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Background: Automatic sleep staging is essential for assessing sleep quality

and diagnosing sleep disorders. While previous research has achieved high

classification performance, most current sleep staging networks have only

been validated in healthy populations, ignoring the impact of Obstructive Sleep

Apnea (OSA) on sleep stage classification. In addition, it remains challenging to

e�ectively improve the fine-grained detection of polysomnography (PSG) and

capture multi-scale transitions between sleep stages. Therefore, a more widely

applicable network is needed for sleep staging.

Methods: This paper introduces MSDC-SSNet, a novel deep learning network

for automatic sleep stage classification. MSDC-SSNet transforms two channels

of electroencephalogram (EEG) and one channel of electrooculogram (EOG)

signals into time-frequency representations to obtain feature sequences at

di�erent temporal and frequency scales. An improved Transformer encoder

architecture ensures temporal consistency and e�ectively captures long-term

dependencies in EEG and EOG signals. The Multi-Scale Feature Extraction

Module (MFEM) employs convolutional layers with varying dilation rates to

capture spatial patterns from fine to coarse granularity. It adaptively fuses the

weights of features to enhance the robustness of the model. Finally, multiple

channel data are integrated to address the heterogeneity between di�erent

modalities e�ectively and alleviate the impact of OSA on sleep stages.

Results: We evaluated MSDC-SSNet on three public datasets and our collection

of PSG records of 17 OSA patients. It achieved an accuracy of 80.4% on the OSA

dataset. It also outperformed the state-of-the-art methods in terms of accuracy,

F1 score, and Cohen’s Kappa coe�cient on the remaining three datasets.

Conclusion: The MSDC-SSRNet multi-channel sleep staging architecture

proposed in this study enhances widespread system applicability by

supplementing inter-channel features. It employs multi-scale attention

to extract transition rules between sleep stages and e�ectively integrates

multimodal information. Our method address the limitations of single-channel

approaches, enhancing interpretability for clinical applications.

KEYWORDS

automatic sleep staging, obstructive sleep apnea, time-frequency representation,multi-

scale feature extraction, transition rules
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1 Introduction

Sleep is an essential biological process that is vital for

both physical and mental well-being. It significantly influences

numerous physiological functions, such as cognitive performance,

mood regulation, and immune system function (Weber and Dan,

2016). Numerous studies have shown that the prevalence of sleep

disorders has been rising in recent years. A study conducted in

Australia found that 41% of women and 42% of men experience

sleep issues (McArdle et al., 2020).

Sleep is a dynamic process comprising distinct stages that

cycle throughout the night (Berry et al., 2017). The American

Academy of Sleep Medicine (AASM) offers standardized guidelines

for classifying sleep stages, which are commonly utilized in both

clinical practice and research environments. It categorizes sleep

into specific stages: Wakefulness (W), Rapid EyeMovement (REM)

sleep, and Non-Rapid Eye Movement (NREM) sleep. NREM sleep

is further classified into three stages: N1 (light sleep), N2 (moderate

sleep), and N3 (deep sleep or slow-wave sleep) (Berry et al., 2012).

The AASM sleep stage classification criteria are listed in Table 1.

Sleep stage classification is essential for the diagnosis and

treatment of sleep disorders. Polysomnography (PSG) remains the

gold standard for diagnosing these conditions and determining

sleep stages. Manual sleep staging is resource-intensive, requiring

specialized equipment and trained expertise. It is often conducted

in a controlled laboratory environment, leading to high costs and

limited accessibility (Malhotra et al., 2013). Therefore, automatic

sleep staging has become a research hotspot.

OSA refers to partial or complete blockage of the upper

airway during sleep, accompanied by discontinuous sleep caused

by hypoxia. This disease has a high prevalence and widely affects

people around the world, seriously affecting patients’ sleep quality

and overall health. The apnea-hypopnea index (AHI) of the entire

night in PSG determines the current diagnostic criteria for OSA.

Standard sleep structure includes stage N1, accounting for 2%–5%

of total sleep time (TST); stage N2, accounting for 45%–55%; stage

N3, accounting for 15%–25%; and REM, accounting for 20%–25%.

OSA patients have a fragmented sleep structure due to frequent

awakenings, with increased stage N1 and reduced stage N3 and

REM.

Early deep learning models, such as those by Andreotti et al.

(2018), utilized convolutional neural networks (CNNs) to extract

time-frequency domain features from EEG data. Chambon et al.

(2018) further refined this approach by developing a feature

extractor using multiple convolutional layers to process various

input channels and modalities. To fully exploit the temporal

information in Electroencephalogram (EEG) signals, some studies

have employed Recurrent Neural Networks (RNNs), including

Long Short-Term Memory (LSTM) networks and bi-directional

LSTM (BiLSTM) networks. Michielli et al. (2019) proposed a

cascaded RNNwith two LSTM units . However, basic deep learning

networks often encounter limitations due to the short duration of

input contexts. Consequently, sequence-to-sequence methods have

gained popularity, allowing for the analysis of extended sequences

of PSG epochs (Phan et al., 2019b). Tang et al. (2022) developed

an end-to-end deep learning model for adaptive sleep staging using

ECG signals as input. Amann et al. (2020) converted multichannel

TABLE 1 Description of di�erent sleep stages.

Stage Name Description

N1 Light sleep Transition from wakefulness to sleep,

characterized by slow eye movements,

lower muscle activity, and the presence of

theta waves in EEG

N2 True sleep No eye movements, sleep spindles, and

K-complexes appear in EEG, higher

sleep threshold to disturbances, and cessation

of conscious awareness

of the external environment

N3 Deep sleep (NREM) Delta waves predominate the EEG, known as

slow-wave sleep (SWS),

associated with memory consolidation and

restorative processes

R REM Sleep Rapid eye movement sleep where dreaming

occurs, characterized by rapid

eye movements, atonia (loss of muscle tone),

and beta waves similar to an

awake state in EEG

W Wakefulness High frequency and low amplitude EEG

patterns, voluntary muscle activity,

and the ability to respond to stimuli. Eyes are

typically open and moving,

and muscletone is present

raw signals into time-frequency images for a CNN-based model,

addressing sleep staging as a joint classification and prediction

problem .

