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Understanding how language and linguistic constructions are processed in

the brain is a fundamental question in cognitive computational neuroscience.

This study builds directly on our previous work analyzing Argument Structure

Constructions (ASCs) in the BERT language model, extending the investigation

to a simpler, brain-constrained architecture: a recurrent neural language

model. Specifically, we explore the representation and processing of four

ASCs–transitive, ditransitive, caused-motion, and resultative–in a Long

Short-Term Memory (LSTM) network. We trained the LSTM on a custom

GPT-4-generated dataset of 2,000 syntactically balanced sentences. We then

analyzed the internal hidden layer activations using Multidimensional Scaling

(MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize

sentence representations. The Generalized Discrimination Value (GDV) was

calculated to quantify cluster separation. Our results showdistinct clusters for the

four ASCs across all hidden layers, with the strongest separation observed in the

final layer. These findings are consistent with our earlier study based on a large

language model and demonstrate that even relatively simple RNNs can form

abstract, construction-level representations. This supports the hypothesis that

hierarchical linguistic structure can emerge through prediction-based learning.

In future work, we plan to compare these model-derived representations

with neuroimaging data from continuous speech perception, further bridging

computational and biological perspectives on language processing.

KEYWORDS

cognitive computational neuroscience, argument structure constructions, linguistic

constructions (CXs), recurrent neural networks (RNNs), LSTMs, sentence representation,

computational linguistics, natural language processing (NLP)

Introduction

Understanding how language is processed and represented in the brain is a central

challenge in cognitive neuroscience (Pulvermüller, 2002). In this paper, we adopt a

usage-based constructionist approach to language, which views language as a system of

form-meaning pairs (constructions) linking patterns to specific communicative functions

(Goldberg, 2009, 2003). In particular, argument Structure Constructions (ASCs) such

as transitive, ditransitive, caused-motion, and resultative constructions play a crucial

role in language comprehension and production (Goldberg, 1995, 2006; Goldberg

and Goldberg, 2019). These constructions are fundamental to syntactic theory and

are integral to the way meaning is constructed in sentences. Investigating the neural

and computational mechanisms underlying the processing of these constructions can
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provide significant insights into language and cognition

(Pulvermüller, 2012, 2023; Pulvermüller et al., 2021;

Henningsen-Schomers and Pulvermüller, 2022).

In recent years, advances in computational neuroscience have

enabled the use of artificial neural networks to model various

aspects of human cognition (Cohen et al., 2022). Furthermore,

the synergy between AI and cognitive neuroscience has led to a

better understanding of the brain’s unique complexities (Krauss,

2024). AI models, inspired by neural networks (Hassabis et al.,

2017), have allowed neuroscientists to delve deeper into the

brain’s workings, offering insights that were previously unattainable

(Krauss, 2023). These models have been particularly useful in

studying how different parts of the brain interact and process

information (Savage, 2019). Among these neural network models,

recurrent neural networks (RNNs) (Krauss et al., 2019b; Metzner

and Krauss, 2022; Metzner et al., 2024), and specifically Long Short-

Term Memory (LSTM) networks (Hochreiter and Schmidhuber,

1997), have shown considerable promise in modeling sequential

data, such as natural language (Wang and Jiang, 2015).

Unlike transformer based large languagemodels (Vaswani et al.,

2017; Radford et al., 2018), which have gained popularity in natural

language processing (NLP), LSTMs are designed to capture long-

range dependencies in sequences without the need of a sliding

window, making them more analogous to certain aspects of brain

function related to temporal processing (Surendra et al., 2023).

