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Estimation of ionic currents and 
compensation mechanisms from 
recursive piecewise assimilation 
of electrophysiological data
Stephen A. Wells , Paul G. Morris , Joseph D. Taylor  and 
Alain Nogaret *

Department of Physics, University of Bath, Bath, United Kingdom

The identification of ion channels expressed in neuronal function and neuronal 
dynamics is critical to understanding neurological disease. This program calls for 
advanced parameter estimation methods that infer ion channel properties from the 
electrical oscillations they induce across the cell membrane. Characterization of 
the expressed ion channels would allow detecting channelopathies and help devise 
more effective therapies for neurological and cardiac disease. Here, we describe 
Recursive Piecewise Data Assimilation (RPDA), as a computational method that 
successfully deconvolutes the ionic current waveforms of a hippocampal neuron 
from the assimilation of current-clamp recordings. The strength of this approach 
is to simultaneously estimate all ionic currents in the cell from a small but high-
quality dataset. RPDA allows us to quantify collateral alterations in non-targeted 
ion channels that demonstrate the potential of the method as a drug toxicity 
counter-screen. The method is validated by estimating the selectivity and potency 
of known ion channel inhibitors in agreement with the standard pharmacological 
assay of inhibitor potency (IC50).
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1 Introduction

Parameter estimation methods build models of biological neurons and circuits from 
experimental time series data (O’Leary et  al., 2015; Van Geit et  al., 2008). Different 
computational approaches have been used ranging from linear-regression (Prinz et al., 2003; 
Golowasch et al., 2002; Ahrens et al., 2005), to evolutionary algorithms (Achard and De 
Schutter, 2006; Buhry et al., 2012; Lynch and Houghton, 2015), genetic algorithms (Brookings 
et al., 2014; Nandi et al., 2022), simulated annealing (Ye et al., 2015), path integrals (Kostuk 
et al., 2012), Kitagawa state space modelling (Vavoulis et al., 2012; Kitagawa, 1998), and 
Lagrangian optimization of Hodgkin-Huxley models (Wächter and Biegler, 2006; Nogaret 
et  al., 2016; Meliza et  al., 2014; Armstrong, 2020). The latter approach synchronizes the 
mathematical equations of the model to time series data to obtain the optimal set of 
parameters. Once the training period is complete, the mathematical equations configured with 
the optimal parameters will predict the dynamics of state variables. Some state variables are 
observed, such as the membrane voltage, which can then be compared to measured time 
series. This provides an important validation point of the completed model. Other state 
variables, such as the gating variables of the Hodgkin-Huxley model, or the ionic currents, are 
inaccessible to time series measurements, hence the difficulty of fully validating model 
predictions. The estimated parameters include the activation thresholds, ionic conductances, 
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and gate recovery time constants which can identify sub-types of 
different classes of ion channels and help classify different neuron 
types (Chan et al., 2011; Migliore and Shepherd 2005; Molyneaux et 
al., 2007; Zeng and Sanes 2017). Therefore, if a parameter estimation 
method were validated on biological data, it could then be used to 
determine the full complement of ion channels of a neuron including 
their response to drugs. In practice, the lack of knowledge about the 
true equations of biological neurons is one factor limiting our 
confidence in the parameter solutions.

Here, we discuss two recent studies that introduce the RPDA 
method and validate it experimentally in pharmacologically altered 
neurons. The RPDA method was introduced by Wells et al. (2024) to 
reliably predict ionic current waveforms in the presence model error. 
This approach is called for by the empirical nature of Hodgkin-Huxley 
models and by the need to mitigate the effect of model error on the 
estimated quantities. The predictive power of the RPDA method was 
experimentally tested in a separate study by Morris et al. (2024). They 
used RPDA to evaluate the selectivity and potency of known ion 
channel antagonists applied to block specific ion channels in 
hippocampal neurons (CA1). The RPDA method was able to predict 
the change in ionic charge flowing across the ion channel targeted by 
the antagonist, in agreement with IC50 calibration of drug potency. 
Because RPDA evaluates changes in all ion channels in one go, it was 
also able to quantify compensation effects in ion channels not targeted 
by the antagonist. This demonstrates the potential of RPDA as a high 
throughput drug toxicity counter-screen. One aim of this paper is thus 
to present the RPDA method and its experimental validation in one 
narrative linking the key findings of the detailed computational and 
pharmacological studies. This is important to show that parameter 
estimation can infer reliable information from biological systems and 
not only surrogate data. This paper also allows us to discuss the 
criteria that current protocols need to fulfill to extract a maximum of 
information from biological neurons.