Current research on sleep monitoring predominantly utilizes

single-channel EEG due to its simplicity, facilitating use in home-

based and wearable systems (Toban et al., 2023). However, multi-

channel EEG models offer enhanced robustness by incorporating

multiple data sources, which proves more effective in clinical

settings for accurate diagnosis and treatment of sleep disorders.

Specifically, combining electrooculography (EOG) with EEG

provides additional valuable information, such as detecting eye

movements, which single-channel EEG alone may not reliably

capture. These models align closely with expert assessments,

improving credibility and interpretability.

To further enhance signal representation, recent advancements

advocate for transforming one-dimensional physiological signals

into more informative two-dimensional formats like STFT (Guillot

and Thorey, 2021), fast Fourier transform (FFT) (Joe and Pyo,

2022), Hilbert-Huang transform (HHT) (Zhang et al., 2020) and

wavelet transform (WT) (Kuo et al., 2021), borrowing techniques

from image and signal processing domains. Furthermore, similar to

the collaborative approaches proposed in computational research

across various domains, the application of advanced data filtering

and quantization methods can significantly reduce computational

complexity, thereby offering potential improvements in the analysis

of physiological signals (Babović et al., 2023).

Although these studies have made some progress, some

problems still need to be addressed.

1. The different characteristic waves observed during various

sleep stages do not have the same time scale. Characteristic

waves refer to specific types of brain activity that are distinctly

associated with different sleep stages. These waves vary significantly

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2024.1505746
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fan et al. 10.3389/fncom.2024.1505746

FIGURE 1

Characteristic waves in sleep stages.

in frequency, amplitude, and duration, making them crucial for

identifying and differentiating sleep stages. As shown in Figure 1,

spindle Waves are bursts of oscillatory brain activity that occur

predominantly during N2 sleep. They have a frequency range of

about 12–16 Hz and typically last about 0.5–3 s. K-complex waves

are large waves followed by a slow wave, occurring approximately

every 1–1.7 s during N2 sleep. Delta Waves are characteristic of

N3 sleep and have a much lower frequency range of about 0.5–

4 Hz (Aeschbach and Borbely, 1993). It is worth studying how to

extract features across multiple time scales and capture the complex

temporal dependencies inherent in sleep signals.

2. Patients with sleep disorders exhibit significant differences

in their sleep cycles compared to healthy individuals (Chokroverty,

2010). In healthy individuals, sleep progresses through well-

defined cycles of NREM (N1, N2, N3) and REM stages, with

relatively stable durations. OSA patients often suffer from more

fragmented sleep, frequent awakenings, and transitions between

stages. Disorders like insomnia and OSA can disrupt the normal

progression through sleep stages, leading to shorter and more

frequent REM and NREM cycles. These differences pose several

challenges for automated sleep staging. Models trained on data

from healthy individuals may generalize poorly to populations with

OSA. The atypical waveforms and fragmented nature of disordered

sleep make extracting consistent features across different scales

challenging. For automated sleep staging to be clinically useful,

it must achieve high accuracy across diverse patient populations,

including those with OSA patients.

To address the above challenges, we present a Multi-Scale

Dilated Convolution Sleep Staging Network (MSDC-SSNet). This

network integrates improved Transformer encoders and multi-

scale feature extraction. The model utilizes three PSG channels

as inputs, including two EEG channels and one electrooculogram

(EOG) signal channel. The backbone is an encoder combining

causal convolution and amulti-feature extractionmodule (MFEM).

The proposed MFEM effectively extracts different granularity

features across different frequency bands. A weighted fusion

mechanism dynamically adjusts the weights of frequency features.

Using a residual structure also ensures that themodel can effectively

learn and extract deep spatiotemporal features. Finally, a multi-

channel feature fusion module integrates the features, enhancing

the overall model’s performance and accuracy.

The proposed model offers several significant contributions to

the field of automatic sleep staging:

1. A channel-wise Convolutional Temporal Encoder (CCTE)

has been proposed. This encoder is designed to independently

process and encode time series from multiple channels. We

use time feature sequences to learn sleep stage transition rules

and reduce the impact of OSA. It integrates causal convolution

techniques and introduces a new normalization method called

CrossNorm.

2.Multi-Scale Feature ExtractionModule (MFEM): TheMFEM

that utilizes varying receptive fields to extract features across

multiple scales. To enhance feature fusion, we have introduced the

Multi-Scale Selection Fusion (MSF) method, significantly boosting

the representational capacity of extracted features and facilitating a

comprehensive analysis of sleep data.

3. Our CSPH dataset is a proprietary collection

specially curated from subjects with OSA. It is designed

for sleep staging applications, expanding the breadth of

applications of the model and promoting the development of

sleep staging.

The structure of this paper is organized as follows: Section

2 introduces the automatic sleep staging method based on

OSA patients. Section 3 provides a detailed description of the

experimental datasets and settings, along with the presentation of

experimental results and model stability analysis. Section 4 offers

an in-depth discussion of the research findings, focusing on the

limitations of the currentmodel and proposing directions for future

research. Finally, Section 5 summarizes the key outcomes and

contributions of this study.
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FIGURE 2

The overall framework of the MSDC-SSRNet model used for automatic sleep stage classification, which contains the CCTE structure.

2 Methods

In this section, The structure of the model is proposed. The

model combines the advantages of multiscale feature extraction

and causal convolution with the robustness of residual networks,

aiming at the automatic staging of sleep stages.

