-relevant context variables throughout all layers of the

reinforcement learning agent. These emerging representations in

our model are more compatible with the integrated than with the

segmented model. Furthermore, we show that the formation of

independent spatial maps depends on the salience of the context

stimulus. Finally, we investigate the role of experience replay in

memory consolidation and stability of behavior and find a strong

dependence between renewal and replay.

2 Methods

2.1 Simulated behavioral experiment

To test the behavior and spatial representations that emerge in

the simulated agent during an ABA renewal paradigm, we designed

a closed-loop simulation of a spatial task inspired by T-maze

experiments (see Figures 1D, E). In every trial, the agent was located

at the bottom center of the base of the T-maze and could move

freely between grid points (238 in total) by choosing to move in

one of four cardinal directions (North, East, South, West). Actions

that would result in a movement outside the grid world consumed
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FIGURE 1

Experimental setup and data analysis. (A) Illustration of remapping paradigm. Moving from environment A to B results in the expression of a di�erent

spatial representation. (B, C) Two alternative models that can explain place field remapping, the “segmented” model (B) separates codes for space

and context, while the “integrated” model (C) combines these codes. (D, E) Illustration of the reinforcement learning agent (D) that interacts with a

simulated environment (E). (F–H) Place field analysis performed on the neural activations. 4-neighborhood topology in the T-maze (F) is used to

record neural activity maps for each heading direction (G). Activity of representative example neurons that showed place-cell-like behavior in one or

both environments (H).

one time step, but otherwise had no effect. Heading directions of

the agent were rotated in alignment of the actions in every time

step. When a goal location (red) was visited, the agent received a

reward (+20) and the trial was terminated. In every other time step,

a negative reward of –1 was given to encourage the agent to find the

goal as fast as possible. Unsuccessful trials were terminated after 400

time steps.

All simulations were based on the CoBeL-RL simulation

framework (Diekmann et al., 2023). Visual feedback was provided

to the artificial agent in the form of naturalistic images (Figures 1D,

E) generated using the Blender 3D computer graphics software

(version 2.79). The maze had a length of 2.8 m and walls were

structured with photo-realistic textures. A 360◦ view image of a

typical lab environment was projected onto a cylindrical sky box

around the maze to provide distal spatial cues. A point light source

with adjustable color was placed above the center of the T-maze.

In the regular setting, the color of the light controlled the context

(blue and white light condition). In the alternative setting, lighting

conditions were not changed and context was established through

an explicit signal. To generate the rendered input images, a camera

object was placed at the agent’s location and heading direction.

Gaussian jitter with standard deviations 1 cm and 10◦ was added

to the camera position and orientation, respectively. An image was

then captured, scaled and cropped to 80× 20 pixels, corresponding

to an effective horizontal angle of view of around 240◦.

2.2 Deep Q-learning network

To model spatial learning, we adopted reinforcement learning,

and since the goal of this study was to analyze emergent spatial

representations, we employed a Deep-Q Learning Network (DQN)

agent. TheDQN agent combines deep neural networks (DNNs) and

Q-learning, i.e. the action-value function Q(s, a) is represented and

approximated by a DNN (Ashraf et al., 2021). The update scheme of

Q realizes one iteration of the Bellman equation, i.e. for the current
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state s, action a, reward r, and next state s′

Q(s, a) ← (1− α)Q(s, a) + α

(

r + γ max
a′∈A

Q(s′, a′)

)

,

where α is a learning rate, γ is the reward discount factor and A

is the state space of the actions. The discount factor γ depreciates

future rewards and thus encourages fast goal seeking. Throughout

all simulations, we used γ = 0.8.

2.3 Network architecture, experience
replay and training procedure

ADNNwas used to learn and inferQ-valuesQ(s, a) in response

to complex visual stimuli. The DNN architecture in our agent

consisted of a feed-forward densely-connected artificial neural

network with four hidden layers (Figure 1D). Hidden layer sizes

from input to output were 112, 96, 80, and 64. Batch normalization

followed by rectified linear activation functions were used to create

layer outputs. The inputs to the first layer of the DNN were 80 ×

20 × 3 unprocessed RGB images. In the experimental condition

with explicit context, a set of 160 neurons were added to the input

to explicitly represent the experimental phase. 80 of these neurons

were active (activation = 1) during phase A, and silent (activation

= 0) during phase B. The remaining 80 neurons showed the reverse

behavior. The network output layer size was 4, corresponding to the

possible actions to navigate the maze (North, East, South, West).