2 Experimental protocol

For all model parameters to be constrained by the neuron output, 
it is necessary that the current stimulation protocol is sufficiently 
informative (Wells et  al., 2024). Unlike voltage clamps whose 
stimulation protocols have been optimized (Groenendaal et al., 2015; 
Lei et al., 2023; Beattie et al., 2018) less effort has been directed to 
optimizing current protocols. The current stimulation must 
be designed to elicit a response in the depolarised, sub-threshold and 
hyperpolarized states of the neuron to constrain the parameters that 
determine each of these oscillation modes. It will include positive 
depolarising current pulses, small amplitude current oscillations 
causing the membrane voltage to oscillate about the resting potential, 
and negative current pulses. The current dynamics will incorporate a 
range of fast and slow-varying oscillations covering the internal time 
constants of the neuron: [0.1 ms, 500 ms]. If this criterion is only 
partially met, parameter estimation will produce multivalued 
solutions. For example, a tonic current would fail to elicit enough 
information from the neuron to constrain all 67 model parameters, in 
addition to causing membrane voltage oscillations lacking in 
reproducibility (Mainen and Sejnowski, 1995). A good current 
protocol is one that elicits different responses to different 
parameter values.

We optimised the stimulation protocol in the two steps shown in 
Figures 1A–C. We first applied a calibration protocol consisting of 
square steps of increasing amplitude to determine the optimal gain 
setting of the current clamp amplifier (Figure  1A). For the CA1 
hippocampal neuron measured here, the optimal stimulation range is 
0.1 to 0.25 nA. Currents outside this range elicit too few action 
potentials, due to insufficient stimulation when I < 0.1 nA and due to 
depolarization block when I > 0.25 nA. We then constructed current 
protocols that meet the informative criteria described above, and that 
apply intermediate currents eliciting the maximum number of action 
potentials per assimilation window. Figure  1B shows a current 
protocol that combines square pulses with chaotic oscillations 
produced by the Lorenz system:
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with 2, 1, 0.2, 1.α β γ η= − = = =  Initial conditions of Equation 2 were: 
1.x y z t= = = =  Both systems are equally suitable since they elicit 

multiple action potentials while probing neuron dynamics in the 
subthreshold regime near the resting potential and the hyperpolarized 
regime with negative current pulses. Fourier spectra of the current 
protocols in Figures 1B,C (inset to Figure 1) show a low pass response 
with cut-off frequencies of 50 kHz and 200 kHz, respectively. These 
protocols effectively probe the [0.01 ms, 500 ms] range of gate recovery 
times across the complement of ion channels of most neurons. We also 
know that the stimulus in Figure  1B is sufficient to constrain all 
parameters of our neuron model because we used it to successfully 
estimate back the correct model parameters from time series data 
generated by this model. The worst deviation of a parameter estimate 
from true value was 0.65%. Most parameters were recovered to within 
less than 0.01% error (Wells et al., 2024). This proves that the current 
protocol in Figure 1B satisfies the identifiability criterion and that, here, 
the uncertainty on parameter estimates will mainly arise from model 
error and the lack of knowledge about the true biological model.

We performed whole-cell recordings of CA1 neurons in acute 
brain slices from Han Wistar rats at P15-17. Following decapitation, 
the brain was removed and placed into an ice-cold slicing solution 
composed of (mM): NaCl 52.5; sucrose 100; glucose 25; NaHCO3 25; 
KCl 2.5; CaCl2 1; MgSO4 5; NaH2PO4 1.25; kynurenic acid 0.1, and 
carbogenated using 95% O2/5% CO2. A Campden 7,000 smz tissue 
slicer (Campden Instruments UK) was used to prepare transverse 
hippocampal slices at 350 μm, which were then transferred to a 
submersion chamber containing carbogenated artificial cerebrospinal 
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fluid (aCSF) composed of (mM): NaCl 124; glucose 30; NaHCO3 25; 
KCl 3; CaCl2 2; MgSO4 1; NaH2PO4 0.4 and incubated at 30°C for 
1–5 h prior to use. Synaptic transmission was inhibited 
pharmacologically in order to remove random synaptic inputs from 
the surrounding network. To this end all experiments were performed 

