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Retinal imaging, used for assessing stroke-related retinal changes, is a non-invasive 
and cost-effective method that can be enhanced by machine learning and deep 
learning algorithms, showing promise in early disease detection, severity grading, 
and prognostic evaluation in stroke patients. This review explores the role of artificial 
intelligence (AI) in stroke patient care, focusing on retinal imaging integration into 
clinical workflows. Retinal imaging has revealed several microvascular changes, 
including a decrease in the central retinal artery diameter and an increase in 
the central retinal vein diameter, both of which are associated with lacunar 
stroke and intracranial hemorrhage. Additionally, microvascular changes, such 
as arteriovenous nicking, increased vessel tortuosity, enhanced arteriolar light 
reflex, decreased retinal fractals, and thinning of retinal nerve fiber layer are also 
reported to be associated with higher stroke risk. AI models, such as Xception 
and EfficientNet, have demonstrated accuracy comparable to traditional stroke 
risk scoring systems in predicting stroke risk. For stroke diagnosis, models like 
Inception, ResNet, and VGG, alongside machine learning classifiers, have shown 
high efficacy in distinguishing stroke patients from healthy individuals using retinal 
imaging. Moreover, a random forest model effectively distinguished between 
ischemic and hemorrhagic stroke subtypes based on retinal features, showing 
superior predictive performance compared to traditional clinical characteristics. 
Additionally, a support vector machine model has achieved high classification 
accuracy in assessing pial collateral status. Despite this advancements, challenges 
such as the lack of standardized protocols for imaging modalities, hesitance 
in trusting AI-generated predictions, insufficient integration of retinal imaging 
data with electronic health records, the need for validation across diverse 
populations, and ethical and regulatory concerns persist. Future efforts must 
focus on validating AI models across diverse populations, ensuring algorithm 
transparency, and addressing ethical and regulatory issues to enable broader 
implementation. Overcoming these barriers will be essential for translating this 
technology into personalized stroke care and improving patient outcomes.
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1 Introduction

Stroke is the second leading cause of mortality and the third most 
prevalent cause of disability globally, with 800,000 incidents annually 
in the US and a global mortality rate of approximately 5.5 million per 
year (Ovbiagele and Nguyen-Huynh, 2011; Roger et al., 2011). This 
condition arises from disrupted blood flow to the brain, either due to 
a blocked cerebral artery, leading to ischemic stroke (IS), which 
accounts for 87% of cases, or a ruptured artery, resulting in 
hemorrhagic stroke (HS), responsible for 10% of cases (Coupland 
et al., 2017). The prevalence of stroke is increasing, largely driven by 
demographic shifts such as extended life expectancy and the 
widespread adoption of high-risk lifestyle behaviors (Shafaat et al., 
2022). Early prediction and prevention are crucial for mitigating this 
escalating global health challenge (Pandian et al., 2018).

The brain and retina share anatomical and physiological 
similarities due to their common embryological origin, both deriving 
from the neuroectoderm layer during embryonic development 
(London et al., 2013; Chua et al., 2021; Zhang Y. et al., 2022). These 
shared characteristics make the retina a valuable non-invasive tool for 
investigating the central nervous system (CNS) (Cheung et al., 2010). 
As a result, changes in retinal morphology, such as thinning of the 
retinal nerve fiber layer (RNFL) and retinal ganglion cell layer 
(RGCL), are strongly linked to neurological disorders like Alzheimer’s 
disease (Kesler et al., 2011; Cheung et al., 2014; Thomson et al., 2015; 
den Haan et  al., 2017), Parkinson’s disease (Bodis-Wollner, 1990; 
Ortuño-Lizarán et  al., 2018; Zhang Y. et  al., 2022), and multiple 
sclerosis (Walter et al., 2012; Petzold et al., 2017; Pawlitzki et al., 2020). 
Stroke incidence and mortality have also been associated with retinal 
microvascular anomalies, including increased vessel tortuosity and 
arteriovenous nicking (Cheung et al., 2010; Cheung et al., 2017; Zhang 
Y. et al., 2022; Girach et al., 2024). These retinal changes can reflect the 
health of cerebral vessels and may serve as early indicators of stroke 
risk (Bodis-Wollner, 1990; Masugata et al., 2010; Kesler et al., 2011; 
Walter et al., 2012; Cheung et al., 2014; Thomson et al., 2015; Cheung 
et al., 2017; den Haan et al., 2017; Petzold et al., 2017; Ortuño-Lizarán 
et al., 2018; Pawlitzki et al., 2020; Girach et al., 2024). Furthermore, 
stroke risk factors such as hypertension (HTN), diabetes mellitus 
(DM), and atherosclerosis can adversely affect the retinal vasculature. 
These conditions often lead to hypertensive retinopathy, diabetic 
retinopathy (DR), and retinal vessel occlusions, which can serve as 
early indicators of CNS vascular diseases, including stroke (Klein 
et al., 2000; Masugata et al., 2010).