In recent years, transformer-based architectures like BERT have

dominated computational models of language processing, offering

deep insights into the representation of Argument Structure

Constructions (ASCs) (Ramezani et al., 2025). However, these

models often lack constraints that mirror the structural and

functional limitations of the human brain (Pulvermüller et al.,

2021). In contrast, recurrent neural networks (RNNs), particularly

Long Short-Term Memory (LSTM) networks, provide a more

biologically plausible framework due to their sequential processing

capabilities, which align more closely with temporal dynamics

observed in neural activity. Our study builds upon previous

analyses conducted with LSTMs, extending the investigation to

transformer-based models to compare how different architectures

represent ASCs. By contrasting the performance and internal

representations of BERT and LSTM models, we aim to elucidate

the extent to which each architecture captures the nuances of ASCs

and their alignment with human linguistic processing.

This study employs a cognitive computational neuroscience

approach (Kriegeskorte and Douglas, 2018). In particular, we

explore how a deep recurrent language model, based on

LSTM architecture, processes and represents different ASCs. We

generated a custom dataset using GPT-4 (Radford et al., 2018, 2019;

Brown et al., 2020), comprising 2000 sentences evenly distributed

across four ASC types. By training the LSTM model on this dataset

for next word prediction, we aim to examine how well the model

distinguishes between the different constructions at various levels

of its internal representations.

To analyze the internal activations of the LSTM model,

we utilized dimensionality reduction techniques such as

Multidimensional Scaling (MDS) (Torgerson, 1952) and t-

Distributed Stochastic Neighbor Embedding (t-SNE) (Van der

Maaten and Hinton, 2008) (cf. Methods). These techniques allow

us to visualize high-dimensional data in a two-dimensional space,

facilitating the identification of clusters corresponding to different

ASCs. Additionally, we computed the Generalized Discrimination

Value (GDV) (Schilling et al., 2021a) to quantify the clustering

quality, providing an objective measure of how well the model’s

internal representations align with the different construction types

(cf. Methods).

Our findings indicate that the LSTM model successfully

differentiates between the four ASC types, with the most distinct

clustering observed in the final hidden layer before the output.

This suggests that even a relatively simple, brain-constrained

recurrent neural network can capture complex syntactic structures.

These results are in line with previous research demonstrating

the emergence of word class and syntactic rule representations in

recurrent language models.

In future work, we plan to extend this research by validating our

findings using large language models such as BERT (Devlin et al.,

2018; Krauss et al., 2024) and comparing the computational model’s

performance with neuroimaging data collected during continuous

speech perception (Schilling et al., 2021b). By bridging the gap

between computational models and neural data, we aim to advance

our understanding of the neural mechanisms underlying language

processing (Kriegeskorte and Douglas, 2018).

This study highlights the potential of recurrent neural language

models to mirror linguistic processing in the human brain, offering

valuable insights into the computational and neural mechanisms

that underpin language understanding.

Methods

Dataset creation using GPT4

To investigate the processing and representation of different

Argument Structure Constructions (ASCs) in a recurrent neural

language model, we created a custom dataset using GPT-4.

This dataset was designed to include sentences that exemplify

four distinct ASCs: transitive, ditransitive, caused-motion, and

resultative constructions (cf. Table 1). Each ASC category consisted

of 500 sentences, resulting in a total of 2000 sentences.

Selection of argument structure constructions
The four ASCs selected for this study are foundational

to syntactic theory and represent different types of

sentence structures:

Transitive Constructions: Sentences where a subject performs

an action on a direct object (e.g., “The cat chased the mouse”).

Ditransitive Constructions: Sentences where a subject performs

an action involving a direct object and an indirect object (e.g., “She

gave him a book”).

Caused-motion Constructions: Sentences where a subject

causes an object to move in a particular manner (e.g., “He pushed

the cart into the garage”).

Resultative Constructions: Sentences where an action results in

a change of state of the object (e.g., “She painted the wall red”).
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TABLE 1 Name, structure, and example of each construction.

Constructions Structure Example

Transitive Subject+ verb+ object The baker baked a cake.

Ditransitive Subject+ verb+ object1

+ object2

The teacher gave

students homework.