The learning rule and network architecture allowed us to study

the spatial representations that emerge during learning the ABA

renewal paradigm.

The network was trained to predict Q-values using the

error backpropagation algorithm on sample experiences. The

Adam optimizer was used during training to control the update

speed, with a learning rate parameter of 10−4. Experience replay

was used during training by sampling experiences consisting of

(s, a, r, s′) tuples randomly from a replay buffer, if not stated

otherwise. Experience replay is a mechanism commonly used

in reinforcement learning to stabilize and improve the replay

behavior, where experiences are randomly sampled from the history

of previously seen state-action-reward experiences during training.

In the condition with replay, we used a replay buffer large enough to

store all previous experiences. In the condition without experience

replay, experiences were randomly sampled from the last five trials

for every training epoch.

The ε-greedy strategy was used to drive exploration during

training, i.e., in every time step, the action corresponding to the

highest Q-value was chosen with probability 1 − ǫ and a random

action with probability ǫ. ǫ was chosen to be 0.3 in all experiments.

2.4 Behavioral analysis

Behavioral trajectories (sequence of grid points visited in the

maze) were recorded in all experiments. Figure 2A shows the

superposition of 50 successive movement trajectories. Every trial

was classified based on these trajectories as conditioned response

(CR) trial or non-CR trials. For CR analysis, agent locations were

tracked over single trials. Trials were counted as CR trials if

the agent entered the left arm of the maze within the first 50

time steps. Learning dynamics were visualized using cumulative

response curves (CRC) (Donoso et al., 2021). CRC plots in Figure 2

show averages over 20 independent experimental runs.

2.5 Place field analysis

To analyze emergent spatial representations (see Figures 1F–H

for an illustration) we adopted the method from Vijayabaskaran

and Cheng (2022). First, activity vectors were recorded from all

neurons of hidden layers in the network by placing the agent

at all possible grid point locations and heading directions. Cells

that produced zero output under all condition were classified as

silent cells. Cells that produced non-zero activity at some locations

for at least one, but not all, heading directions were classified as

partially active neurons. Context cells were identified as neurons

that generated the same output value aA for all locations in context

A and for all heading directions, within a tolerance of 0.05% with

respect to the maximum neuron activation, and similarly in context

B aB, but aA 6= aB.

Preferred firing centers were further analyzed for the remaining

neurons. Activity vectors were smoothed with a Gaussian

smoothing filter before a cluster analysis was performed for each

heading direction. Neurons with activity that revealed more than

two clusters or neurons that were active at more than 50% of the

grid point locations were excluded from the analysis. Heading-

direction specific tuning centers were then computed as the

weighted average of grid point locations in the dominating activity

cluster. Cells, for which the heading-direction specific tuning center

exceeded the distance of four times the distance between grid

points, were excluded. All neurons that were excluded in the above

tests were classified as heading-direction modulated cells. The

remaining neurons were classified as place-cell-like.

For the remapping analysis in Figure 3, only neurons

that were classified as place-cell-like in at least one of the

experimental conditions were examined. Population vectors (PVs)

were generated by concatenating the activity vectors of these

neurons, merging the per-grid-point activities for the four heading

directions into one. PVs were pooled together from 20 independent

runs. Correlation coefficients were then computed on these

PV amplitudes.

3 Results

3.1 Extinction and renewal dynamics

Walther et al. (2021) demonstrated that extinction and renewal

can be reproduced in an in-silicomodel, using a simplified abstract

ABA extinction learning paradigm. We first studied whether

extinction and renewal behavior could be reproduced in a more

complex simulated agent that interacts with a 3D environment.

To do so, we designed a T-maze paradigm with a fixed reward

location as the basis for the ABA renewal experiment (Figure 2).