In order to stratify the risk of stroke occurrence in various 
patients, scoring checklists have been created, including Framingham 
Risk Score (FRS), CHA2DS2-VASc, ASCVD risk estimator, ATRIA, 
and Essen stroke risk scores. FRS combines the impact of age, sex, 
and baseline measurements of various vascular risk factors, including 
systolic blood pressure, the use of antihypertensive medications, the 
presence or absence of left ventricular hypertrophy on 
electrocardiography, pre-existing cardiovascular disease, current or 
previous atrial fibrillation (AF), current smoking status, and DM 
(Dufouil et  al., 2017; Youssef et  al., 2024). The CHA2DS2-VASc 
scoring system assigns 1 point to each condition: HTN, vascular 
disease, DM, age 65–74, and female sex. It awards 2 points for a 
history of stroke, transient ischemic attack (TIA), or 
thromboembolism and 2 points for age 75 and above. Nonetheless, 
none of these scoring systems consider specific organ changes, such 

as those in the retina, when calculating stroke risk (Olesen et al., 
2012; Cetin et al., 2014; Jia et al., 2018). While neuroimaging provides 
direct evidence of brain health, it is often resource-intensive, 
expensive, and primarily used for diagnostic purposes rather than 
routine stroke risk prediction (Karthik et  al., 2020). In contrast, 
retinal imaging offers a non-invasive, cost-effective, and accessible 
alternative, allowing for early detection of stroke risk through the 
assessment of retinal vascular changes that correlate with 
cerebrovascular health (Girach et al., 2024). Neuroimaging is critical 
for diagnosing established cerebrovascular conditions; however, 
retinal imaging can be  used for ongoing preventive screening, 
especially in settings where advanced neuroimaging techniques are 
less accessible, making it an ideal tool for large-scale stroke risk 
assessment. Moreover, the modalities assessing the retina could 
be more advantageous if their outputs were combined with existing 
data on systemic changes induced by stroke risk factors and the latest 
neuroimaging techniques.

Retinal imaging presents a viable alternative to traditional 
neuroimaging methods like magnetic resonance imaging (MRI) 
and computed tomography (CT) for stroke risk assessment, 
primarily due to its non-invasive nature, accessibility, and cost-
effective nature. Unlike MRI and CT scans, which require 
sophisticated infrastructure, retinal imaging can be performed with 
portable devices, making it more accessible, especially in resource-
limited settings (Cheung et al., 2017; Pachade et al., 2022; Girach 
et  al., 2024). Additionally, conducting frequent, and repeatable 
retinal assessments facilitates ongoing monitoring and early 
intervention, which are crucial for stroke prevention (Cheung et al., 
2012; Pachade et al., 2022).

Advancements in artificial intelligence (AI) have opened new 
frontiers in medical imaging in recent years, particularly in stroke risk 
prediction and diagnosis (Daich Varela et al., 2023; Chakraborty et al., 
2024). AI’s ability to process and analyze vast amounts of data allows 
it to uncover patterns that might be imperceptible to the human eye, 
making it a powerful tool for early disease detection. AI techniques 
have shown promise in enhancing the analysis of retinal images by 
improving image quality through processes like denoising, artifact 
reduction, precise segmentation, and classification of retinal features 
(Ali et al., 2020; Yedavalli et al., 2021). These advancements span a 
range of applications for stroke, from stroke risk stratification and 
diagnosis (Arbabshirani et al., 2018; Ni et al., 2018) to severity grading 
(Kogan et al., 2020; Park et al., 2020), personalized treatment planning 
(Quandt et al., 2023; Yao et al., 2023), prognosis (Bentley et al., 2014; 
Ramos et al., 2019; Zihni et al., 2020; Dengler et al., 2021; Lee et al., 
2023), and evaluation of rehabilitation programs (Chae et al., 2020; 
Scrutinio et al., 2020; Campagnini et al., 2022; Guo et al., 2022; Zu 
et al., 2023).