Caused-Motion Subject+ verb+ object

+ path

The cat chased the

mouse into the garden.

Resultative Subject+ verb+ object

+ state

The chef cut the cake

into slices.

Generation of sentences
To ensure the diversity and quality of the sentences in our

dataset, we utilized GPT-4, a state-of-the-art language model

developed by OpenAI (Radford et al., 2018, 2019; Brown

et al., 2020). The generation process involved the following

steps: Prompt Design: We created specific prompts for GPT-

4 to generate sentences for each ASC category. These prompts

included example sentences and detailed descriptions of the desired

sentence structures to guide the model in generating appropriate

constructions. Using the designed prompts, we generated 500

sentences for each ASC category. The generation process was

carefully monitored to ensure that the sentences adhered to the

syntactic patterns of their respective constructions.

Manual review and filtering

The initial set of 2,000 sentences was generated using GPT-

4, with 500 examples for each of the four Argument Structure

Constructions (ASCs). At first, prompts were kept general (e.g.,

“Generate 500 transitive sentences”), resulting in syntactically

and semantically appropriate sentences (e.g., She gave me her

new dress, The teacher wrote his mother a letter). However, to

enhance the experimental control and ensure a consistent sentence

structure across ASC categories, we refined our prompts to enforce

uniformity in word count and syntactic role length. For example,

the refined prompt for the ditransitive construction was: “Generate

500 sentences with a ditransitive construction. Each sentence

should maintain consistency in word count for each syntactic

role. Example: The teacher gave students homework.” This prompt

engineering approach yielded consistently structured sentences

such as The manager offered employees bonuses and The baker

made friends cupcakes. Once generated with this refined method,

all sentences were manually reviewed and found to comply with the

intended construction types, syntactic structure, and grammatical

correctness. No sentences needed to be removed or corrected at

this stage. Therefore, the final dataset required no manual edits or

deletions after the controlled generation process, as all examples

were valid according to the predefined syntactic templates.

Handling varying sentence lengths
Sentences in natural language vary in length, which poses a

challenge for processing within neural networks. To address this,

we used padding to standardize sentence lengths. Specifically, each

sentence was padded to match the length of the longest sentence

in the dataset. This padding ensures that all input sequences

are of equal length, facilitating efficient batch processing during

model training.

Text tokenization
To convert the textual data into a numerical format suitable

for input into the neural network, we used a tokenizer. The

tokenization process involved the following steps: Vocabulary

Creation: Each unique word in the dataset was identified and

assigned a specific ID number. This process resulted in a vocabulary

list where each word corresponded to a unique integer identifier.

Sentence Transformation: Each sentence was transformed into a

sequence of these integer IDs, representing the words in the order

they appeared. For instance, a sentence like “The cat chased the

mouse” would be converted into a sequence of integers based on

the IDs assigned to each word. By padding sentences to a uniform

length and converting them into numerical sequences, we ensured

that the dataset was ready for training the LSTM-based recurrent

neural language model. These preprocessing steps are crucial for

enabling themodel to effectively learn and differentiate between the

various ASCs.

Input representation: word IDs
To investigate how recurrent neural networks process

Argument Structure Constructions (ASCs) independently of

semantic information, we represented words using unique

numerical IDs rather than pretrained embeddings. This means

each word was mapped to a discrete integer value without any a

priori encoding of semantic or syntactic similarity. The rationale

behind this choice was to isolate the model’s ability to learn

constructional patterns based solely on syntactic structure and

word position, rather than leveraging distributional semantics. This

allowed us to assess whether ASC-specific internal representations

could emerge in the network from purely sequential input and

next-word prediction learning, reflecting syntactic processing in

a controlled manner. While this approach does not model the

full richness of semantic context as the brain does, it enables us

to better study the emergence of structural differentiation akin

to syntax.