in the presence of (μM) kynurenate 3, picrotoxin 0.05, and strychnine 
0.01, to inhibit ionotropic glutamatergic, γ-aminobutyric acid 
(GABA)-ergic, and glycinergic neurotransmission, respectively. The 
slices were transferred on the stage of an Axioskop  2 upright 
microscope (Carl Zeiss) to identify pyramidal CA1 neurons from their 

FIGURE 1

Stimulation protocols applied to rodent hippocampal neurons (CA1). (A) Calibration protocol consisting of a sequence of current steps of increasing 
amplitude. (B) Protocol mixing a chaotic signal (Lorenz) and random current steps. (C) Protocol mixing a hyperchaotic current and random steps. Inset: 
Power spectra I(f) of current protocols in panels (B) and (C).
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morphology and location using interference contrast optics. The 
chamber was perfused with a carbogenated solution aCSF (as above) 
at 2 mL.min−1 at 30 ± 1°C. Patch pipettes were pulled from standard 
walled borosilicate glass (GC150F, Warner Instruments) to a resistance 
of 2.5–4 MΩ and filled with an intracellular solution composed of 
(mM): potassium gluconate 130; sodium gluconate 5, HEPES 10; 
CaCl2 1.5; sodium phosphocreatine 4; Mg-ATP 4; Na-GTP 0.3; pH 
7.3; filtered at 0.2 μm. CA1 neurons were recorded with a current 
clamp amplifier (Molecular devices, MultiClamp 700B) driven by a 
Labview controller (National Instruments) via a 16bit USB-6363 DAQ 
card (National Instruments). The Labview controller delivered the 
current protocol injected in the neuron (Figure 1) and recorded the 
neuron membrane voltage. The sampling rate was 100 kHz.

3 Recursive piecewise data 
assimilation

The Recursive Piecewise Data Assimilation (RPDA) Algorithm 
we now describe resolves several convergence issues in data assimilation 
(Wächter and Biegler, 2006). One issue compromising convergence is 
the multiplicity of local minima in the cost function to minimize. 
Convergence to these false solutions reduces the success rate of 
conventional data assimilation. This is increasingly problematic when 
optimizing large problems involving multiple (>12) ion channels. Either 
the parameter search fails or the solution become multi-valued upon the 
choice of different starting points. These issues are exacerbated when 
the model equations are unknown, which is unavoidable when 
modelling biological neurons. The empirical Hodgkin-Huxley models 
are one such model. Their approximate nature is responsible for turning 
local/global minima into long deep valleys in the cost function 
landscape along which parameter correlations develop. The principle of 
RPDA is to reinject data into the constraints of Lagrangian optimization 
to bias convergence towards the true solution (Wells et  al., 2024; 
Zimmer and Sahle, 2015). RPDA assimilates blocks of data in a 
piecewise manner across the assimilation window. It reinjects 
membrane voltage data in the constraints at the beginning of each block 
of data locally relaxing the constraints to apply a bias towards the 
solution. This bias is progressively released as the block size is increased 
from one iteration to the next while the parameter solution at the 
previous iteration is used as the starting point to the next, hence keeping 
the memory of the bias. When the block size becomes equal or greater 
than the size of the assimilation window, the optimal solution is 
obtained. If the initial block size is too small, the bias to convergence 
may cause convergence to fail. In which case the starting block size is 
incremented and the recursive data assimilation restarts from the larger 
block size. A second advantage of RPDA is that the reinjected data 
perturb the fitting landscape. This perturbation impedes the formation 
of minima in the fitting landscape allowing the solution to remain a 
good solution and to be improved with each iteration. The idea here is 
similar to noise regularization which has been shown to improve 
convergence towards the global minimum. The successful convergence 
of RPDA was validated in different scenarios using different initial 
conditions, or different current protocols. In all cases, RPDA recovered 
the true parameters of the typical neuron-based conductance model. 
For well-posed problems, RPDA was found to converge 100% of the 
time as shown by Wells et al. (2024).