This narrative review aims to explore the evolving role of AI in 
stroke patient care, with a particular focus on retinal imaging. We will 
highlight how AI can be integrated into clinical workflows to improve 
patient outcomes and propose strategies for addressing the challenges 
associated with this novel approach. To better understand the role of AI 
and retinal imaging in stroke, we  will first summarize the retinal 
imaging techniques and AI models that were used. Then we will review 
the reported retinal changes related to stroke or stroke risk factors. 
Finally, we  will overview the studies that used AI in stroke risk 
assessment and prognosis. Through this review, we seek to underscore 
the importance of continued research and innovation in the intersection 
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of AI, retinal imaging, and stroke care, ultimately contributing to better 
health outcomes for patients at risk of stroke (Figure 1).

2 Methods

A comprehensive search was done on PubMed, Scopus, and 
Embase databases to find the relevant studies until July 2024. The used 
search terms were “artificial intelligence,” “deep learning,” “machine 
learning,” “stroke,” “retinal imaging,” “optic coherent tomography,” 
“retinal fundoscopy,” “ischemic stroke,” “hemorrhagic stroke,” 
“diagnosis,” and “prognosis.” In selecting articles for inclusion in our 
study, we focused on peer-reviewed original research published in 
English that clearly defined research objectives, employed rigorous 
methodologies, and investigated the use of different AI methods to 
analyze retinal images and use that data for risk assessment or 
diagnosis of stroke. We excluded non-peer-reviewed articles, those of 

low quality, studies with unclear research goals, duplicates, editorial 
articles, and conference abstracts.

3 The retina and retinal imaging

Different diseases affecting the retina can impose varying degrees 
of pattern distortions and dysfunctions in the retinal vasculature, 
changes in the thickness of the nerve fiber layer or ganglion cell layer, 
or cause pathologies in the optic disc, optic nerve head, or macula. 
Pathologic conditions will affect the thickness of different layers or the 
vasculature of the retina. Some of these conditions increase the risk of 
stroke and identifying them can help assess the patients’ risk for future 
stroke. DR, hypertensive retinopathy, central venous thrombosis 
(CVT), hyperhomocysteinemia, and systemic vasculitis are some of 
these conditions (Henderson et al., 2011; Gascon et al., 2018; Kunle-
Hassan et al., 2018; Johannesen et al., 2019).

FIGURE 1

Graphical abstract showing the use of AI in analyzing retinal images (Fundus, Optical Coherence Tomography (OCT), and Optical Coherence 
Tomography Angiography (OCTA) for stroke risk assessment, diagnosis, and outcome prediction, ultimately contributing to patient outcome evaluation 
and risk assessment reporting.
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DR, as an adverse effect of DM affecting the retinal vessels, results 
in retinal changes, including microaneurysm and vessel wall leakage 
leading to focal and diffuse macular edema, respectively, (Bazargani 
et al., 2024; Sakini et al., 2024). Additionally, neovascularization of the 
optic disk and retina, retinal vessel hemorrhage in moderate to severe 
non-proliferative DR (NPDR), and thickening of RNFL are the other 
changes observed in DR (Chen et al., 2016; Johannesen et al., 2019; 
von Hanno et al., 2022). Hypertensive retinopathy, which can be used 
as a predictor of microvascular damage to the brain, presents as 
decreased capillary density, retinal arterial constriction, and 
hyperplasia of all arterial layers in early stages followed by an arterial 
dilation and plasma leak into the retina. This event is known as the 
exudative phase and could lead to vessel rupture and retinal bleeding. 
Arteriovenous nicking and cotton wool spots are other frequently seen 
abnormalities in the ophthalmoscopic examination of hypertensive 
retinopathy patients (Henderson et al., 2011; Johannesen et al., 2019; 
Tan et al., 2021). The retinal changes secondary to CVT are mostly 
RNFL and macular thinning. These changes result from increased 
intracranial pressure due to impaired venous return and can occur in 
CVT patients without papilledema on ophtalmoscopy (Koban et al., 
2019). Additionally, case reports have described retinal hemorrhage 
as a secondary effect of CVT (Hauser et al., 1996; Kunle-Hassan et al., 
2018). Systemic vasculitis syndromes can affect the retina primarily 
due to the underlying inflammatory changes in retinal vasculature. 
These conditions, including systemic lupus erythematosus (SLE), are 
often characterized by reduced vessel density and an enlarged foveal 
avascular zone, typically associated with venous and arterial occlusions 
leading to ischemia, hemorrhage, and cotton wool spots observed 
during fundoscopy (Gascon et  al., 2018; Ji et  al., 2022). 
Hyperhomocysteinemia, a metabolic condition that damages the 
endothelium, has been linked to retinal changes, including retinal 
pigment epithelium (RPE) disruption and retinal artery and vein 
occlusions (Wright et al., 2008; Lee et al., 2018; Figure 2).