Using word IDs instead of word embeddings in this study

offers several advantages. Firstly, word IDs provide a simpler and

more interpretable representation of the dataset, which aligns well

with the study’s focus on analyzing internal model activations

and clustering of sentence representations based on Argument

Structure Constructions (ASCs). This simplicity aids in isolating

the effects of syntactic structures without the added complexity

of pre-trained embeddings that carry semantic information from

external contexts. Secondly, using word IDs ensures that the

analysis remains focused on the syntactic and structural aspects of

sentence processing, allowing for a clearer examination of how the

LSTM model differentiates between different ASCs. This approach

facilitates a more straightforward interpretation of the model’s

ability to capture syntactic patterns, which is the primary interest

of this research.
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The resulting dataset, comprising 2000 sentences represented

as padded numerical sequences, serves as a robust foundation for

training and analyzing the LSTMmodel. This carefully curated and

preprocessed dataset enables us to investigate how different ASCs

are processed and represented within the model, providing insights

into the underlying computational mechanisms.

LSTM architecture

The LSTM model in this study is designed for next-word

prediction without prior information about the type of sentence

constructions. The initial goal is to evaluate the model’s ability

to predict the next word, while the main objective is to assess

how well it understands and differentiates between the different

constructions. The model architecture consists of four layers:

Embedding Layer: This layer converts each sentence into a

sequence of integer numbers, transforming the input words

into dense vector representations. This step facilitates efficient

processing by the LSTM layers. First LSTM Layer: This layer

learns complex patterns and dependencies within the sequence of

words, capturing the contextual information necessary for accurate

next-word prediction. Second LSTM Layer: Building upon the

first LSTM layer, this layer further refines the learned patterns

and dependencies, enhancing the model’s understanding of the

sequence’s structure. Dense Layer with Softmax Activation: The

final layer outputs a probability distribution over all possible next

words. The softmax activation function ensures that the output is a

valid probability distribution, suitable for predicting the next word.

The model ultimately outputs a one-hot vector, where the length

corresponds to the number of possible next words, indicating the

predicted probabilities for each word. This architecture enables the

model to learn and represent the intricate patterns of different

Argument Structure Constructions (ASCs), providing insights into

how such constructions are processed and differentiated by a

recurrent neural language model.

Analysis of hidden layer activations

After training the model, we assessed its ability to differentiate

between the various constructions by analyzing the activations

of its hidden layers. Given the high dimensionality of these

activations, direct visual inspection is not feasible. To address this,

we employed dimensionality reduction techniques to project the

high-dimensional activations into a two-dimensional space. By

combining different visualization and quantitative techniques, we

were able to assess the model’s internal representations and its

ability to differentiate between the various linguistic constructions.

Multidimensional scaling (MDS)
This technique was used to reduce the dimensionality of

the hidden layer activations, preserving the pairwise distances

between points as much as possible in the lower-dimensional

space. In particular, MDS is an efficient embedding technique

to visualize high-dimensional point clouds by projecting them

onto a 2-dimensional plane. Furthermore, MDS has the decisive

advantage that it is parameter-free and all mutual distances of the

points are preserved, thereby conserving both the global and local

structure of the underlying data (Torgerson, 1952; Kruskal, 1964;

Kruskal and Wish, 1978; Cox and Cox, 2008; Metzner et al., 2021,

2023a, 2022).

When interpreting patterns as points in high-dimensional

space and dissimilarities between patterns as distances between

corresponding points, MDS is an elegant method to visualize high-

dimensional data. By color-coding each projected data point of a

data set according to its label, the representation of the data can be

visualized as a set of point clusters. For instance, MDS has already

been applied to visualize for instance word class distributions

of different linguistic corpora (Schilling et al., 2021b), hidden

layer representations (embeddings) of artificial neural networks

(Schilling et al., 2021a; Krauss et al., 2021), structure and dynamics

of highly recurrent neural networks (Krauss et al., 2019a,b,c;

Metzner et al., 2023b), or brain activity patterns assessed during e.g.