ALGORITHM
Recursive piecewise data assimilation.

RPDA minimizes a least-square cost function which measures 
the misfit between a state variable representing the membrane 
voltage, 1x , and the experimental membrane voltage, memV , 
recorded at discrete times ti, [ ]0,i N∈  spanning the assimilation 
window of duration T:
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The state of the neuron is represented by a vector x with 
2L K+ +  components. Vector components are 1x , the membrane 

voltage; 2, , Lx x… , the gate variables of ion channels; 1Lx +  and 
2Lx + , the Tikhonov regularization variable (Tikhonov, 1943; 

Abarbanel et  al., 2010) and its time derivative; and 
2 2, ,L L Kx x+ + +… , the model parameters. Model parameters are 

state variables whose time derivative is zero. Should a 
“parameter” depend on time as is sometimes the case in biology, 
this is easily accounted for by replacing zero with the rate of 
change of the parameter in Equation 3. The cost function is 
minimized subject to both equality constraints:
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specified by the neuron model, Equation 4, and the zero time 
derivatives of model parameters expressed as follows:
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and inequality constraints (Equation 6):

 ( )min max , 1, , 2ll lx x x l L K≤ ≤ = … + +  (6)

bracketing the variation of membrane voltage, gate variables, 
regularization term and parameters (Equation 7),
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= + + + + + + + + −J J J J J J J J J J JNaT NaP K A Ca BK SK HCN Leak inj is 
the current per unit area of the neuron membrane. This includes 9 
voltage-gated ionic currents, transient sodium (NaT), persistent 
sodium (NaP), delayed rectifier potassium (K), A-type potassium (A), 
calcium (Ca), large conductance calcium-activated potassium current 
(BK), small conductance calcium-activated potassium current (SK), 
hyperpolarization cation-activated cation current (HCN), leak current 
and the current injected to drive neuron oscillations, injJ . We used the 
mathematical expressions of ionic currents given by Warman et al. 
(1994). The slow pump and exchange currents maintaining ionic 
gradients across the membrane are implicitly included in the constant 
reversal potentials, NaE  and KE , of Na+ and K+ ions. C is the 
membrane capacitance, lτ  the recovery time of ionic gate l, and ,lx ∞ is 
the steady-state value of gate variable lx . This model of the 
hippocampal neuron has K = 67 parameters, L = 14 state variables. 
The user sets the parameter search range, min max,l lp p 

  to the widest 
biologically plausible range for each parameter. Data assimilation 
outputs the optimal parameters and the state variables at t = 0 as ( )0x .

The equations of ionic currents are listed in Table 1.
Among the K = 67 parameters are the ion channels conductances (gα

), activation thresholds (Vβ), activation slopes ( Vβδ ), and recovery time 
parameters ( , ,β β τβ∈ δt V ) where { , , , , , ,NaT NaP K A Ca BKα ≡ SK, 
HCN, Leak} and [ ]{ }, , , , , , , , , , , , inm h p n a b s r c d w z Caβ ≡ . The Na reversal 
potential was set to NaE  = +42 mV and HCN reversal potential to 

43HCNE = − mV while the other reversal potentials , ,K Ca LE E E  were 
estimated by RPDA. The BK and SK currents are calcium activated 
potassium currents (Warman et al., 1994). The dynamics of the internal 
calcium concentration (last equation) depends on the equilibrium 
concentration [ ]Ca ∞ , the Ca recovery time constant ( 1.5Caτ ≈  ms), 
Faraday’s constant (F ), and the thickness of the membrane across which 

2Ca + fluxes are calculated ( 1t mµ≈ ). The membrane capacitance was set 
to 21 .cmC Fµ −= . The effective area of the soma through which the 
current was injected was also estimated.

