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Memory consolidation refers to the process of converting temporary memories into 
long-lasting ones. It is widely accepted that new experiences are initially stored in the 
hippocampus as rapid associative memories, which then undergo a consolidation 
process to establish more permanent traces in other regions of the brain. Over 
the past two decades, studies in humans and animals have demonstrated that the 
hippocampus is crucial not only for memory but also for imagination and future 
planning, with the CA3 region playing a pivotal role in generating novel activity 
patterns. Additionally, a growing body of evidence indicates the involvement of 
the hippocampus, especially the CA1 region, in valuation processes. Based on 
these findings, we propose that the CA3 region of the hippocampus generates 
diverse activity patterns, while the CA1 region evaluates and reinforces those 
patterns most likely to maximize rewards. This framework closely parallels Dyna, 
a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an 
agent performs offline simulations to supplement trial-and-error value learning, 
greatly accelerating the learning process. We suggest that memory consolidation 
might be viewed as a process of deriving optimal strategies based on simulations 
derived from limited experiences, rather than merely strengthening incidental 
memories. From this perspective, memory consolidation functions as a form of 
offline reinforcement learning, aimed at enhancing adaptive decision-making.
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Introduction

Müller and Pilzecker (1900) introduced the term “consolidation”, proposing that after 
successful encoding, a physiological process known as “perseveration” stabilizes memory 
representations, gradually reducing their susceptibility to interference from new learning 
(Lechner et  al., 1999). Despite over a century of research, the underlying reasons for 
consolidation and the transformations memories undergo during this process remain 
incompletely understood. According to the most influential theory, the standard systems 
consolidation theory, memories, initially encoded and temporarily stored in the hippocampus, 
are gradually reorganized and distributed across the neocortex. This process ensures that 
memories become less dependent on the hippocampus over time and are integrated into 
broader cortical networks for stable, long-term storage (Squire and Alvarez, 1995).

Although substantial evidence supports the systems consolidation theory, there are also 
findings that challenge its main premises. For instance, recent studies have observed impaired 
episodic memory without a temporal gradient following hippocampal damage in both humans 
and animals (Sekeres et al., 2018; Sutherland and Lehmann, 2011; Sutherland et al., 2010). 
Similarly, brain imaging studies have revealed hippocampal activation associated with the 
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recollection of vivid, detailed, context-specific memories spanning the 
entire lifespan (Moscovitch et  al., 2016; Moscovitch et  al., 2005; 
Sekeres et  al., 2018). These observations have prompted the 
development of alternative theories.

One such alternative is the multiple trace theory, which posits that 
memories are not merely transferred from the hippocampus to the 
neocortex but remain reliant on the hippocampus indefinitely for 
detailed episodic recollection. According to multiple trace theory, 
each retrieval of an episodic memory generates a new trace or 
representation within the hippocampus, reinforcing the memory and 
enhancing its accessibility over time (Nadel and Moscovitch, 1997). In 
contrast to systems consolidation theory, multiple trace theory 
suggests that while semantic memories may become independent of 
the hippocampus, episodic memories remain hippocampus-
dependent for vivid, context-rich retrieval.

Another proposal, the trace transformation theory, emphasizes 
dynamic, bidirectional interactions between the hippocampus and 
neocortex. Rather than depicting memory consolidation as a simple 
handover of responsibility from the hippocampus to the neocortex, 
trace transformation theory envisions a lifelong process of 
hippocampal-neocortical collaboration. This theory emphasizes the 
coexistence and interaction of different forms of memory, suggesting 
that consolidation involves ongoing reorganization and expression of 
memories based on hippocampal-neocortical dynamics (Sekeres et al., 
2018; Winocur and Moscovitch, 2011; Winocur et al., 2010; Winocur 
et al., 2007).

Despite extensive debate and research on these theories, one 
critical aspect has received less attention: the selective nature of 
memory consolidation. After encoding, not all memories share the 
same fate—some are forgotten, while others persist for a lifetime, often 
in a transformed or reconstructed form. Systems consolidation is 
widely understood to involve extracting general information from 
specific experiences, resulting in the formation of gists, schemas, and 
semantic knowledge (Cheng, 2017; McClelland et  al., 1995; 
Moscovitch and Gilboa, 2024). However, indiscriminate generalization 
of individual experiences may be  maladaptive. For survival, 
prioritizing memories of critical events—such as visiting a location 
associated with a significant reward or encountering a predator at a 
specific time and place—provides a clear advantage. Understanding 
the mechanisms that drive such selective memory consolidation 
remains a key challenge in memory research.