pure tone or speech perception (Krauss et al., 2018a; Schilling et al.,

2021b), or even during sleep (Krauss et al., 2018b; Traxdorf et al.,

2019; Metzner et al., 2022, 2023a). In all these cases the apparent

compactness and mutual overlap of the point clusters permits a

qualitative assessment of how well the different classes separate.

t-Distributed Stochastic Neighbor Embedding
(t-SNE)

This method further helped in visualizing the complex

structures within the activations by emphasizing local similarities,

allowing us to see the formation of clusters corresponding to

different Argument Structure Constructions (ASCs). t-SNE is a

frequently used method to generate low-dimensional embeddings

of high-dimensional data (Maaten and Hinton, 2008). However,

in t-SNE the resulting low-dimensional projections can be highly

dependent on the detailed parameter settings (Wattenberg et al.,

2016), sensitive to noise, and may not preserve, but rather often

scramble the global structure in data (Vallejos, 2019; Moon et al.,

2019). Here, we set the perplexity (number of next neighbors taken

into account) to 100.

Generalized Discrimination Value (GDV)

To quantify the degree of clustering, we used the GDV as

published and explained in detail in Schilling et al. (2021a). This

GDV provides an objective measure of how well the hidden layer

activations cluster according to the ASC types, offering insights into

the model’s internal representations. Briefly, we consider N points

xn=1..N = (xn,1, · · · , xn,D), distributed withinD-dimensional space.

A label ln assigns each point to one of L distinct classes Cl=1..L.

In order to become invariant against scaling and translation,

each dimension is separately z-scored and, for later convenience,

multiplied with 1
2 :

sn,d =
1

2
·
xn,d − µd

σd
. (1)

Here, µd = 1
N

∑N
n=1 xn,d denotes the mean,

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2025.1474860
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Ramezani et al. 10.3389/fncom.2025.1474860

and σd =
√

1
N

∑N
n=1(xn,d − µd)2 the standard deviation of

dimension d.

Based on the re-scaled data points sn = (sn,1, · · · , sn,D), we
calculate themean intra-class distances for each class Cl

d̄(Cl) =
2

Nl(Nl−1)

Nl−1
∑

i=1

Nl
∑

j=i+1

d(s
(l)
i , s

(l)
j ), (2)

and themean inter-class distances for each pair of classes Cl and Cm

d̄(Cl,Cm) =
1

NlNm

Nl
∑

i=1

Nm
∑

j=1

d(s
(l)
i , s

(m)
j ). (3)

Here, Nk is the number of points in class k, and s
(k)
i is the

ith point of class k. The quantity d(a,b) is the euclidean distance

between a and b. Finally, the Generalized Discrimination Value

(GDV) is calculated from the mean intra-class and inter-class

distances as follows:

GDV =
1

√
D





1

L

L
∑

l=1

d̄(Cl) −
2

L(L−1)

L−1
∑

l=1

L
∑

m=l+1

d̄(Cl,Cm)





(4)

whereas the factor 1√
D
is introduced for dimensionality invariance

of the GDV with D as the number of dimensions.

Note that the GDV is invariant with respect to a global scaling

or shifting of the data (due to the z-scoring), and also invariant with

respect to a permutation of the components in the N-dimensional

data vectors (because the euclidean distance measure has this

symmetry). The GDV is zero for completely overlapping, non-

separated clusters, and it becomes more negative as the separation

increases. A GDV of−1 signifies already a very strong separation.

Code implementation, computational
resources, and programming libraries

All simulations were run on a standard personal computer. The

evaluation software was based on Python 3.9.13 (Oliphant, 2007).

For matrix operations the numpy-library (Van Der Walt et al.,

2011) was used and data visualization was done using matplotlib

(Hunter, 2007) and the seaborn library (Waskom, 2021). The

dimensionality reduction through MDS and t-SNE was done using

the sci-kit learn library.