The RPDA algorithm, re-injects membrane voltage data in the 
optimization problem at the beginning of every block of M data-
points. This means that the membrane voltage state variable 1x  is 
replaced with memV  at time points t0, tM-1, t2M-1 in the linearized 
expression of the equality constraints:

 
( ) ( ) ( )( ) ( )( ) ( )( )2 1 2

1 4 1 ,
3 3 3+ + +
 = + ∆ + +  

l i l i l i l i l ix t x t t F x t F x t F x t  

 
( ) ( ) ( ) ( )( ) ( )( )1 2 2

1 ,
2 4+ + +

∆  =  +  + −   l i l i l i l i l i
tx t x t x t F x t F x t 

 
(8)

 ( ) ( )1, , 2 0, , 2 .for l L K and i N= … + + = … −

where /∆ =t T N  is the time interval between consecutive data points 
in the assimilation window (0.01 ms). At other times the state vector 

is propagated normally from it  to 2it +  by Equations 8. The substitution 
of memV  also impacts the first and second derivatives of the objective 
function with respect to 1x . Where the cost function ceases to depend 
on 1x , its derivatives with respect to 1x  vanish. We explicitly set these 
derivatives to zero at times 0 1 2 1, ,M Mt t t− − … . This produces a 
discontinuity in ( )1x t at the beginning of each M-block which is the 
trade-off for imposing the bias to the solution. Our piecewise fit of 
data has similarities with the multiple shooting approach proposed by 
Bergmann et al. and Zimmer and Sahle (Bergmann et  al., 2016; 
Zimmer and Sahle, 2015). However our RPDA method performs 
piecewise assimilation of blocks of data through redefined constraints, 
whereas the Zimmer and Sahle’s approach redefines the cost function.

4 Results

4.1 Selective switching of ion channels

We have performed current clamp measurements in single 
hippocampal cells under the protocol depicted in Figure 2. Whole 
cells measurements were performed in brain slices of Han Wistar rats. 
The cell was pharmacologically isolated from the activity of 
neighboring cells through the application of (μM) kynurenate 3, 
picrotoxin 0.05 and strychnine 0.01 to inhibit glutamatergic, 
GABAergic and glycinergic neurotransmission, respectively. A series 
of 5 s long epochs were first recorded under varying current protocols 
(Morris et al., 2024). A pharmacological inhibitor was then applied to 
block a specific ion channel. The same series of current protocols was 
then applied post drug and the neuron oscillations were recorded 
(Figure  2). We  will report here on two ion channel antagonists, 
iberiotoxin (IbTX) and 4-aminopyridin (4-AP), that selectively inhibit 
the BK and A-type current.

We then used RPDA to generate one set of 67 model parameters 
before drug and after drug. In each case, the same 800 ms long section 
of the epoch was assimilated. In order to account for the statistical 
fluctuations in the parameter field induced by data and model error, 
we generated multiple sets of parameters (R = 15 for IbTX; R = 19 for 
4-AP) from R assimilation windows offset in time (Figure 2). The 
dispersion of parameters and subsequently the dispersion of ionic 
current waveforms reconstructed from then is useful to evaluate the 
prediction error on the changes predicted by RPDA.

4.2 Predicting membrane voltage 
oscillation before and after applying an 
inhibitor

We performed a first validation test of the RPDA method by 
forward-integrating the current protocol of Figure  2A with two 
models completed with pre-drug and post-drug parameters, and 
predicting the membrane voltage oscillations of the neuron (Figure 3, 
red lines). The predicted traces show a very good agreement with the 
experimental membrane voltage oscillations (Figure 3, black lines). 
Some discrepancy is observed in the region of dense spikes at about 
800 ms where the current excitation is constant. In this region, the 
precise timing of neuron spikes is less reproducible because of the 
stochastic fluctuations of the neuron. This discrepancy does not imply 
the model is wrong. Note that in other regions at about 400 ms and 
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TABLE 1 Equations of the conductance model.

Current Gate dynamics Gate activation
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1,400 ms where the current varies faster than stochastic fluctuations, 
the timing of spikes is very reproducible and the agreement with the 
model is excellent. Mainen and Sejnowski (1995) have previously 
pointed out the lack of reproducibility of a neuron to tonic stimulation 
and this is what we are seeing here. Nogaret et al. (2016), (Fig. S7 [blue 
arrows]) have further shown that models constructed by data 
assimilation correctly predict spikes that are logically expected to 
occur for a given stimulation pattern but may be missing because of 
internal stochastic fluctuations. The consistent error in model 
predictions is the overestimation of spike amplitudes.