2.1 Overview of the model

Figure 2 presents the architecture of our model, which is

organized into three key segments: transforming time-frequency

data into images, extracting features from individual channels, and

integrating and classifying signals frommultiple channels. First, the

original signal is converted into a time-frequency image by STFT,

and the CCTE module is utilized to extract long-range dependent

features. Second, the MFEM module adaptively selects important

features and fuses the inter-dependencies between single-channel

features, which helps to improve the classification performance. By

employing residual connections, we fuse multi-scale information

with long-range dependency information. Ultimately, channel

fusion is utilized to further address the heterogeneity of multimodal

physiological signals. In the next section, each module is explained

in detail.

2.2 Time-frequency image conversion

Themodel receives input in the form of time-frequency images,

designed to preserve specific wave and frequency components of

the original signal. According to the AASM scoring guidelines,

different physiological electrical signals contribute differently to

sleep staging. EEG, EOG, EMG, and other metrics serve as

foundational elements in sleep classification. From PSG files,

two channels of EEG and one channel of EOG are extracted.

Each channel’s raw signals undergo STFT and logarithmic scale

transformations to generate time-frequency images, which serve as

inputs to the model.

Different PSG channels variably contribute to sleep stage

classification due to the complex nature of sleep signals and the

specific characteristics of each stage. EEG signals are crucial in

classifying N2 and N3 stages, marked by distinct waveforms such

as sleep spindles, K-complexes, and high-amplitude delta waves.

These features are strong indicators of deeper sleep stages and

are more readily identifiable in EEG recordings. EOG Signals

are more effective in distinguishing REM sleep from N1 sleep.

REM sleep is characterized by rapid eye movements, which EOG

distinctly captures, whereas EEG signals in REM and N1 stages

can appear similar, making EOG a critical component for accurate

classification. Therefore, two EEG channels and one EOG channel

were extracted from the PSG files.

2.3 Channel-wise convolutional temporal
encoder

In processing EEG data, a model’s comprehensive

interpretation of the temporal directionality inherent within

time series data is crucial. Traditional Transformer models,

due to the characteristics of their self-attention mechanisms,

cannot inherently handle the temporal order of time series data.

The Channel-wise Convolutional Temporal Encoder (CCTE)
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FIGURE 3

Causal convolution structural diagram.

integrates causal convolution layers, which inherently maintain

the correctness of temporal sequencing by ensuring that the

model processes a current data using only the preceding data,

thereby effectively preventing the leakage of future information.

Furthermore, drawing inspiration from the work of Tang et al.

(2021), we innovatively applied the CrossNorm normalization

method to the CCTE architecture to enhance the model’s

performance in processing multi-channel physiological signals.

This enables the model to process large-scale time series data more

efficiently while maintaining robust performance.

Causal convolutions are convolutional operations where each

output at a specific time step depends only on the current and

previous time steps, not future time steps. The causal convolution

structure is shown in Figure 3. During the convolution operation,

each element of the convolution kernel multiplies only with the

current and previous elements of the input data. Padding is

employed to ensure that the output sequence is temporally aligned

with the input sequence. This property is crucial for maintaining

the temporal order of the data. The Channel-wise Convolutional

Temporal Encoder (CCTE) is designed to capture time-dependent

features in time-frequency images. Traditionally, an Encoder-

Decoder module is used for reconstruction tasks. However, since

this paper focuses on classification, only the encoder is employed.

The core components of the CCTE encoder include the multi-

head attention layer, the position feed-forward network, and the

normalization layer. By preserving the temporal order, causal

convolutions ensure that the model respects the sequence of events

in the EEG signal, essential for accurately identifying transitions

between sleep stages. The structure of the CCTE module is shown

in Figure 2.

2.3.1 Multi-head attention
Multi-head Attention (MHA) is an effective time series data

model method (Devlin et al., 2018). The Transformer model

has gained popularity due to its successful handling of long-

distance dependencies in sequential data. MHA employs multiple

attention heads, each of which can learn information from different

subspaces of the input data. This allows the model to capture a wide

range of features. While a single attention head might focus on the

most prominent features, multiple heads can also capture subtle

details that might be missed otherwise. For sleep staging, the model

can better interpretation the complex and varied patterns present in

EEG signals. This parallel processing increases the model’s ability to

capture diverse information, improving classification efficiency and

effectiveness. The structure of MHA is shown in Figure 4.

The model’s use of MHA combined with causal convolution

ensures that only previous inputs are relied upon when computing

the current output, thus maintaining the temporal order of the

sequence and enhancing the model’s ability to capture temporal

dependencies. The combination of position encoding provides

explicit information about the position of elements in the

sequence, allowing the model to obtain both explicit information

about the position (via position encoding) and implicit temporal

dependencies (via causal convolution), which is an effective strategy

for dealing with features from different frequency domains.

The MHA module begins by accepting the output from the

previous module, represented as X = {x1, . . . , xN} ∈ R
M×N , where

M is the total number of features and n is the length of xi for

1 ≤ i ≤ M. MHA utilizes three copies of X, referred to as Q, K, and

V . Initially, causal convolution is applied to generate Q̂, K̂, and V̂ .

The output from the causal convolution is then processed through

the attention mechanism.

Attention(Q̂, K̂, V̂) = softmax

(

Q̂K̂T

√
F

)

Vi (1)

Each matrix is partitioned into H subspaces to support a multi-

head attention (MHA) implementation, where the heads of each
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FIGURE 4

Structure of multi-head attention module.

attention result are concatenated to form the final output.

MHA(Q̂, K̂, V̂) = Concat(A1, . . . ,AH) ∈ R
M×n (2)

2.3.2 Add and CrossNorm
The final features extracted by CCTE are generated by stacking

two identical networks. The output from the previous layer is

input into the next layer through a residual connection, followed

by layer normalization. We utilize CrossNorm for normalization.

Unlike traditional normalization methods, CrossNorm improves

the model’s adaptability to changes within the data by dynamically

replacing the mean and standard deviation from different channels.

The introduction of CrossNorm significantly improves the model’s

ability to capture the characteristics of different sleep stages when

analyzing multi-physiological signals and time series data.