It has been proposed that the slow consolidation of memories 
serves an adaptive function by allowing endogenous processes 
triggered by an experience to influence memory strength (Gold and 
McGaugh, 1975). Research indicates that adrenal stress hormones, 
such as epinephrine and cortisol, released during emotional arousal, 
play a crucial role in modulating memory strength based on the 
significance of the experience, with the amygdala mediating the 
effects of these hormones on memory consolidation (Paré and 
Headley, 2023; Roozendaal et al., 2007; Mcgaugh and Roozendaal, 
2002). These findings suggest that experiences with behavioral 
significance are more likely to be consolidated due to their activation 
of the emotional arousal system. However, the specificity issue 
remains unresolved, as emotional arousal modulates memory over 
a broad time scale. Various stimulant drugs that act on epinephrine 
and cortisol pathways enhance memory consolidation when 
administered within minutes or even hours after training (Mcgaugh, 
2000; McIntyre et al., 2012). Nonetheless, it remains unclear whether 

and how emotional arousal selectively impacts memories of the 
numerous sensory experiences preceding the arousal. This highlights 
the need for further research to uncover the mechanisms that 
govern the selection and prioritization of memories 
for consolidation.

In this article, we  discuss the memory selection issue from a 
different perspective. This perspective is based on two relatively recent 
findings: that the hippocampus is involved not only in remembering 
the past but also in imagining the future, and that it encodes robust 
value information. We begin by summarizing evidence supporting the 
role of the hippocampus in imagination and then review evidence that 
the hippocampus, particularly the CA1 region, encodes robust value 
information. Next, we  introduce the simulation-selection model, 
which we propose as a framework to explain the functions of the 
CA3-CA1 neural network. Finally, we draw parallels between our 
model and the Dyna reinforcement learning algorithm (Sutton, 1991), 
suggesting that hippocampal processes underlying memory 
consolidation may be conceptualized as a form of offline reinforcement 
learning—a mechanism for reinforcing valuable future strategies by 
recombining past experiences through simulation.

Hippocampus and imagination

The hippocampus, a critical brain structure traditionally 
recognized for its role in memory encoding and retrieval, is 
increasingly understood as essential for imagination and simulating 
future events. In humans, research has shown that the hippocampus 
is fundamental for generating detailed and coherent imagined 
scenarios. Patients with bilateral damage to the medial temporal lobes, 
which include the hippocampus, exhibit significant impairments in 
imagining hypothetical episodes (Hassabis et al., 2007). Furthermore, 
as a key component of the default mode network, the hippocampus is 
not only activated during the recall of autobiographical memories but 
also while envisioning future scenarios (Addis et al., 2007; Szpunar 
et al., 2007). These findings indicate the hippocampus is essential for 
synthesizing elements of memory into cohesive hypothetical episodes.

Animal studies complement and extend these findings by 
revealing the underlying neural mechanisms that allow the 
hippocampus to support imagination and predictive thought. 
Research on hippocampal replay, a phenomenon where patterns of 
neuronal activity representing past experiences are reactivated, has 
been particularly informative. In rats, hippocampal place cells go 
through rapid sequential discharges during periods of quiet rest and 
sleep, mirroring the order of activity observed during active navigation 
(Lee and Wilson, 2002; Foster and Wilson, 2006; Diba and Buzsáki, 
2007). Initially, these replays were thought to support the recall and 
consolidation of prior navigation experiences. However, subsequent 
studies revealed that hippocampal replays also involve novel 
recombinations of previously learned trajectories (Gupta et al., 2010). 
Further research demonstrated that the hippocampus engages in 
preplay, where neuronal sequences representing paths in a novel 
environment are activated before the animal encounters them (Dragoi 
and Tonegawa, 2011). These findings suggest that the hippocampus 
constructs forward-looking models of the world, enabling prediction 
and preparation for future scenarios. Thus, findings from human and 
animal studies converge on the idea that the hippocampus is not 
merely a repository for memories but a flexible, predictive system 
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capable of constructing mental representations of the past, present, 
and future.