The models were coded in Python. The neural networks were

designed using the Keras (Chollet, 2015) and Keras-RL (Plappert,

2016) libraries. Mathematical operations were performed with

numpy (Harris et al., 2020) and scikit-learn (Pedregosa et al., 2011)

libraries. Visualizations were realized with matplotlib (Hunter,

2007) and networkX (Hagberg et al., 2008). For natural language

processing we used SpaCy (Explosion, 2017).

Results

To understand how the LSTM model differentiates between

various Argument Structure Constructions (ASCs), we visualized

the activations of its hidden layers using Multidimensional Scaling

(MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE).

Additionally, we quantified the degree of clustering using the

Generalized Discrimination Value (GDV).

Figure 1 shows the MDS projections of the activations from

all four layers of the LSTM model. Each point represents the

activation of a sentence. The initial hidden layer already shows

some separation between the different ASC types. As we move to

the second LSTM layer, the separation between ASC types becomes

more apparent, particularly with respect to the inter-cluster

distances. However, the clusters for transitive and ditransitive

sentences are closer to each other. In the third layer, the inter-

cluster distances further increase, while the clusters for transitive

and ditransitive sentences remain close to each other, indicating

that the model is learning to differentiate between the ASCs more

effectively and recognizes the similarity between transitive and

ditransitive sentences. In the final output layer, the degree of

clustering decreases slightly.

The corresponding t-SNE projections shown in Figure 2 yield

qualitatively very similar results. The initial hidden layer shows

some separation between ASC types, with increased and more

apparent separation in the second layer, particularly in inter-cluster

distances; this separation continues to improve in the third layer,

while transitive and ditransitive sentences remain similar. The final

layer shows a slight decrease in clustering degree.

To quantitatively assess the clustering quality, we calculated the

GDV for the activations of each hidden layer (cf. Figure 3). Lower

GDV values indicate better defined clusters. The qualitative results

of the MDS and t-SNE projections are supported by the GDV.

Discussion

Our study aimed to understand how a recurrent neural

language model (RNN) processes and represents different

Argument Structure Constructions (ASCs) through the lens of

cognitive computational neuroscience. Using a custom-generated

dataset of sentences exemplifying four ASC types–transitive,

ditransitive, caused-motion, and resultative–we trained an LSTM-

based model for next-word prediction. The internal activations

of the model’s hidden layers were analyzed and visualized using

Multidimensional Scaling (MDS) and t-Distributed Stochastic

Neighbor Embedding (t-SNE), with clustering quality quantified

by the Generalized Discrimination Value (GDV).

The dataset used in this study comprises 2,000 sentences

evenly distributed across four Argument Structure Constructions

(ASCs). While small by modern deep learning standards, this

dataset was deliberately designed to be syntactically controlled and

semantically minimal in order to isolate the effect of constructional

variation. Each sentence follows a tightly specified structural

template, ensuring that differences in internal representations

can be attributed primarily to ASC type rather than lexical

or semantic variability. This design enables a focused analysis

of how recurrent networks abstract over syntactic patterns

during prediction, without the confounds introduced by large-

scale corpora. As such, the current work should be viewed

as a first approximation–a proof-of-concept study establishing

the feasibility of construction-based representation in LSTMs.
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FIGURE 1

MDS projections of the activations from all four layers of the LSTM model. Each point represents the activation of a sentence, color-coded according

to its ASC type: caused-motion (blue), ditransitive (green), transitive (red), and resultative (orange).

Future studies will extend this approach using larger and

more diverse corpora, including naturalistic input and richer

semantic context.

Our analysis revealed that the model’s sentence representations

formed distinct clusters corresponding to the four ASCs in all

hidden layers. This indicates the model’s ability to differentiate

between various syntactic structures. The clustering was most

pronounced in the final hidden layer, just before the output

layer. This suggests that as the information progresses through

the layers, the model refines its understanding and separation of

different ASCs.