B− Nb

Ma
+ Na

Mb
(3)

A− Na

Mb
+ Nb

Ma
(4)

The formula exchanges the standard deviation Ma and mean

Na of channel A with the standard deviation Mb and mean Nb of

channel B. Thus, A and B are cross-normalized. Each instance or

channel has a unique style. During training, CrossNorm is applied

for efficient style enhancement, expanding the training distribution

to improve the generalization robustness under distribution

changes. Effectively suppresses the impact of frequent transitions

in sleep stages caused by OSA.

2.4 Feature fusion

The multichannel feature fusion module integrates feature

maps from three distinct channels, concatenating them along

the column axis to form a comprehensive composite feature

map. This approach maximizes the preservation of each channel’s

unique characteristics. Since different PSG channels contain a

lot of similar information, a dropout layer is introduced at the

output of multiple channels to reduce the risk of overfitting of

the model. Additionally, layer normalization ensures consistent

data standardization throughout training, promoting accelerated

convergence in the training process.

Multiple Channel-wise Convolutional Temporal Encoders

(CCTEs) are employed to capture the joint features extracted

from the integrated multichannel feature map. Before inputting

the feature map into the encoders, positional encoding is applied

to enhance the model’s ability to recognize the input sequence’s

positional context.

2.5 Multi-scale feature extraction module

In the context of PSG signals, features across various

scales play distinct roles in elucidating sleep states. Drawing

inspiration from the concept of feature pyramids (Lin et al.,

2017), we propose a novel module named the Multi-Scale

Feature Extraction Module (MFEM) to capture multi-scale

features effectively.

In the MFEM, convolutional layers with varying dilation

rates enable the network to process information across local and

broader spatial extents. This capability facilitates the detection

of subtle physiological signals that indicate transitions between

sleep stages, thereby enhancing accuracy by capturing detailed

signal complexities and increasing robustness against noise and

variability in signal characteristics. Additionally, to optimize multi-

scale pattern recognition, the module balances and integrates

features from different scales to maximize their relevance to specific

sleep stages.

Specifically, the MFEM module employs four 3 × 3

atrous convolutions with different dilation rates to convolve

the input, producing four sets of feature maps. These feature

maps represent information within different frequency ranges.

Subsequently, these feature maps are fused to obtain a weighted

representation across multiple scales. The operation of the

Multi-Scale Feature Extraction Module is illustrated as shown

in Figure 5.

In the first step, for an input x, convolve it using four 3 × 3

convolutional kernels with dilation rates of [1, 4, 8, 16] to produce

four feature maps at different frequencies, denoted as X1,X2,X3,

andX4. Using convolutional kernels with lower dilation rates allows

for capturing fine details and local features within the data. These

typically correspond to high-frequency variations, such as transient

spikes or rapid electroencephalographic (EEG) signal fluctuations.

Conversely, employing convolutional kernels with more significant

dilation rates enables the detection of broader spatial regions, thus

capturing coarse-grained, global, or low-frequency features in the

signal.
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FIGURE 5

Structure of multi-scale feature extraction module.

Xi =
{

Cov3× 3rate=1(X) i = 1

Cov3× 3rate=2(i−1)(X + Xi−1) 1 < i ≤ n
(5)

In the second step, perform global average pooling (GAP) along

the temporal dimension on X1,X2,X3, and X4 to obtain global

feature representations X1,X2,X3, and X4.

In our experiments, we set the number of atrous convolutions

to 4. Different expansion rates enable the network to capture a

broader range of spatial contextual information. This architectural

design effectively enhances information extraction across various

temporal and frequency dimensions by widening its scope while

maintaining depth. Following feature extraction, we employ a

novel fusion technique known as Multi-Scale Fusion (MSF)

to integrate features Yi from different scales. The model can

adaptively emphasize more significant frequency features and

suppress less pertinent information by computing global weights

for feature maps at different scales and performing a weighted

fusion. Ultimately, the input features X are summed with these

fused features. As depicted in Figure 5, the process begins with

Global Average Pooling (GAP) being applied to multi-scale

features to obtain their mean channel-wise weights (Lin et al.,

2013). A Sigmoid activation function is applied to transform

these weights into values between 0 and 1. Subsequently,

a softmax operation normalizes the average channel weights

across multi-scale features to their corresponding positions.

Ultimately, the normalized weights multiply their respective

features, aggregating these elements to enhance multi-scale

features. Due to the combination of convolutional and attentional

mechanisms, the MFEM excels in analyzing EEG time-frequency

data, effectively extracting and utilizing multi-scale and multi-

frequency features of the signal. This capability greatly improves

the model’s performance in sleep staging, facilitating more precise
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TABLE 2 Detailed information on the four datasets (each sample is a 30-s calendar element).

Dataset Subject Sampling rate W N1 N2 N3 REM Total samples

Sleep-EDF-20 20 100 HZ 9,118 21.1% 2,804 6.50% 17,799 41.30% 5,703 13.20% 7,717 17.90% 43,141

Sleep-EDF-78 78 100 HZ 66,822 34.00% 21,522 11.00% 69,132 35.20% 13,039 6.60% 25,835 13.20% 196,350

SHHS 329 125 HZ 43,619 14.3% 10,304 3.20% 142,125 43.70% 60,153 18.50% 65,953 20.30% 324,854

CSPH 17 512 HZ 4,077 21.9% 2,920 15.7% 8,273 44.4% 1,380 7.4% 1,983 10.7% 13,670

evaluations of sleep quality through a thorough analysis of

EEG characteristics.

3 Results

Our analysis employs four distinct datasets to assess the

model’s performance: Sleep-EDF-20, Sleep-EDF-78, Sleep Heart

HealthStudy (SHHS) and Chongqing Seventh People’s Hospital

(CSPH) data. These datasets are detailed in Table 2.