Value representation in the hippocampus

Early efforts to identify value-related neural activity primarily 
focused on brain regions outside the hippocampus, such as the 
parietal cortex, frontal cortex, and basal ganglia (O’doherty, 2004; Lee 
et al., 2012a; Glimcher, 2014). However, an early human imaging study 
detected value-related BOLD signals in the hippocampus alongside 
well-established value-related regions like the orbitofrontal cortex and 
striatum (Tanaka et al., 2004). In rats, value-related neuronal activity 
was identified in the CA1 region of the hippocampus (Lee et  al., 
2012b). The strength and characteristics of these CA1 value signals 
were comparable to those observed in traditional value-related regions 
such as the orbitofrontal cortex and striatum (Shin et  al., 2021). 
Moreover, CA1 value signals temporally overlapped with choice and 
reward signals, indicating that CA1 integrates the necessary 
information for computing reward prediction errors and updating 
reward values (Lee et al., 2012b).

Additional studies have corroborated these findings across 
species. Human imaging studies further showed value-related BOLD 
signals in the hippocampus (Bornstein and Daw, 2013; Dombrovski 
et al., 2020), and physiological recordings in monkeys demonstrated 
value-dependent neuronal activity in this region (Knudsen and Wallis, 
2021). In mice, calcium imaging studies revealed robust value signals 
in both dorsal and ventral CA1, with population activity in dorsal 
CA1 neurons increasing as a function of value (Biane et al., 2023; Yun 
et al., 2023). Collectively, these findings establish that value-related 
hippocampal neural processes are conserved across species, including 
rats, mice, monkeys, and humans.

Comparisons along the hippocampal transverse axis revealed that 
CA1 exhibits significantly stronger value signals than CA3 or the 
subiculum, its main input and output structures (Lee et al., 2012b; Lee 
et al., 2017). This observation aligns with evidence that CA1 neurons, 
unlike CA3, remap their place fields in response to changes in reward 
locations (Dupret et  al., 2010). Furthermore, chemogenetic 
inactivation of CA1, but not CA3, impaired value learning without 
affecting value-dependent action selection, indicating CA1’s critical 
role in valuation (Jeong et al., 2018). These findings suggest that value 
processing sets CA1 apart from other hippocampal subregions, 
establishing it as a key region for integrating valuation with other 
hippocampal mnemonic processes.

Simulation-selection model

Building on discoveries indicating the hippocampus’s role in 
imagination and the CA1 region’s unique function in value processing, 
we propose a new framework for the CA3-CA1 neural network: the 
simulation-selection model (Jung et  al., 2018). The model’s core 
concept is straightforward—CA3 acts as a simulator, generating 
diverse activity patterns, while CA1 functions as a selector, prioritizing 
and reinforcing patterns associated with high value (Figure 1). This 
selective reinforcement ensures that neural representations of high-
value events and actions are strengthened, making them more likely 
to influence future decisions in similar contexts.

Anatomical and physiological evidence strongly supports CA3’s 
role in generating diverse activity patterns. A key anatomical distinction 
between CA3 and CA1 is the presence of extensive recurrent collateral 
projections in CA3. In rats, each CA3 pyramidal neuron receives 
approximately 12,000 Schaffer collateral synapses from other CA3 
neurons, which comprise 75% of its excitatory inputs (Amaral et al., 
1990). Because CA3 neurons are heavily interconnected, the activity of 
some neurons often triggers the activation of others (self-excitation), 
especially when inhibitory neuronal activity is low, such as during 
slow-wave sleep and quiet rest (Ranck, 1973). During these states, the 
hippocampus shows slow, irregular rhythmic activity interspersed with 
occasional sharp-wave ripples (SWRs)—synchronized neuronal 
discharges accompanied by 140–200 Hz oscillations (Buzsáki et al., 
1992; Buzsáki and Vanderwolf, 1983; O'keefe, 1976). CA3 serves as the 
primary initiator of SWRs, during which the majority of hippocampal 
replays are observed (Buzsáki, 2015).

Several features of CA3’s architecture and dynamics facilitate the 
generation of novel activity patterns during SWRs (Jung et al., 2018). The 
CA3 network is characterized by many weak, recurrent synapses rather 
than a few strong ones (Debanne et al., 1999; Miles and Wong, 1986), 
making it more effective for generating variable sequences compared to 
networks dominated by fewer strong connections. Also, recurrent 
collateral synapses in CA3 support symmetric, rather than asymmetric, 
spike timing-dependent plasticity within a relatively broad time window 
(~150 ms) (Mishra et al., 2016). This promotes extensive associations 
among CA3 neurons with overlapping place fields, regardless of 
navigation trajectory. These features are consistent with the view that 
CA3 operates as a simulator, capable of generating activity patterns 
related to both previously experienced and unexperienced events.