4.3 Predicting the selectivity and potency 
of known inhibitors

Once the 2R sets of 67 parameters (pre- and post-drug) were 
obtained, these were inserted in the neuron equations, Equation 5 
(Warman et  al., 1994). The completed models were then forward 
integrated to obtain the ionic current waveforms of all 9 ion channels. 
The voltage traces predicted by each completed model were compared 
to the experimental traces in the study by Morris et al. (2024). The 
good agreement achieved pre- and post-drug provides an intermediate 
validation point for the optimized neuron models. Although this 

agreement is necessary, it is not sufficient for claiming to infer 
information on ion channels: Wrong models can also predict the 
membrane voltage. Figure 4A shows the BK current waveforms pre- 
and post-IbTX predicted at the site of one action potential. The net 
charge transferred through each ion channel per action potential was 
obtained from the areas under the ionic current waveforms and 
plotted in Figure 4B. The analysis of neurons subjected to iberiotoxin 
(IbTX; 100 nM; Figure 4B; R = 15 pre-drug and post-drug) predicted 
a 12.1% reduction in median and 14.8% reduction in mean 
BK-mediated charge per action potential. This was one statistical 
discovery across all channels in the drug-applied data (Figure 4B; 
U = 25; q < 0.01; mean ranks 21.2 [pre-IbTX], 9.8 [post-IbTX]). 
Charge transfer decreased from 29.4 nC · cm−2 to 25.9 nC · cm−2. A 
compensatory increase in leak current was also identified, likely due 
to decreased K+ permeability caused by IbTX (U = 37.5; q < 0.01; 
mean rank 10.5 [pre IbTX], 20.5 [post-IbTX]). Leak charge transfer 
increased from 6.3 nC · cm−2 to 10.3 nC · cm−2, with a mean increase 
of 46%. There were no statistical discoveries for any other channels. 
This demonstrates that models constructed by RPDA correctly predict 
the selectivity of IbTX. Figure 4B predicts the reduction in charge 
transfer through the BK channel targeted by IbTX.

Similarly, we  reconstructed the 9 ionic current waveforms 
through each of the 9 ion channels before and after applying 

FIGURE 2

Estimation of the ion channel parameters in a pharmacologically altered neuron. (A) Hippocampal neuron recorded before and after blocking an ion 
channel with an antagonist of known selectivity and molar concentration (potency). The pre-drug and post-drug recordings are stimulated by the 
same current protocol (brown trace). (B) Recursive Piecewise Data Assimilation (RPDA) estimates 67 parameters by synchronizing the neuron-based 
conductance model to an 800 ms long recording of the membrane voltage. Rather than a single set, we constructed a statistical sample of R 
parameter sets by assimilating R 800 ms long windows offset from by 20 ms. We thus obtained R-parameter sets from pre-drug data {pPre

1, ,R… } and 
R-parameter sets from post-drug data {pPost

1, ,R… }.
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4-AP. The waveform of the A-channel targeted by 4-AP is shown in 
Figure 4C. The amount of ionic charge transferred pre- and post-
drug for each ion channel was then obtained by integrating the 
current waveform through each ion channel. The results are plotted 
in Figure  4D. Following the application of 4-Aminopyridine 
(300 μM; Figure  4D; R = 19 pre-drug; R = 18 post-drug), our 
completed models predicted a reduction in charge transfer mediated 
by A-type K+ channels (Figure 4D; U = 52; q < 0.001; mean rank 
25.3 [pre 4-AP], 12.4 [post 4-AP]). Median charge transfer dropped 
from 26.1 nC · cm−2 to 19.7 nC · cm−2 with a 19.0% mean reduction. 
In addition, the model predicts a 10.0% increase in median charge 
transfer (8.8% mean) through the BK-channel (U = 73; q < 0.01; 
median charge 41.2 nC  ·  cm−2 [pre 4-AP], 45.3 nC  ·  cm−2 [post 
4-AP]); and a reduction in Ca2+-mediated charge transfer (U = 79; 
q < 0.01; mean rank 23.8 [pre 4-AP], 13.9 [post 4-AP]). Ca2+-
mediated charge dropped from 9.65 nC · cm−2 to 9.23 nC · cm−2 with 
a mean reduction of 3.0% mean. Figure 4D predicts the reduction in 
charge transfer through the A-type K+ channels targeted by 
4-AP. RPDA predictions uniquely quantify the collateral effects of 
4-AP on BK and Ca channels because this is a single shot estimation 
of alterations across all ion channels in the cell. These collateral 
alterations are consistent with modifications of the electrochemical 
driving force by the antagonist which alters current flow through the 
other ion channels, in particular the calcium mediated potassium 
channel (BK).