The Sleep-EDF-20 dataset, obtained from PhysioBank

(Goldberger et al., 2000), was utilized in two distinct research

studies. The initial study, known as the Sleep Cassette (SC) study,

involved 20 participants aged 25–34, focusing on exploring the

connection between age and sleep patterns in healthy individuals.

The second study focused on the effects of temazepam on the

sleep patterns of 22 Caucasian males and females who were

not taking any medication (Phan et al., 2019b,a; Sokolovsky

et al., 2019; Li et al., 2021). Our work utilizes the SC subset.

The Sleep-EDF-20 dataset consists of polysomnographic (PSG)

recordings, which include multiple physiological signals collected

during participants’ sleep, such as EEG, EOG, EMG, and others.

In the study, two EEG channels and one EOG channel have

a sampling frequency of 100Hz. During the experiments, We

used Fpz-Cz, Pz-Oz and ROC-LOC (EOG) as the input of

the model.

Sleep-EDF-78 is an extension of the Sleep-EDF dataset

(Goldberger et al., 2000; Kemp et al., 2000), also sourced from

PhysioBank. The age range of the participants has been expanded

to include individuals aged 25–101 years, encompassing a total of

78 subjects. To ensure the consistency of the experiment, the same

channels as Sleep-EDF-20 were used for analysis.

The SHHS is established to examine how sleep-disordered

breathing influences cardiovascular health and a range of

other outcomes. It includes full-night PSG recordings involving

comprehensive sleep studies with multiple physiological signals.

The SHHS Visit 1 comprises 6,441 participants, all aged 40 and

above. SHHS Visit 2 consists of 3,295 participants, all from Visit

1. Based on previous studies (Zhao et al., 2022; Eldele et al.,

2021), we selected 329 participants with normal sleep rhythms for

experimentation, using the C4-A1, C3-A2 and LOC EOG channels

as model inputs.

CSPH: This dataset, provided by the Department of Sleep and

Psychosomatic Medicine of Chongqing Seventh People’s Hospital,

China, comprises PSG recordings from 17 subjects aged 20–60

years with OSA. The recordings were sampled at 512 Hz, and

each subject underwent manual sleep stage scoring by three sleep

specialists following AASM criteria. The PSG recording channels

included F4-A1, C4-A1, O2-A1, F3-A2, C3-A2, O1-A2, along with

electrooculograms EOGL and EOGR. For analysis, inputs were

derived from F4-A1, F3-A2, and EOGL channels. All three datasets

employ the AASM sleep scoring standards.

These datasets cover a broad range of subjects, including

healthy individuals, those with sleep disorders, and participants

across a wide age range, from young adults to older individuals.

They provide a diverse set of conditions and scenarios, making the

model robust across various sleep patterns.

3.1 Experimental setup

A 30-second segment (epoch) of PSG data was sampled

for the analysis. The Short-Time Fourier Transform (STFT) is

applied using a 2-s Hamming window with 50% overlap. The FFT

is computed with 256 points, providing a frequency resolution

adequate for sleep analysis. The resultant spectrum is then log-

scaled. The resulting time-frequency representation, denoted as

S ∈ R
T×F , consists of F = 128 frequency bins and T = 29 time

points. This normalized representation is subsequently utilized as

the model’s input.

In our CCTE encoder, the Multi-Head Attention (MHA)

utilizes eight heads and 150 feedforward hidden units. The CCTE

modules at the model input and output use different numbers

of encoders, Ns = 8,Nm = 4 respectively. Throughout the

entire CCTEmodel, including the self-attention layers, feedforward

layers, and fully connected (FC) layers, a uniform dropout rate of

0.1 is applied.

To address the issue of a limited number of subjects, we

employed K-fold cross-validation to train the model on four

datasets. The values of K for the Sleep-EDF-20, Sleep-EDF-

78, SHHS, and CSPH datasets were set to 20, 10, 10, and

10, respectively. Although some datasets, such as Sleep-EDF-20

and CSPH, have a smaller sample size, K-fold cross-validation

effectively improved the model’s generalization ability and reduced

the risk of overfitting through repeated training and validation.

Meanwhile, the larger dataset (SHHS) further enhanced themodel’s

stability and robustness, ensuring effective performance across

all datasets.The training objective utilized was the cross-entropy

loss function, which is commonly used in classification tasks.

We used the AdamW (Loshchilov and Hutter, 2017) optimizer,

which is more effective in handling weight decay, with a learning

rate set to 5 × 10−5.Additionally, during the model training

process, we employed early stopping, which involves halting

training when the performance on the validation set no longer

improves, in order to prevent the model from overfitting to the

training set.
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3.2 Evaluation metrics

The model’s overall performance is assessed using three key

metrics: accuracy (ACC), macro-average F1 score (MF1), and

Cohen’s Kappa (κ). The MF1 is calculated as the arithmetic mean

of the F1 scores for the five sleep stages. Precision (Pre), recall

(Rec), and F1-score (F1) are used to assess each class individually.

The overall accuracy (ACC) and macro-average F1 score (MF1) are

defined as follows:

MF1 =
∑C

c=1 F1c

C
(6)

ACC =
∑C

c=1 TPc

M
(7)

For each class c, the within-class F1-score is denoted as F1c.

There are C distinct sleep stage categories. For each category c,

TPc represents the true positives of that category. Additionally, M

represents the total number of EEG epochs.

3.3 Experimental scoring results

Experimental scoring results are presented in Table 3, using

confusion matrices to display the performance of the model.

In these matrices, rows represent the actual results, while

columns represent the predicted results. Bold numbers within

the matrices highlight epochs correctly classified by the model.

Evaluation metrics for each category are provided on the

right side of the tables, with optimal values emphasized

in bold.

According to the evaluation results of three healthy population

datasets, the accuracy of the Wake stage can reach more than

93%. The indicators of the N1 stage are lower than those of the

W, N2, N3, REM, and other stages, which may be related to the

small number of occurrences of the N1 stage in the data set.

Misclassifications frequently occur among the sleep stages, with the

W stage often being mistaken for the N1, N2, and REM stages.