The agent is first placed in environment A (T-maze with reward

zone in the left arm, white light) for 200 trials, before the behavior is
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FIGURE 2

Analysis of the behavior of the simulated DQN agent. (A) Superposition of movement trajectories at di�erent stages of the experiment. Colors

indicate relative trial index (gray: earlier, blue: later). Reward locations indicated in red. Extinction and renewal in simulated agent. Inset shows

individual extinction trajectories. (B, C) Cumulative response curves (CRC) ABA renewal (B) and extinction experiment (C). Plots on the bottom show

mean responses (increments of CRCs). Shaded area indicates STD over independent runs. Progression of extinction and renewal tasks and

population vector recording time points (A, B, A′, A′′) are indicated on top. Renewal of conditioned behavior is clearly visible after return to A in ABA

task (B) but not in AA task (C). Inset shows time to context A reward location (mean and STD).

extinguished in context B (T-maze without reward, blue light). We

recorded behavioral trajectories and examined signs of extinction

and renewal for the simulated agent in this ABA renewal paradigm.

Extinction and renewal emerged in the simulated agent when

exposed to the ABA task (Figures 2A, B). Superposition of

movement trajectories at different stages of the experiment shows

that the agent quickly adopts the conditioned response (CR), i.e.,

prefers the left arm of the maze, entering the reward zone typically

within the first 50 time steps of the trial (Figure 2A). After 200

trials, the agent was moved to context B (blue light) and reward

was suspended. CR preference briefly continues after switch to B

but quickly washes out to baseline, showing no preference between

left and right arm (see Figure 2B). Response times were longer

after transition to context B, which resulted in a sharp decline in

conditioned response (Donoso et al., 2021), but the left preference

persisted (see insets in Figures 2B, C). After returning to context A

at trial 400 the CR is renewed followed by a slow gradual washout of

CR. As in experiments, renewal requires the switch of context, i.e.,

if acquisition, extinction and test occur in the same context, there is

no renewal (Figure 2C).

3.2 Emergent remapping of spatial
representations

We next analyzed the emerging neural codes in the DQN

agent after it has learned this task. The neural code analysis was

performed at the end of every experimental phase. Based on

these recordings and using a method adapted from Vijayabaskaran

and Cheng (2022) (see Section 2.5), neurons of the DQN agent

were classified into one of the four classes: silent, partially active,

heading direction modulated, and place cell like. In addition,

we identified context-dependent cells as neurons that generated

different outputs in the two contexts, but showed no spatial

tuning. Figure 1H shows example place fields extracted from
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FIGURE 3

Emergent spatial representations and remapping. (A) Distribution of di�erent cell types that emerged in the di�erent network layers at the end of

learning phase in context A. Deeper layers developed spatial coding more frequently. (B) Histograms of correlation coe�cients between population

vectors recorded at di�erent phases of the ABA renewal paradigm. All layers show signs of global remapping, i.e., spatial correlations are low

between contexts A and B, but high between two di�erent exposures to the same context A. (C) Comparison of PV correlation coe�cients for the

ABA renewal paradigm (blue) and AA extinction (white). Data from all network layers are combined. Without the context change, spatial

representations remain stable throughout extinction. (D) Distance between place cell centers for place-cell-like cells (mean ± SEM). P-values for

two-sieded T-test < 0.1 (∗) and < 0.05 (∗∗).

the DQN. While place-cell-like responses could be found in

all layers and experimental phases (Figure 3A), deeper layers

had a larger number of spatially tuned neurons, e.g. in layer

3 30.62 ± 0.9% of the units were classified as place cell like,

46.24 ± 3.4% as heading direction modulated, and 23.12 ± 3.6%

as partially active. A significant number of silent cells were found

in layer 1 (32.58 ± 0.6%) and layer 2 (15.63 ± 13.2%) and

these layers were overall less tuned to spatial features. Cells that

responded exclusively to the context, without being also tuned

to spatial features or heading direction, were only found in

layer 1 and 2.

A new spatial code emerged when the agent was moved to

context B as indicated by histograms of correlation coefficients for

population vectors (PVs) from different experimental phases and

network layers (Figure 3B). PVs in contexts A and B were only

weakly correlated (histograms are flat or skewed toward 0), whereas

correlations between PVs in context A at different time points (A,

A′, A′′) showed strong correlations with each other. Overall, deeper

layers showed slightly stronger signs of remapping.

Figure 3C shows a comparison of correlation coefficients

between the ABA and AA experiment. Remapping occurred in

the ABA condition, whereas correlation coefficients were better

explained by temporal proximity in the AA condition, suggesting

a slow drift of neural representations rather than remapping. Our

results suggest that global remapping in the spatial representations

is a key mechanism underlying renewal.