We finally compared the mean/median degree of ion channel 
block predicted by RPDA with the nominal degree of block expected 

for each inhibitor at the concentration applied. The results are 
summarized in Table 2. A first observation is that both BK and A-type 
ion channels may express different sub-types of ion channels. These 
exhibit different sensitivities to antagonists. With this caveat, RPDA 
predictions are broadly consistent with the 1α β+  subunit of the BK 
channel being predominantly blocked. Similarly, the RPDA-predicted 
block is consistent with the Kv1.4 subunit of the A-type current. In 
addition, the coefficient of variation of the statistical distribution of 
predicted charge transfer (Figures  3C,D) suggests that RPDA is 
accurate within ±11%.

5 Discussion

The above data demonstrate the effectiveness and accuracy of 
RPDA as a single shot method to quantify ion channel alterations across 
the complement of ion channels of a cell. RPDA estimates model 
parameters with nearly perfect accuracy and reliability when the model 
is known. The main limitation to prediction accuracy when modelling 
real data is the lack of knowledge of the true biological equations. Model 
error introduces correlations among some parameters with tend to 
cancel out in the calculation of ionic currents. As a result, the current 
waveforms reconstructed from these parameters are more reliable 
predictors than the underlying parameters. Data error also introduces 
uncertainty in the parameter field. For all practical purposes this error 
is often small as modern current clamp amplifiers produce very high-
quality neuron recordings. In other cases, data error can be traced to a 

FIGURE 3

Measured and Predicted membrane voltage. (A) 2,000 ms long epoch comparing the experimental membrane voltage oscillations of a CA1 
hippocampal neuron (black line) to the membrane voltage oscillations predicted by the conductance model (red line). The first 1,000 ms of this epoch 
are also shown in Figure 1 with the stimulation current. (B) Measured and predicted membrane voltage after the application of iberiotoxin (IbTX: 
100 nM).
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TABLE 2 Inhibition of ionic currents predicted versus nominal.

Drug Concentration 
applied

Channel type 
(rodent)

Expected degree of 
block at applied 
concentration

Median / mean 
predicted 
inhibition 
(results)

Relative St. dev 
of mean 

inhibition 
(Results)

Iberio-toxin 100 nM BK [α subunit only] 86%

12.1% / 14.8% 21.3%
BK [α + β1] 12%

BK [α + β3] 77%

BK [α + β4] Insensitive

4-AP 300 μM A-type [Kv1.4]

(+)

25%

[selectively expressed in 

xenopus oocytes]
24.3% / 19.0% 21.1%

A-type [Kv4.2]

(++)

13%

[selectively expressed in 

xenopus oocytes]

FIGURE 4

Predicted ion current waveforms pre- and post-inhibition. (A) Predicted BK current waveforms before and after application of Iberiotoxin (100 nM). The 
pre-IbTX current trace is the average of 15 waveforms obtained by integrating the conductance model with parameters {pPre

1, ,15… }. The post IbTX traces 
were similarly obtained from parameters {pPost

1, ,15… }. (B) Predicted ionic charge transferred through each ion channel of the CA1 neuron before and after 
IbTX. Each dot is obtained from the integration of a BK current waveform predicted by the model constructed from one of the R = 15 assimilation 
windows in Figure 2. The green dots are the charge predictions pre-drug and the blue dots are the charge predictions after 100 nM IbTX was applied. 
The median charge is shown by the horizontal bars. Asterisks (***) indicate multiplicity adjusted q values from multiple Mann–Whitney U tests using a 
False Discovery Rate approach of 1%. (C) Predicted A-type current waveforms before and after application of the 4-aminopyridin. (D) Predicted ionic 
charge transferred through each ion channel of the CA1 neuron before and after 4-AP. The data in (A,B) were generated from one animal and the data 
in (C,D) from another animal. These data are exemplar of the recordings taken on the 13 animals we have studied in total.
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well identified source such as noise, space clamp, or liquid junction 
potential and corrected.