Similarly, the N1 stage is commonly misclassified as W, N2, or

REM, while the REM stage is often confused with N1 and N2.

Additionally, the N3 stage is primarily confused with the N2 stage.

For OSA patients in CSPH, the accuracy for the N1 stage can

reach 62.1%, while the accuracies for the W stage and N2 stage

exceed 85%. However, the model’s overall performance is generally

lower than that of healthy subjects, reflecting the interference of

OSA on sleep staging.

Figure 6 depicts the ground truth and predicted hypnograms

for subject SC4001E0 from the Sleep-EDF-20 dataset to further

illustrate the findings. The close resemblance between the predicted

and true hypnograms demonstrates the model’s accuracy. However,

the transition into the REM stage exhibits a higher error rate. This

primarily arises from the increased variability in EEG signals during

transitions and the substantial similarity between mixed-frequency

EEGs.

In Figure 7, we present the accuracy and loss curves during the

training process for the Sleep-EDF-20 dataset, explicitly focusing

on fold 6 selected at random. It is observed that our model

can rapidly converge and stabilize at a fixed value soon after

training initiation. The accuracy continually improves, and the loss

consistently decreases. Similarly, validation sets accuracy and loss

values to stabilize, underscoring the model’s efficacy in mitigating

overfitting.

3.4 Performance comparison

We compared our MSDC-SSRNet with previous state-of-

the-art methods, evaluating overall accuracy, Cohen’s kappa (κ),

and MF1 across four datasets, along with the F1-score for each

sleep stage. The results are presented in Table 4. Our MSDC-

SSRNet exhibits significantly better performance than other models

based on the experimental outcomes. On the Sleep-EDF-20

dataset, our model showed improvements of 0.9% in accuracy,

1.2% in kappa, and 2.1% in MF1 over the SleepViTransformer

(Peng et al., 2023). It also outperformed the transformer-

based multichannel model MultiChannelSleepNet (Dai et al.,

2023), with increases of 2.2% in accuracy, 3.0% in kappa, and

3.3% in MF1.

To demonstrate the high accuracy of our method on the

CSPH dataset, we compare it with four state-of-the-art methods,

namely: (1) AttnSleep (Eldele et al., 2021); (2) SleepyPyCo (Lee

et al., 2024); (3) MultiChannelSleepNet (Dai et al., 2023); (4)

SalientSleepNet (Liang et al., 2023); in the CSPH dataset, the

overall performance of MSDC-SSRNet also surpasses that of other

networks. It performed well in both healthy subjects and OSA

patients, demonstrating its robustness in handling complex datasets

with varied sleep conditions. While SleePyCo (Lee et al., 2024)

excels on simpler datasets such as Sleep-EDF-20 and Sleep-EDF-

78, its performance declines when dealing with the more complex

characteristics of the CSPH dataset. In addition, MSDC-SSRNet

performs well in distinguishing the easily confused N2 and N3.

Since there is a certain overlap in the transition period between

the N2 and N3 stages, such as the overlapping delta waves (0.5–

4 Hz) in the N3 stage and the sleep spindle waveform in the

N2 stage, the distinction between the two is blurred. MSDC-

SSRNet effectively helps doctors distinguish the N2 and N3

stages more accurately through auxiliary feature extraction and

precise modeling.

Unlike SeqSleepNet (Phan et al., 2019b), which predicts the

middle epoch using a recurrent architecture with three epochs as

input, thereby slowing down the training process, the AttnSleep

(Eldele et al., 2021) model adopts multi-scale feature extraction

through varied convolutional kernel sizes and strides on the same

input. In contrast, our MFEM utilizes dilated convolutions to

enlarge the receptive field without significantly increasing the

parameters, thereby enhancing local feature representation. This

capability is crucial for sleep stage analysis, which requires detecting

features at different time scales. Moreover, while AttnSleep (Eldele

et al., 2021) shows improved F1-scores in certain stages like N2

and N3 compared to other models like SeqSleepNet (Phan et al.,

2019b), it still falls short of MSDC-SSRNet in terms of overall

accuracy and generalization across diverse datasets. MSDC-SSRNet

reduces the heterogeneity between different modalities and data,

proving to be a more versatile and efficient model in both accuracy

and consistency.
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TABLE 3 Confusion matrices for di�erent datasets.

Predicted Per-class metrics

Dataset W N1 N2 N3 REM PR PE F1

Sleep-EDF-20 8,186 283 75 31 109 94.7 94.2 94.4

293 1328 477 12 561 63.4 49.7 55.7

89 275 15,361 576 650 91.3 90.6 90.9

9 1 503 4,915 3 88.7 90.4 89.6

64 207 408 4 6,666 83.4 90.7 86.9

Sleep-EDF-78 61,287 2,366 446 75 349 94.3 94.9 94.7

2,910 11,441 6,342 61 2,132 63.2 49.9 55.9

3,799 2,766 72,533 365 2,096 86.0 89.7 87.8

31 7 2,195 15,451 2 82.6 87.3 84.9

328 1,503 2,763 32 26,450 85.2 85.1 85.2

SHHS 42,853 1,030 1,317 171 848 93.4 92.7 93.0

1,488 5,547 260 113 2,896 55.9 53.8 54.8

517 36 25,041 4,264 267 81.5 83.1 82.3

45 1,008 4,072 50,673 4,355 86.1 84.2 85.2

998 2,296 4 3,633 59,022 87.5 89.5 88.5

CSPH 3,267 254 124 6 55 85.6 88.2 86.9

342 1,510 619 18 165 62.1 56.9 59.4

130 515 6,347 234 295 85.4 84.4 84.9

5 5 141 1,104 0 81.0 88.0 84.3

73 147 197 1 1,385 72.9 76.8 74.8

Bold numbers in the table represent the correct sample counts for each category.

FIGURE 6

Ground-truth and predicted hypnograms of subject SC4001E0 in the sleep-EDF-20 dataset.
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FIGURE 7

Accuracy and loss during training on fold 6 in the sleep-EDF-20 dataset.