The representations that emerge in the behaving agent are

more compatible with the integrated code model than with a

segmented code. The majority of neurons were activated in

both contexts and modulated by spatial features or heading

direction, consistent with a mixed representation. Only a small

subset of neurons remained silent in either context A or B, or

showed no spatial tuning. Interestingly, we found neurons that

exclusively encoded context only in the first layers, close to the

input. In particular, we examined neurons that produced the

same output regardless of heading direction and the location

of the agent. We found that 33.3± 0.78% of the neurons in

layer 1 showed context cell behavior. Included in this count are

9.23± 0.28% (mean ± STD over 20 runs) of layer 1 neurons

that were classified as silent cells in one context, but had non-

zero, non-spatially tuned activity in the other, and 24.11± 0.73%

of layer 1 neurons that were active in both contexts and had

non-spatially tuned, context-dependent outputs. The number of

context cells decreased rapidly with the layer number. In all 20

runs, only a total of four context cells were found in layer 2.

Context cells and silent cells were absent in higher layers in

all experimental conditions. This result shows that integrated

codes better explain the neural representations that emerge in the

behaving agent.

Of the neurons that showed place-cell-like behavior, only

around 6% did so in both contexts A and B. The remaining ca. 94%

were classified as silent cells, partially active, or heading direction

modulated, in one of the contexts. To further study the remapping

behavior, we measured the Euclidean distance between place field

centers of cells that were active in both contexts (Figure 3D). There

was a trend toward larger place field distances when comparing

contexts A vs. B than for A vs. A′ across all layers, and the difference

reached significance in the higher layers 3 and 4. This observation

is compatible with global remapping in hippocampal recordings

(Leutgeb et al., 2005).
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FIGURE 4

Remapping in a relearning paradigm. (A) Behavioral trajectories. (B) Cumulative response curves as in Figure 2 for the acquisition phase. The agent

quickly acquired the rewarded response and immediately switched after return to context A (third phase). (C) Relative fraction of cell types as in

Figure 3A. (D) Mean PC correlation coe�cient per layer.

3.3 The role of the behavioral task

Next, we analyzed the role of the behavioral task on the

learning and remapping behavior. To do so, we repeated the above

experiment with a similar ABA task acquisition setup. However, in

this experiment we consider a relearning paradigm, thus during

the second phase in context B, the right arm of the T-maze was

rewarded and in the third phase, in context A, the reward location

was returned to the left arm. If context is represented through

integrated codes, different representations, that encode both task

relevant spatial and contextual cues should emerge in training

phases A and B.

As in the previous setup, the agent was able to acquire

the task within a few trials (Figure 4A). After rewarded maze

arms are switched in phase B, right trials were reliably preferred

(Figure 4B). Left preference is recovered immediately when the

agent is restored to context A in the third phase. As in

the previous experiment (Figure 3A), a significant number of

cells, of around 20% in deeper layers, are classified as place-

cell-like in this experiment (Figure 4C). As in the extinction

task, population vectors in A and A′ phases are significantly

stronger correlated than that of A and B, despite the long

temporal distance, showing signs of place cell remapping

(Figure 4D).

Although, context was crucial to the agent’s behavior here, we

again found an absence of context cells in higher layers of the

DNN. In the relearning experiment,∼35% of the neurons in layer 1

qualified as context cells. Similar to the results above, 11.25± 0.37%

(mean ± STD over 20 runs) of layer 1 neurons were silent in one

context, buthad non-zero, non-spatially tuned activity in the other.

23.93± 0.64% of layer 1 neurons were active, and had non-spatially

tuned, context-dependent outputs. On the other hand, only a small

fraction of layer 2 and no layer 3 and 4 neurons showed context cell

behavior, as in the extinction scenario above. This result shows that

integrated codes emerge in the behaving agent, independent of the

behavioral task.