The cost function in Equation 3 is a reduction of the general cost 
function (Abarbanel, 2022) that includes both data error and model 
error. This is expressed as follows:
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The first term (data error) in Equation 9 is weighted by the covariance 
matrix Rd  which describes the degree of confidence on each 
measurement. This matrix is diagonal since consecutive current clamp 
measurements are uncorrelated. In addition, all diagonal terms are the 
same since each membrane voltage measurement carries the same 
uncertainty. The first term then reduces to our first term in Equation 3. 
When the model is known, the second term vanishes, and the cost 
function reduces to the least square sum of Equation 3.

The second term incorporates model error as 
( ) ( )( ) ( ) ( )( )1 1, ′

− −≈ + ∆l i i l i l iG x t x t x t tF x t  

where ( )lF ′  are the 
empirical conductance equations approximating the unknown true 
equations ( )lF . A current challenge in evaluating this term is the lack 
of method for calculating the model error covariance matrix i iR × . This 
remains an open problem and is the reason for not including this term 
in Equation 3.

An advantage of RPDA is that prior knowledge of the expressed ion 
channels can help but is not mandatory. Over-specifying the model by 
including unexpressed ion channels is of no consequence as RPDA assigns 
zero conductance to the absent ion channels. Remarkably recent simulations 
(Wells et al., 2024) show that even when the model contains mild error, 
RPDA still assigns residual conductance to the unexpressed ion channel. In 
particular, the unexpressed currents do not compensate for model error in 
the expressed ion channels by being assigned a finite conductance. More 
work is needed to investigate the range of model error within which RPDA 
successfully deconvolutes ionic currents. However, the present experimental 
data show that RPDA is sufficiently accurate to predict the selectivity and 
potency of known pharmacological inhibitors. Further improvements to 
the accuracy of RPDA will require the incorporation of a model error 
correction algorithm. This would reduce the uncertainty on estimated 
parameters – not just ionic currents—and allow building larger models such 
as central pattern generators, or multicompartmental models to account for 
neuronal morphology (Nandi et al., 2022).

RPDA presents a number of advantages compared to genetic, 
evolutionary or Metropolis-Hastings type algorithms. As a gradient descent 
method, RPDA requires fewer repeated evaluations of the cost function as 
the size of the problem increases. Fitting biological neurons requires large 
multichannel models with a high-dimensional parameter space, K > 50. 
The cost of these algorithms in terms of computer time becomes prohibitive 
for realistic conductance models. In RPDA, the Jacobian and Hessian of 
constraints and cost function are known. They are computed in analytical 
form after symbolic differentiation. Therefore convergence in high-
dimensional parameter space is comparatively fast. The stopping criterion 
is also clear cut in RPDA. The evaluation of the cost function at the global 
minimum is typically 5 orders of magnitude smaller than at local minima 
(Taylor et al., 2020). This marked differentiation between global and local 

minima is one reason why RPDA achieves ∼100% convergence in well-
posed problems. The local minima of ill-posed problems are specifically 
handled by the piecewise reinjection of data in RPDA. In contrast genetic 
algorithms have a tendency to converge to local minima.

The morphology of neuronal trees could be modelled by using 
multi-compartmental models in RPDA, for instance to infer 
information on calcium channel activity in dendrites. Introducing 
additional neuron compartments in the model is tractable within 
RPDA in the same way as adding supplementary ion channels. 
Transmission line delays associated with dendrites and axons is 
known to alter the shape of action potentials. This said, single 
compartment models have excelled in predicting membrane voltage 
dynamics (Brookings et  al., 2014; Nogaret et  al., 2016). It may 
be argued that the aggregate duration of all action potentials across 
the assimilation window is small compared to the time spent in the 
subthreshold state. The shape of action potential is thus less important 
than spike width, height, inter-spike intervals and sub-threshold 
oscillations in determining model parameters. The presence of 
dendrites and axons is likely to be  accounted for by an effective 
inactivation time constants which integrates the real inactivation time 
constants and the delays introduced by attachments to the soma. This 
brings us to the important conclusion of our work (Wells et al., 2024) 
that at the present time ionic currents reconstructed from estimated 
parameters carry a higher degree of confidence than the parameters.
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