Color Fundus Photography (CFP) and Optical Coherence 
Tomography (OCT) are critical non-invasive imaging modalities used 
to assess retinal microvasculature, with significant potential in 
predicting cerebrovascular events such as stroke (Raja et al., 2020; 
Watanabe et al., 2022). CFP captures two-dimensional retinal images 
using visible light, but its utility is constrained by limitations in image 
resolution and depth perception (Critser et al., 2024). Conversely, 
OCT utilize low-coherence interferometry to produce high-
resolution, cross-sectional images of the retina and choroid, enabling 
precise quantitative analyses of retinal layers and three-dimensional 
structural evaluations (Aumann et al., 2019; Watanabe et al., 2022). 
OCT’s relevance in neurology is profound, with specific modalities 
such as RNFL-OCT, Ganglion Cell Complex OCT (GCC-OCT), 
macular OCT, and anterior segment OCT playing a pivotal role in 
detecting neurodegenerative changes, including optic nerve fiber 
degradation, ganglion cell loss, macular distortions, and anterior 
segment abnormalities such as papilledema (Kardon, 2011; Querques 
et al., 2019; Santorini et al., 2022). OCT angiography (OCTA) further 
extends these capabilities by utilizing motion contrast from blood 
flow to create detailed visualizations of retinal and choroidal vascular 
networks, offering a non-invasive means to study microvascular 
pathology at a capillary level (de Carlo et al., 2015; Rocholz et al., 
2019). Despite these advancements, OCT and OCTA are limited by 
their narrower fields of view compared to CFP and involve higher 
operational costs (Niederleithner et al., 2022). On the other hand, 

Spectral-Domain OCT (SD-OCT) captures superior images more 
readily and uses a broadband multichromatic beam in order to detect 
complicated interference patterns to acquire high-quality dynamic 
images of the ocular structures (Hassenstein and Meyer, 2009). 
Swept-source OCT (SS-OCT), building on SD-OCT’s advantages, 
yields heightened sensitivity and decreased signal-to-noise ratio in 
deeper retinal layers (Baumann et al., 2012).

The integration of AI into retinal imaging represents a paradigm 
shift in the field, with advanced AI-driven tools like quantitative 
analysis of retinal vessel topology and size (QUARTZ) (Rudnicka 
et al., 2022) and Automatic retinal image analysis (ARIA) (Qu et al., 
2022), as well as deep learning (DL) algorithms such as U-net 
(Ronneberger et al., 2015), IterNet (Li et al., 2020), and OCTA-Net 
(Ma et al., 2021), significantly enhancing the segmentation of vascular 
structures and extracting critical parameters, including vessel 
diameter, density, tortuosity, and fractal dimension.

4 Frequently used AI models in the 
stroke and retinal imaging confluence

4.1 Machine learning models

Nowadays, AI is increasingly used for tasks that involve handling 
large datasets, automating repetitive functions, and ensuring 
consistency in categorization, classification, and prediction (Duan 
et  al., 2019; Roh et  al., 2021). Machine learning (ML) and deep 
learning (DL), key subfields of AI, are essential for enhancing medical 
image analysis (Burlina et  al., 2019). In contrast to traditional AI 
methodologies, which depend on static, predefined algorithms, ML 
operates autonomously, identifying patterns within data and 
continuously refining its models without explicit programming (Gao 
et al., 2024). In the context of retinal and neuroimaging, ML can be 

FIGURE 2

Schematic fondus illustration of retinal changes following a stroke. 
A, papilledema; B, macula; C, cotton wool spots; D, arteriovenous 
nicking; E, arteriolar narrowing; F, retinal hemorrhage; G, venous 
congestion; H, microaneurysms.
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used to delineate regions of interest within the images or classify them 
into specific categories, such as non-ischemic, IS, or HS images, aiding 
diagnosis and treatment planning (Mariano et al., 2022; Qu et al., 
2022). Supervised ML involves training a model to map input features 
to corresponding output labels or values. Support vector machine 
(SVM), naive Bayes (NB), random forest (RF), k-nearest neighbor 
(KNN), and decision tree (DT) are the commonly featured ML 
structures in stroke and retinal imaging research topics.