The emergence of distinct ASC representations in our LSTM

model aligns with previous studies that observed the formation of

word class and syntax rule representations in recurrent language

models trained on next-word prediction tasks (Surendra et al.,

2023). This consistency across studies reinforces the idea that even

relatively simple, brain-constrained neural network architectures

(Pulvermüller, 2023) like LSTMs can capture complex syntactic

structures inherent in natural language.

Our findings suggest that recurrent neural networks can

serve as effective computational analogs for studying linguistic

processing in the human brain. The ability of the LSTM model to

differentiate between ASCs supports the notion that similar neural

mechanisms might be at play in human language comprehension.

The pronounced clustering in the final hidden layer hints at

a hierarchical processing structure, where initial layers capture

basic features, and subsequent layers integrate and refine these

features into more complex representations. This parallels theories

of hierarchical processing in the human brain (Golestani, 2014;

Badcock et al., 2019; Raut et al., 2020).
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FIGURE 2

t-SNE projections of the activations from all four layers of the LSTM model. Each point represents the activation of a sentence, color-coded

according to its ASC type: caused-motion (blue), ditransitive (green), transitive (red), and resultative (orange).

Limitations and future work

In recent years, transformer-based models like BERT have

significantly advanced our understanding of Argument Structure

Constructions (ASCs) in natural language processing. However,

these models present certain limitations. For instance, studies have

shown that transformers struggle with tasks requiring function

composition and hierarchical structure processing, which are

essential for accurately modeling complex linguistic patterns.

Additionally, the high computational demands and resource-

intensive nature of training transformer models pose practical

challenges. Furthermore, while BERT has demonstrated the ability

to capture ASC representations, there is a need to explore how

models with different architectures, particularly those that are more

biologically plausible, process these constructions (Pulvermüller

et al., 2021). Our study addresses these gaps by investigating how

a recurrent neural network (LSTM) represents and processes ASCs,

offering insights into alternative modeling approaches that may

overcome some of the limitations associated with transformer-

based models.

Our custom dataset, while carefully generated and balanced, is

limited to 2000 sentences and four specific ASCs. Future studies

could expand the dataset to include a wider variety of constructions

and larger sentence pools to ensure generalizability.

Furthermore, our model used word IDs instead of embeddings,

focusing on syntactic structures without semantic information.

Incorporating pre-trained word embeddings (Almeida and

Xexéo, 2019) in future studies could provide a more holistic

view of how semantic and syntactic information interact in

neural representations.
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FIGURE 3

GDV score of hidden layer activations. Note that, lower GDV values

indicate better-defined clusters. The qualitative results from the

MDS and t-SNE projections are underpinned by the GDV with best

clustering occurring in layer 3.

While our computational findings are promising, they need

to be validated against empirical neuroimaging data. Comparing

the LSTM’s internal representations with brain activation patterns

during continuous speech perception (Schilling et al., 2021b;

Schüller et al., 2023; Garibyan et al., 2022) could provide

deeper insights into the neural correlates of ASC processing.

Techniques like EEG and MEG could be used to collect neural

data during language tasks (Schüller et al., 2024), enabling a direct

comparison with the model’s activations using techniques such as

representational similarity analysis (Kriegeskorte et al., 2008). This

would help bridge the gap between computational models and

real-world brain function (Meeter et al., 2007; Kriegeskorte and

Douglas, 2018).

Although LSTMs are effective, they represent an earlier

generation of neural network architectures (Hochreiter and

Schmidhuber, 1997). Exploring more advanced models, such as

transformers (Vaswani et al., 2017), could provide additional

insights into the processing and representation of ASCs (Goldberg,

1995, 2006). Transformers, with their attention mechanisms, might

offer a more nuanced understanding of how different constructions

are represented and processed, potentially revealingmore about the

interaction between different levels of linguistic information.