TABLE 4 Comparison of sleep staging performance with previous studies across four experimental datasets.

Dataset System Over metrics Per-class F1-score

ACC Kappa MF1 W N1 N2 N3 REM

Sleep-EDF-20 MSDC-SSRNet 88.7 84.6 83.5 94.5 55.7 90.9 89.6 86.9

SleepViTransformer (Peng et al., 2023) 87.8 83.4 81.5 93.8 48.4 89.2 88.4 87.9

SleePyCo (Lee et al., 2024) 86.2 80.1 81 90.6 47.3 88.8 87.4 86.6

MultiChannelSleepNet (Dai et al., 2023) 86.5 81.6 80.3 92.6 47 89.5 88.3 83.8

SeqSleepNet (Phan et al., 2019b) 85.2 79 79.6 – – – – –

SleepEEGNet (Mousavi et al., 2019) 84.3 79 79.7 89.2 52.2 86.8 85.1 85

DeepSleepNet (Supratak et al., 2017) 81.9 76 76.6 86.7 45.5 85.1 83.3 82.6

Sleep-EDF-78 MSDC-SSRNet 86.2 81.2 81.7 94.7 55.9 87.8 84.9 85.2

SleePyCo (Lee et al., 2024) 84.6 79 79.1 93.5 50.4 86.5 80.5 84.2

SeqSleepNet (Phan et al., 2019b) 82.6 76 76.4 92.2 47.8 84.9 77.2 79.9

TinySleepNet (Supratak and Guo, 2020) 83.1 77.1 78.1 92.8 51 85.3 81.1 80.3

SleepTransformer (Phan et al., 2022) 81.4 74.3 74.3 91.7 40.4 84.3 77.9 77.2

AttnSleep (Eldele et al., 2021) 81.3 74 75.1 92 42 85 82.1 74.1

SleepEEGNet (Mousavi et al., 2019) 80 73 73.6 91.7 44.1 82.5 73.5 76.1

MultiChannelSleepNet (Dai et al., 2023) 84.9 78.9 79.4 94 52.8 86.3 81.5 82.6

SHHS MSDC-SSRNet 86.7 79.3 80.8 93 54.8 82.3 85.2 88.5

AttnSleep (Eldele et al., 2021) 84.2 78 75.3 86.7 33.2 87.1 87.1 82.1

SeqSleepNet (Phan et al., 2019b) 86.5 81 78.5 – – – – –

CSPH MSDC-SSRNet 80.4 72.6 78.1 86.9 59.4 84.9 84.3 74.8

AttnSleep (Eldele et al., 2021) 79.4 71.6 77.6 86 60.7 84.3 82.5 74.2

SleePyCo (Lee et al., 2024) 78.3 70.4 76.5 85.3 58.2 83.6 83.2 72.4

MultiChannelSleepNet (Dai et al., 2023) 77.6 68.8 75.9 84.7 57.7 82.8 82.6 71.7

SalientSleepNet (Liang et al., 2023) 77.3 68.9 76.5 84.4 60.1 82.5 83.5 72.1

Best metric values are marked in boldface.
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TABLE 5 Ablation experiment results for sleep-EDF-20 and CSPH datasets.

Ablation experiment Sleep-EDF-20 metrics Sleep-EDF-20 Per-class F1 score

ACC MF1 Kappa W N1 N2 N3 REM

BL 86.5 80.3 81.6 92.9 47.0 89.5 88.3 83.8

BL + MFEM 86.8 81.5 82.0 93.1 51.1 89.6 88.7 84.8

BL + CCTE 87.9 82.0 83.4 93.9 50.9 90.2 89.1 86.0

MSDC-SSRNet 88.7 83.6 84.6 94.5 55.7 90.9 89.6 86.9

Ablation experiment CSPH metrics CSPH Per-class F1 score

ACC MF1 Kappa W N1 N2 N3 REM

BL 75.3 74.5 68.1 82.4 53.6 80.7 80.3 70.5

BL + MFEM 77.5 76.0 68.8 84.7 58.6 82.8 82.7 71.8

BL + CCTE 79.5 77.3 71.2 85.8 57.7 83.9 83.5 73.6

MSDC-SSRNet 80.4 78.1 72.6 86.9 59.4 84.9 84.3 74.8

3.5 Ablation experiments

As depicted in Table 5, we conducted ablation experiments

on the Sleep-EDF-20 and CSPH dataset to assess the efficacy of

various modules. Comparing BL, BL + CCTE, BL + MFEM, and

our MSDC-SSRNet model reveals improvements across all metrics

with each module’s inclusion.

In the CSPH dataset, the CCTE module can significantly

enhance classification performance, with overall improvements in

ACC, MF1, and Kappa by 0.9%, 0.8% and 1.4%, respectively.

F1 scores for each sleep stage also improved. We use the basic

transformer as the baseline. Comparing it to the second variant,

BL + MFE, we conclude that CCTE is essential for capturing

frequent sleep stage transition features. However, MFEM is more

effective in distinguishing the N1 stage, as the multi-scale feature

extraction method allows the model to focus on finer features at

lower or higher frequencies, thereby increasing overall sensitivity

and reducing the impact of OSA on the model. In the Sleep-

EDF-20 dataset, the final model shows an improvement in F1

scores of 8.6% for the N1 stage and 3.3% for the REM stage

compared to the baseline (BL). According to the American

Academy of Sleep Medicine (AASM) rules, especially in the

N1 and REM sleep stages, the EEG features share similar low-

amplitude, multi-frequency (LAMF) activities, making the features

between these stages indistinct. Addressing this issue, our model

framework can more effectively differentiate features of various

sleep stages, particularly distinguishing between the N1 and

REM stages.