3.4 The role of context salience in
remapping and renewal

Our results in the preceding section suggest that remapping of

task-relevant representations in the network is driving renewal in
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FIGURE 5

Impact of context salience on remapping and behavior. (A) Correlation coe�cient between population vectors (PVs) taken at di�erent phases of the

experiment as a function of the context salience. A vs. A′ PVs show a U-shaped profile, suggesting interference between PVs for low and intermediate

context salience. Correlation coe�cient between A′ and B, to measure the interference between emerging neural patterns as a function of context

salience. (B) Fraction of CR trials in the A′ phase (error bars show STD). (C) Distance between place cell centers for place-cell-like cells accross all

layers for di�erent context saliencies (mean ± SEM). (D) Histograms of A′–B PV distances and distance between place cell centers for context

salience of 0.1.

the test phase. To further investigate this dependency, we adapted

the experiment to include a variable strength of context salience.

The difference between the A and B contexts is determined by a

change of illumination in the T-maze. To test the sensitivity of the

emergent spatial representations to changes in the differentiability

between A and B context, we repeated the experiment with different

lighting conditions that blend between the A (white light) and B

(blue light) context, parametrized by a new task variable (saliency

of context, s). While context A remains fixed (white light), s =

0 indicates that both contexts are identical (white light in B),

s = 1 corresponds to pure blue light in B, and values between

0 and 1 denote a mix of blue and withe light in context B.

Clearly, s = 0 corresponds to extinction without context switch

(Figure 2C).

We repeated the analysis of remapping in neural codes for

experiments with different values of s (0 ≤ s ≤ 1) and compared

mean correlation coefficients between PVs from experimental

phases A, B, and A′ (Figure 5A). As expected correlations of PVs

are identical between A–B and A–A′ for s = 0 (A, A′, and

B conditions are indistinguishable) and maximally different for

s = 1, suggesting high levels of remapping between context A

and B. Interestingly, we found that A–A′ correlation coefficients

showed a U-shaped profile. For s = 0, the correlations are

high because the contexts A and B are identical and so are their

representations. In that situation, extinction learning overwrites the

acquired behavior so that there is no renewal. If context salience is

low to intermediate (0 ≤ s ≤ 0.4), training in B causes interference

with the previously learned spatial representations of A. For s >

0.4, the two contexts are less similar and the interference between

the spatial representations ameliorates. Despite the interference

between spatial representations at low to intermediate context

salience, renewal of CR could be observed already at quite low

levels of context salience (Figure 5B). In Figure 5A we show the

correlation coefficient between A′ and B, which is a measure

of interference between the neural patterns needed to learn the

behavior. As can be seen, interference also declines much slower

than the rise in CR trials in Figure 5B.

In Figure 5C we analyzed the Euclidean distance between place

field centers of cells, that were active in both contexts (as in

Figure 3D) as a function of context saliency. As for PV correlations,

place field distances for the A vs. B condition, were largest for

runs with high saliency. Also A′ vs. B distances showed a similar

behavior to correlation coefficients increasing steadily with the

saliency of context. To further examine the mechanisms that

enable renewal for low context saliency (Figure 3B), we studied the

histograms of absolute PV distances and place field distance for

A′–B with saliency of context 0.1. Most neurons show distances

close to zero, while a few neurons had large distances of around

0.8 (Figure 5D). These findings suggest that at low context salience,

spatial representations interfere, preventing a formation of clear

segregated codes. However, differences in codes driven by a small

subsets of neurons are strong enough to observe renewal also

for low context saliency. For higher context salience (s > 0.4),

the agent learns distinct representations of A and B, leading to

much higher A–A′ than A–B correlations, i.e., global remapping,

and renewal.

3.5 Testing the role of an explicit context
representation

To test the role of an explicit representation of context on the

network behavior and neural codes, we repeated the extinction

experiment with a modified input encoding, where context was

presented through a distinct signal instead of changing the

lighting in the camera inputs (see Section 2 for details). This

modified agent was able to reliably learn the behavioral task and

showed pronounced signs of extinction and renewal (Figure 6A).

Importantly, we found an abundance of cells that encoded mixed

representations, partially active, heading direction modulated and

place-cell-like cells. As in our previous experiment, these cell types

represented 100% of the neurons in layers 3 and 4. No cells

were found that represented context only, despite this information
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FIGURE 6

Extinction learning with segregated explicit context representation in the input. (A) CRC for ABA renewal experiment as in (B). (B) Remapping analysis

as in Figure 3B. Two-sided T-test p-values < 0.05 in all conditions (∗∗).

being explicitly present in the input. Furthermore, as reported for

the lighting context above, all layers showed significant signs of

remapping (Figure 6B). This result shows that integrated codes

emerge for different context representations even if context is

included explicitly in the input, suggesting that integrated codes are

the more likely outcome for a variety of behavioral learning tasks.