While MDS and t-SNE are valuable tools for visualizing

internal representations of high-dimensional neural activations,

they also introduce potential artifacts. MDS is parameter-free and

preserves global pairwise distances, but dimensionality reduction

can still distort relationships when projecting from hundreds

of dimensions to two. t-SNE, conversely, focuses on preserving

local neighborhood structure but often exaggerates inter-cluster

separations and is sensitive to hyperparameter choices (e.g.,

perplexity). To ensure the robustness of our findings, we used

both methods in parallel and verified that the observed clustering

patterns were consistent across projections. More importantly, we

calculated the Generalized Discrimination Value (GDV) directly

in the original high-dimensional space, providing a quantitative

measure of class separability unaffected by projection. This

combination of techniques allowed us to validate the existence

of construction-specific structure in the hidden layers beyond the

limitations of any single method.

While our results show that a recurrent neural network

trained on syntactically controlled input can develop internal

representations that distinguish between different Argument

Structure Constructions (ASCs), it is important to explicitly

acknowledge the theoretical and neurobiological limitations of the

modeling approach employed. Long Short-Term Memory (LSTM)

networks, though widely used in cognitive modeling, diverge

in several critical ways from the neural mechanisms underlying

language processing in the human brain. LSTMs process input

in discrete time steps and store information via artificial gating

mechanisms, which – though functionally useful – are not based

on known neurophysiological processes. Unlike biological systems,

LSTMs do not operate through distributed population codes,

spiking dynamics, or anatomically grounded connectivity patterns.

Moreover, the architecture does not inherently support hierarchical

compositionality, incremental parsing strategies, or top-down

predictive mechanisms that are central to contemporary neuro-

cognitive models of language comprehension.

For these reasons, we do not interpret our results as a

biologically faithful account of how ASCs are processed in

the human brain. Instead, our aim was to explore whether

meaningful structural differentiation – akin to grammatical

construction types– can emerge from sequence learning alone

under carefully controlled input conditions. The choice to use

LSTM, rather than more biologically plausible models, was

motivated by a desire for architectural simplicity, interpretability,

and compatibility with prior work in both natural language

processing and cognitive modeling. We see this study as a

computationally constrained, first-step analysis designed to isolate

construction-specific representations in the absence of semantic

and contextual confounds. Importantly, this approach enables

hypothesis generation regarding which features of linguistic

structure are likely to emerge under predictive pressure and

which may require stronger inductive biases or interaction with

semantic knowledge.

Future work will aim to bridge this gap more directly

by integrating human data into the modeling framework.

Specifically, we plan to conduct cross-validation using empirical

benchmarks such as EEG or MEG data collected during sentence

comprehension tasks involving argument structure variation.

Techniques like representational similarity analysis (RSA) can

then be used to compare neural activation patterns with model-

internal representations across time. Such efforts will allow us

to evaluate the extent to which recurrent or transformer-based

models approximate human linguistic processing at the algorithmic

and representational levels. Ultimately, we believe that meaningful

progress in cognitive computational neuroscience requires this

kind of hybrid methodology – where computational models are

not only interpretable but also grounded in empirical data from

the brain. Our current findings offer a stepping stone toward

that goal by showing that construction-specific representations

can emerge even in relatively simple models trained under

syntactic constraints.
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Conclusion

Our study demonstrates that even a relatively simple LSTM-

based recurrent neural network can effectively differentiate

between various Argument Structure Constructions, mirroring

some aspects of human linguistic processing. The distinct clustering

of sentence representations suggests that the model captures

essential syntactic structures, supporting its use as a computational

tool in cognitive neuroscience. Future work should aim to

validate these findings with larger datasets and neuroimaging data,

and explore the capabilities of more advanced neural network

architectures. By doing so, we can further our understanding of the

computational and neural mechanisms underlying cognition and

language processing in brains, minds and machines (Tuckute et al.,

2024; Schilling et al., 2023).
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