In contrast, CA1 lacks the strong recurrent projections found in 
CA3, possessing only weak, short, longitudinally directed connections 
(Yang et  al., 2014). Consequently, CA1 does not independently 
generate SWR-associated replays but instead processes activity 
sequences received from CA3. What distinguishes CA1 is its robust 
encoding of value, enabling it to process CA3-generated activity 
patterns differently based on their associated values. Although the 
value dependence of CA1 activity during SWRs remains incompletely 
characterized, existing findings strongly support this hypothesis. For 
example, CA1 place cells with firing fields near rewarding locations 
are preferentially reactivated during SWRs, whereas CA3 place cells 
do not exhibit such reward dependence (Dupret et  al., 2010). 
Furthermore, CA1 replay preferentially encodes trajectories leading 
to reward locations (Foster and Wilson, 2006; Gupta et  al., 2010; 
Ólafsdóttir et  al., 2015; Pfeiffer and Foster, 2013). Reward also 
enhances the rate and fidelity of awake replays in CA1 (Ambrose et al., 
2016; Bhattarai et al., 2020), which facilitates the consolidation of 
memories associated with these replays (Yang et al., 2024). In humans, 
rewards have been shown to enhance the imagination of episodic 
future events (Bulganin and Wittmann, 2015) and to preferentially 
reactivate high-reward contexts during post-learning rest, improving 
memory retention (Gruber et al., 2016; Sterpenich et al., 2021).

Collectively, these findings support the core premise of the 
simulation-selection model: CA3 generates diverse activity patterns, 
while CA1 selectively reinforces those associated with high value. The 
functional outcome of this interplay is the prioritization of high-value 
activity patterns, strengthening their neural representations and 
enhancing the likelihood of optimal future decision-making. The 
simulation-selection model generates numerous testable predictions. 
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For instance, it predicts that CA1 replays will be more value-dependent 
than CA3 replays and that blocking CA3–CA1 synaptic plasticity 
during exploration will diminish the value dependence of CA1 replays 
(Jung et al., 2018). Additionally, the model suggests differential effects 
of CA3 and CA1 modulation on the diversity and value dependence 
of hippocampal replays, although the serial organization of the CA3–
CA1 circuit poses challenges for interpreting such results. While 
further research is needed to test these predictions and address 
unresolved questions, such as differentiating the processing of positive 
and negative values, current findings align with this model and suggest 
its potential relevance in adaptive decision-making.

Offline reinforcement learning

Reinforcement learning is a branch of artificial intelligence 
focused on discovering optimal action strategies in dynamic and 
uncertain environments. A central concept in reinforcement learning 

is the value function, which estimates the expected cumulative reward 
an agent can achieve from a specific state (or state-action pair) by 
following a particular strategy (policy). Agents use value functions to 
select actions and continuously update these functions based on the 
outcomes of their decisions. Through this iterative process, agents 
approximate true value functions and adapt their choices accordingly 
(Sutton and Barto, 1998). However, this trial-and-error approach can 
be  highly inefficient, often requiring a vast number of trials to 
converge to accurate value estimates. This inefficiency becomes 
especially problematic in scenarios where achieving a goal involves 
long action sequences or where the environment changes rapidly.

To address these challenges, the Dyna algorithm, introduced by 
Richard Sutton in 1991, provides an integrated approach that 
significantly enhances learning efficiency. Dyna combines direct 
interactions with the environment and simulated experiences to 
accelerate the reinforcement learning process. During direct 
interaction, the agent collects data by exploring the environment and 
updating its value functions and policies based on observed outcomes. 