3.6 The role of experience replay in
remapping

We next wondered what caused remapping in the DQN

agent’s neural representations. A simple hypothesis to explain the

observed remapping behavior is that experience replay, that spans

multiple experimental phases, rescues neural representations from

forgetting and thus facilitates the emergence of two parallel spatial

maps. This hypothesis would suggest that remapping would be

abolished if replay were absent during training. Experience replay

is a method commonly used in reinforcement learning to stabilize

and improve learning (Ashraf et al., 2021). We use a very simple

replay model that randomly samples experiences from the past

during learning.

To test this prediction, we repeated the ABA renewal

experiment with maximum context salience (s = 1), using a

DQN agent without experience replay. Emergence of place cells

did not depend on replay, as spatially tuned neurons also emerged

in agents trained without experience replay (Figure 7A). Previous

studies had already reported that place-cell like activity, among

other neural dynamics, that resemble brain activity emerged in

artificial autonomous agents navigating complex environments

(Wyss et al., 2006). Vijayabaskaran and Cheng (2022) further

studied the conditions required for place cell formation. Without

replay PV correlations are overall decreased in all experimental

phases, suggesting that experience replay has a stabilizing effect

on neural representations (Figure 7B). A closer inspection of the

relative correlation coefficients reveals that they are higher for

A–A′ than for A–B, despite the fact that the latter are more

closely spaced in time, indicating that global remapping occurs

even in the no-replay condition. However, since the representations

of A and B are less distinct from one another than in the

simulations with replay, we conclude that replay helps in the

formation of distinct representations during extinction learning

in context B.

This conclusion is supported by another observation when

comparing the representations of A, A′, and A′′ (Figure 7B). There

are roughly the same number of learning trials between A–A′

and A′–A′′, but between A and A′ extinction occurs in context

B whereas all trials between A′ and A′′ occur in context A.

Interestingly, without replay the A–A′ correlations are similar to

A′–A′′ correlations, suggesting that the context of the intervening

trials has no influence on the stability of the representation of

context A. However, if there is replay, A–A′ correlations are

higher than A′–A′′, where the latter is similar to the no-replay

condition. This might seem counterintuitive, since between A

and A′ extinction occur in a different context. To explain this

observation, we note that the trials in the third experimental phase

are not reinforced, so extinction learning should occur in context

A. It is reasonable to assume that extinction learning leads to

changes in neural representations to drive a different behavior.

Our results suggest that if extinction learning occurs in a different

context from acquisition, replay strengthens the representation of

the acquisition context.

Finally, we studied the dependence between remapping and

renewal in the no-replay condition by varying the context

salience s (Figures 7C, D). Agents trained with experience replay

(solid lines) are compared to those without replay (dashed

lines). Without replay, remapping is apparent only for the

highest context salience and not for lower values. On the other

hand, no signs of renewal were found in the agents’ behavior

(Figure 7D). Importantly, the agent without replay was still able

to acquire the rewarded behavior during the acquisition phase

(Figure 7E). In summary, our modeling results suggest a crucial
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FIGURE 7

Impact of experience replay on remapping and behavior. (A) Relative fraction of cell types as in Figure 3A, but for an agent trained without experience

replay. (B) Remapping analysis similar to Figure 3C showing less clear remapping when replay is absent. (C, D) Analysis of impact of context salience

on remapping and behavior as in Figure 5 but for an agent trained without experience replay. Data without experience replay displayed with dashed

lines. Solid lines show data with replay as in Figure 5 for comparison. (E) Cumulative response curves as in Figure 2 for the acquisition phase. The

agent without replay was able to quickly acquire the rewarded response.

role of experience replay in renewal and an important role

in remapping.

4 Discussion

In this study, we have shown that DQN agents trained on

spatial tasks learn complex representations that encode both spatial

position and contextual variables about the environment. We

used an ABA renewal paradigm where a CR is extinguished in

context B. We reproduced renewal after the agent is returned

to context A across a wide range of experimental settings. We

showed that complex context-dependent spatial representations

and dynamics arise spontaneously in the hidden layer activity

of a deep network when a spatial navigation task is learned.