3.6 Sensitivity analysis

Multi-head attention (MHA) is a pivotal element in our model,

necessitating a sensitivity analysis regarding the number of heads

employed. Given that the number of heads must be a divisor of

the feature dimension F = 128, we set H to 2, 4, 8, 16, and

32 for the experiments, while maintaining constant values for the

other parameters. Figure 8 shows the accuracy and MF1 scores of

FIGURE 8

Performance on the sleep-EDF-20 dataset using di�erent values of

H.

the model on the Sleep-EDF-20 dataset with different numbers

of heads. The results show that model performance shows slight

improvement with an increase in H. However, beyond a certain

point, further increments in H lead to diminishing returns. This

suggests that expanding the number of heads enhances feature

capture initially, yet excessively dividing attention may reduce the

per-head feature resolution. We select H = 8 as optimal for our

model configuration based on these experimental findings.

In both the model’s feature extraction and fusion processes, the

CCTE encoder is utilized, so choosing an appropriate amount of

encoders is also crucial. To further investigate the impact of the

number of encodersNs in single-channel feature extraction andNm

in multi-channel fusion, we keep other experimental parameters

constant and use the Sleep-EDF-20 dataset. Initially, we fix Ns

at 4, and repeat experiments with Nm values from {2, 4, 6, 8},

then fix Nm at 4, and repeat experiments with Ns values from

{2, 4, 6, 8}. Based on the results shown in Table 6, changing the

number of encoders does not significantly affect the model’s overall

performance. However, increasing Ns enhances the model’s depth,

improving its ability to capture features.
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TABLE 6 Performance on the Sleep-EDF-20 dataset using di�erent

amounts of Ns andNm.

Ns Nm Accuracy MF1

4 2 88.42 82.42

4 4 88.56 83.18

4 6 88.59 83.51

4 8 88.47 83.03

2 4 88.25 82.39

4 4 88.56 83.18

6 4 88.69 83.43

8 4 88.79 83.60

4 Discussion

MSDC-SSRNet uses multi-channel data for sleep staging

tasks. Through ablation experiments and model stability analysis,

each module in MSDC-SSRNet assists with sleep staging. The

model performance is improved by capturing characteristic

waves using multi-scale feature extraction and channel attention.

While single-channel sleep staging algorithms are commonly

used for portable home sleep monitoring, multi-channel data

provides a more comprehensive view of sleep states. This

comprehensive view aids the model in detecting subtler differences

in sleep stages, which are more readily recognized by sleep

physicians and offer better interpretability than single-channel

systems.

As shown in Table 6, except for MultiChannelSleepNet

(Dai et al., 2023), the staging performance of other single-

channel models is inferior to MSDC-SSRNet. In a multi-channel

framework, additional channels mitigate disruptions or poor signal

quality in one channel, enhancing overall system robustness. In

addition, the algorithm is applied to the self-built dataset CSPH.

Unlike the public datasets, the subjects of this dataset suffer from

OSA. The CSPH dataset is characterized by frequent sleep stage

transitions and fragmented sleep cycles, which makes the sleep

staging task challenging. Despite these difficulties, MSDC-SSRNet

still performs well.

The CCTE captures long-range dependencies and enhances

the importance of position information in the time-frequency

domain. The MFEM uses different receptive fields to enhance the

contribution of characteristic waves to sleep stages. The multi-scale

attention layer integrates features with different weights, ensuring

the preservation of multi-scale sleep transition rules. The model is

able to characterize typical sleep stage features and distinguish them

from other stages. EEG activity is highly dynamic, and multi-scale

analysis can adapt to these changes, extracting significant features at

different time scales to effectively capture short-term and long-term

brain activity patterns. Compared to single-scale feature capture

methods, the multi-scale approach provides a more stable feature

representation, contributing to model generalizability and practical

application.

Future research could address several limitations identified in

this study. First, the data imbalance problem in the N1 stage still

needs to be addressed. Additionally, our current model does not

account for other relevant factors, such as age and gender, which

could influence the study outcomes. Addressing these limitations

in future research could further enhance the model’s accuracy and

applicability.

5 Conclusions

In this study, we introduced MSDC-SSRNet, a sleep staging

model leveraging multi-scale dilated convolutions. It performs well

on both healthy subjects and OSA subjects. In experiments with

OSA subjects, the accuracy reaches 80.4%. This model utilizes

the Channel-wise Convolutional Temporal Encoder (CCTE)

and the Multi-Scale Feature Extraction Module (MFEM) for

effective feature capture. The CCTE encoder employs a multi-

head attention mechanism to capture long-range dependencies

in the data. Additionally, we integrated CrossNorm, a novel

normalization technique within CCTE, which enhances training

data diversity by exchanging channel means and variances across

feature maps. This ensures robust performance across diverse

environmental and conditional data settings. The MFEM operates

by capturing signals across a spectrum of frequencies from

low to high, employing multi-scale feature extraction in the

spatial domain. This module focuses on spatial feature extraction

and adeptly captures various frequency components. This is

particularly significant for EEG signals, as different frequency

waveforms (such as δ, θ , α, β , and γ waves) exhibit distinct

frequency characteristics.

Our model’s effectiveness has been validated through

comparisons with advanced models and extensive ablation

experiments. Moreover, it provides more accurate predictions and

classifications on datasets with specific clinical characteristics.

Furthermore, we conducted a sensitivity analysis by varying

the number of attention heads in the CCTE encoder for single-

channel feature extraction and multi-channel fusion. This analysis

demonstrated the model’s stability and consistent performance

under different parameter settings. The model’s robust

performance and adaptability to various configurations suggest its

strong potential for real-world applications, particularly in clinical

settings. Its high accuracy in classifying sleep stages for patients

with obstructive sleep apnea makes it well-suited for deployment

in home-based monitoring systems. Such systems could offer

continuous, real-time sleep tracking, which would enhance patient

convenience and accessibility while reducing the need for in-lab

polysomnography. The model’s ability to generalize across diverse

patient populations further underscores its practical utility and

potential for widespread implementation in both clinical and

research environments.
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