FIGURE 1

Overview of the simulation-selection model. (A) Navigation sequences to two locations—one where a reward was obtained (high-value sequence) and 
one where it was not (low-value sequence)—are represented using different colors. Solid arrows indicate experienced sequences, while dashed arrows 
represent unexperienced (novel) sequences. (B) CA3 generates both experienced and novel (unexperienced) navigation sequences, independent of 
their value. Among these, CA1 selectively reinforces high-value sequences, whether experienced or novel. (C) The schematic diagram illustrates the 
basic circuit organization of CA3 and CA1. The numbers denote the average number of synapses for each projection pathway in a single CA3 or CA1 
pyramidal neuron (Amaral et al., 1990). The extensive but individually weak recurrent collaterals in CA3 enable the generation of both remembered 
(experienced) and novel (unexperienced) sequences. In contrast, CA1, which lacks recurrent collateral projections but conveys strong value signals, 
selectively reinforces high-value sequences. Figure adapted from Jung et al., 2018, licensed under CC-BY 4.0.
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In parallel, the agent builds an internal model of the environment, 
capturing relationships between states, actions, and rewards. Using 
this model, the agent performs offline simulations to generate 
additional experiences, which are then used to further refine value 
functions and policies (Sutton and Barto, 1998; Sutton, 1991). This 
dual approach leverages the strengths of both model-free and model-
based learning. The use of direct interaction ensures robustness and 
adaptability to environmental variations, while simulations enable 
faster learning and more efficient exploration of the state space by 
allowing the agent to explore hypothetical scenarios without real-
world trials.

The similarity between the simulation-selection model and the 
Dyna algorithm is striking. The Dyna algorithm overcomes the 
inefficiencies of pure trial-and-error learning by combining real-world 
experiences with simulated planning, enabling agents to learn and 
adapt efficiently in complex and dynamic environments. Similarly, the 
simulation-selection model allows agents to navigate their 
environments more efficiently by complementing actual experiences 
with the simulation and evaluation of diverse scenarios, such as spatial 
trajectories, during idle states. Both frameworks accelerate value 
learning by leveraging simulations derived from limited experiences. 
In this analogy, the key components of the Dyna algorithm map 
seamlessly onto the simulation-selection model: the recurrent network 
architecture of CA3 supports the generation of simulated trajectories, 
functioning analogously to model-based planning, while the strong 
value signals in CA1 facilitate the selection and reinforcement of these 
simulations, akin to refining value functions and policies in Dyna.

At the outset, we  noted that the ultimate goal of memory 
consolidation remains unclear. The simulation-selection theory offers 
a novel perspective, suggesting that memory consolidation is not 
merely the transformation or reorganization of temporary experiences 
stored in the hippocampus into long-term memory. Instead, it may 
function as a process of finding optimal strategies for navigating an 
environment through simulation, using limited experiences as a 
foundation. In this process, high-value behavioral strategies are 
selectively reinforced, facilitating better decision-making in the future. 
From this viewpoint, memory consolidation can be understood as a 
form of offline reinforcement learning. This idea also aligns with the 
constructive episodic simulation hypothesis, which posits that 
individuals flexibly extract and recombine elements of past 
experiences to simulate potential future scenarios (Schacter and 
Addis, 2007). Such flexibility allows past information to be effectively 
repurposed for simulating alternative future possibilities, reducing the 
reliance on actual trial-and-error behavior.

Conclusion

Recent studies increasingly highlight the hippocampus’s role in 
predictive coding, emphasizing its capacity to prepare the brain for 
future scenarios (Barron et al., 2020; Buckner, 2010; Pezzulo et al., 
2014). Theoretical advancements further support this view, with 
reinforcement learning frameworks emerging as powerful tools to 
explain hippocampal functions (Ambrogioni and Ólafsdóttir, 2023; 
Gershman and Daw, 2017; Stachenfeld et al., 2017; Tessereau et al., 
2021). Integrating the simulation-selection model into this framework, 
we propose that hippocampal neural processes underlying memory 
consolidation might be understood as a form of offline reinforcement 
learning. From this perspective, memory consolidation is not a passive 

process of fortifying memories based on initial encoding strength or 
arousal level but an active process of selecting and reinforcing valuable 
options for the future by recombining past experiences through 
imagination (Cowan et al., 2021; Jung, 2023; Jung et al., 2018).

This perspective does not negate other proposed roles of memory 
consolidation, such as schema formation, emotional memory 
modulation, or semantic abstraction. Rather, it broadens current 
thinking on memory consolidation by positioning reinforcement 
learning as a valuable theoretical framework for understanding 
hippocampal processes. It emphasizes the hippocampus’s dual role in 
retaining past experiences and actively transforming them into 
actionable strategies for navigating future challenges. By bridging 
neural, behavioral, and computational frameworks, this approach 
provides new insights into the mechanisms and biological functions 
of hippocampal memory consolidation.
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