We found that the distinctness of contextual cues plays an

important role in global remapping of spatial representations,

and that the occurrence of global remapping strongly correlates

with renewal behavior. Finally, we found that experience replay

is critical to stabilize the acquired behavior during the extinction

phase. Disabling experience replay also prevented renewal and

reduced remapping.

These results demonstrate that deep-learning agents can

reproduce a set of complex learning dynamics similar to those

found in behaving animals. These results may therefore provide

new insights to better understand how spatial representations are

formed in the brain to support goal-directed behavior.

4.1 Plausibility of our modeling
assumptions

Reinforcement learning provides a robust simulation

framework for understanding the principles underlying navigation.

As in biological systems, an RL agent has to cope with a number of

complex problems such as interpreting sensory stimuli, extracting

task-relevant features from these stimuli, or dealing with the

exploration-exploitation trade-off. However, since reinforcement

learning is driven by the goal of reward acquisition, it neglects

other intrinsic learning mechanisms, such as curiosity or fatigue.

Furthermore, the combination of deep neural networks and

reinforcement learning, which forms the basis of a DQN agent,

makes it possible to process naturalistic inputs. However, the deep

neural network in our model does not attempt to match the visual

system of rodents and, therefore, it is difficult to compare the

saliency of a visual change between our model and rodents. Hence,

the degree of visual change that is required to drive global vs. rate

remapping can also not be compared. However, for our purposes,

it suffices that there are environmental changes that lead to global

remapping in both animals and model agents. Furthermore, the

DQN setup models neural activity only in an abstract way by

generating analog neural outputs at each time step. These outputs

model the activations of biological neurons at a coarse temporal

resolution, roughly corresponding to neuronal firing rates or

calcium transients. It will be interesting to study whether similar

learning dynamics can be observed in more detailed models of

biological neurons, such as Frémaux et al. (2013).
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In order to maintain full control over the experimental setup,

we studied a simple feed-forward DQN agent here. This choice

was made because the aim of this study was not to model

detailed temporal dynamics of neural activity, e.g. time cells and

ramping cells (Lin et al., 2023). However, including recurrent

connections in our model to study more complex temporal neural

dynamics is straightforward and an interesting topic for future

studies. Furthermore, we focused on a relatively abstract interaction

with the environment, where only 4 different actions could be

generated in every time step. By augmenting the model with more

behavioral details, a number of additional experimental findings

could be tested in future work. For example, experimental evidence

indicates that hippocampal cognitive maps encode abstract task-

relevant dimensions that encode value (Knudsen andWallis, 2021),

suggesting a complex mixed encoding of spatial representations,

context, and task-relevant variables.

Despite its simplicity, the proposed model shares some features

with the hierarchical processing of complex visual stimuli in the

brain. Lower layers in the neural network are tuned to visual

features, as expected in higher visual areas, whereas higher layers

(neural layers close to the output) are tuned more to abstract

representations that are invariant to detailed visual features or

heading direction and show place-cell-like activity, in this sense

resembling hippocampal areas. Furthermore, we used a very

simple model of experience replay, and found it to be crucial for

renewal. Experience replay is found in hippocampus during awake

resting has been proposed as a mechanism for consolidating learnt

experiences (Foster and Wilson, 2006; Buhry et al., 2011), and it

plays a similar role in our simple reinforcement learning setup.

However, we would like to emphasize that the aim of this study

was not to match anatomical structures, or precise statistics of

replay (Diekmann and Cheng, 2023) in detail, but to identify a

minimum set of assumptions that would allow an agent to express

the observed behavior and neural dynamics at a conceptual level.

As for the behavior, we focused on a T-maze paradigm,

where the agent learns to navigate to a fixed local target to

retrieve a reward. This experimental paradigm fits well with the

reinforcement learning setup, and the DQN agent was able to

quickly acquire this behavior. However, experimental studies have

also explored other conditions for reliably inducing global or partial

remapping, such as different maze topologies (Leutgeb et al., 2005;

O’Keefe and Conway, 1978), odors (Wood et al., 1999), item-

place associations (Komorowski et al., 2009), or sounds (Aronov

et al., 2017). In future work, we will investigate whether remapping

in DQN agents also occurs in scenarios that mimic these more

diverse setups.

4.2 Spatial and contextual representations
in the model network

In our model network, spatially tuned neurons were present

more prominently in higher layers of the neural network, whereas

lower layers were more strongly modulated by visual features,

suggesting a hierarchical organization of neural codes. Signs of

global remapping were found in all layers of the network. While

replay had a strong effect on remapping and CR renewal, we found

no significant difference in absolute number of spatially tuned

cell types.

An interesting difference between lower and higher layers

arises during extinction learning. As mentioned above, spatial

representations change during extinction learning and replay helps

to maintain the representation of the acquisition context during

extinction in context B (see discussion of the results in Figure 7B).

Since in the third experimental phase, trials are not reinforced to

test for renewal in context A, the CR is eventually extinguished.

To support this change in the behavior in context A, the neural

representations have to change, too. Intriguingly, the change does

not occur in the lower layers, where A–A′′ correlations remain high

(Figure 3B), but they do occur in the higher layers, where A–A′′ are

peaked around 0. This suggests that the sensory layers retain a stable

representation of A, whereas the layers closer to the output have to

change their representation to support a different behavior.

In our model, the occurrence of global remapping in the

network is strongly correlated with renewal, nevertheless, for

low values of the context salience, renewal occurs in the model

even though our analysis of remapping does not indicate distinct

representations of the two contexts (Figure 5B). We believe this is

an artifact of using the correlations between the populations vectors

in the two contexts (A–A′ and A–B) as an indicator of distinct

representations. A similar phenomenon has been observed in other

studies of memory storage and retrieval, where the similarity

between patterns, as measured by a high correlation, did not

sufficiently predict whether they would be confused in memory

(Neher et al., 2015; Bayati et al., 2018).

While here we used a simplified feed-forward neural network

to learn representations, a more detailed model that incorporates

high-resolution temporal dynamics will be necessary to account

for sub-second neural dynamics and complex neuron responses in

the hippocampus in the future, e.g. the fast remapping dynamics

on the temporal resolution of theta cycles (Jezek et al., 2011) and

experience replay (Gillespie et al., 2021).

4.3 Testable experimental predictions

The proposed model makes a number of testable experimental

predictions. First, our results suggest a close correspondence

between remapping and renewal. This prediction could be tested

in experiments where neural activity and behavior are recorded

simultaneously. For instance, in a study with human participants,

some individuals exhibit renewal, while other do not, and the

occurrence of renewal correlated with differences in hippocampal

activity (Lissek et al., 2013). This study together with our modeling

results predict that in a spatial ABA renewal task, animals who

exhibit renewal also show global remapping in the hippocampus,

whereas those individuals who did not show renewal have stable

spatial representations.

Second, we found that the salience of contextual cues plays

an important role in extinction and renewal. It has already been

shown in experiments that the property of remapping depends on

the specificity of the change in experimental conditions (Latuske
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et al., 2018; Leutgeb et al., 2005). Our results predict a specific

“U”-shaped dependence for the correlation coefficients between

population vectors, i.e., it first declines and then rises again

(see Figure 5A). It would be interesting to conduct an ABA

renewal experiments with rats in a virtual reality environment

that allows parametric changes to the environment. We predict

that renewal correlates with the occurrence of global remapping in

place cells.

Third, we find an important role for replay in the expression

of renewal, which is consistent with several models that have

previously explored the role of replay for learning (Johnson

and Redish, 2005), exploration (Samsonovich and Ascoli, 2005),

planning (Mattar and Daw, 2018), and active inference (Stoianov

et al., 2022). Our finding suggests that disruption of replay

(Gridchyn et al., 2020) would reliably attenuate renewal. If replay

were disrupted in a context-specific manner, it would be possible to

impair renewal in context A without affecting extinction learning

in context B.

5 Conclusion

In summary, we have demonstrated the emergence of context-

dependent spatial codes. These emerging representations in our

model are compatible with the integrated model and with neural

codes in the hippocampus. The occurrence of remapping is strongly

correlated with renewal. This suggests that integrated codes are the

mechanism for context-dependent extinction and renewal in the

DQN agent.
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