KNN has been widely used for classifying types of strokes from 
neuroimaging data (Dourado et al., 2019), vessel segmentation (R and 
Balasubramanian, 2018; Rehman et al., 2022), detection of exudates 
(Ghalwash et al., 2017), and microaneurysms (Walter et al., 2007; 
Schmidt-Erfurth et  al., 2018) in retinal images. Based on Bayes’ 
theorem, the NB Classifier calculates the probability of a hypothesis 
(or class) given the evidence (or features). Despite its simplicity, NB is 
commonly employed when computational efficiency and simplicity 
are prioritized and the assumption of feature independence is not too 
far from reality (Vikramkumar et al., 2014; Raschka, 2017). It has been 
used for segmenting ischemic lesions (Griffis et al., 2016), detecting 
cerebral microbleeds (Ateeq et  al., 2023), post-stroke cognitive 
impairment (Ji et al., 2023), and predicting stroke reoccurrence (Wang 
et al., 2023; Gao et al., 2024).

SVM determines the optimal hyperplane decision boundary, 
effectively delineating binary classes, with the data points closest to this 
boundary termed support vectors. SVM approaches have been applied 
extensively in medical imaging for segmenting targets in CFP and 
OCT images such as vessels (Zawadzki et al., 2007; Ghalwash et al., 
2017; Ghosh and Ghosh, 2021), microaneurysms (Veiga et al., 2018; 
Derwin et al., 2022), hard exudates (Jaya et al., 2015), drusen (Khalid 
et al., 2018), fovea (Liu et al., 2012), and neovascularization (Yu et al., 
2016; Schmidt-Erfurth et al., 2018). In stroke management, SVM has 
been utilized to locate large vessel occlusions in neuroimaging data and 
predict stroke outcomes with or without endovascular treatment (van 
Os et al., 2018; Nishi et al., 2019; Fang et al., 2020; Rava et al., 2020).

DTs organize data into hierarchical tree-like structures suitable for 
decision-making in stroke management in a clinical setting. However, 
it has limitations such as overfitting, sensitivity to minor fluctuations 
in the data, and bias toward features with more levels (Quinlan, 1986; 
Song and Lu, 2015). To overcome the challenges of individual DTs and 
enhance predictive accuracy, ensemble methods combine multiple 
relatively weak DTs to form a robust ensemble model. RFs train each 
tree independently and in parallel, utilizing a random subset of the 
data through bootstrapping. Subsequently, predictions from individual 
trees are aggregated to produce the final prediction (Breiman, 2001; 
Schonlau and Zou, 2020). RFs have been used for the segmentation of 
retinal layers (Lang et al., 2013), drusen (van Grinsven et al., 2013), 
pseudodrusen (van Grinsven et al., 2015), exudates (Liu et al., 2011), 
and geographic atrophy (Feeny et al., 2015; Schmidt-Erfurth et al., 
2018). In the context of stroke, RF has been applied to segment and 
measure cerebrospinal fluid volume (Dhar et al., 2018) and ischemic 
lesions (Mitra et al., 2014), estimate penumbra volume (McKinley 
et al., 2017), predict long-term stroke outcomes (van Os et al., 2018; 
Heo et  al., 2019; Fernandez-Lozano et  al., 2021), and design 
personalized upper extremity rehabilitation (Camardella et al., 2022).

In contrast to RF, Gradient Boosting and AdaBoost adopt a 
sequential approach, where DTs are constructed sequentially to rectify 
errors made by preceding trees. Gradient Boosting focuses on 
minimizing a loss function by adjusting predictions of each successive 

tree to correct residuals left by previous trees (Natekin and Knoll, 
2013). They have also been utilized for the detection of intravascular 
filling defects on fluorescein angiogram images (Zhao et al., 2015), 
quantification of choroidal neovascularization (Tsai et al., 2011), and 
identification of DR (Jiang et al., 2019).

Multilayer perceptron (MLP) serves as foundational architectures 
for more advanced neural networks such as convolutional neural 
networks (CNNs), and recurrent neural networks (RNNs). MLP 
introduces nonlinearity into the network via the use of non-linear 
activation functions such as sigmoid, hyperbolic tangent (tanh), and 
rectified linear units (ReLU) (Murtagh, 1991; Popescu et al., 2009). 
MLPs have been used for the assessment of retinal vascular branching 
(Atagun et al., 2022), segmentation of hard exudates (García et al., 
2009), as well as predicting hemorrhagic transformation in MRI 
images (Elsaid et  al., 2022) and identifying stroke mimics in 
prehospital triage (Zhang Z. et al., 2022).

4.2 Deep learning models

DL draws inspiration from complex neural networks found in the 
human brain, consisting of many interconnected layers of nodes 
(neurons) in its well-designed hidden layers, with each node receiving 
weighted input from nodes in the previous layer, performing 
predefined activation function on the data and sending output to 
neurons in the next layer (Han et al., 2018). It excels at acquiring 
hierarchical data representations through multiple layers of 
abstraction, drawing non-linear mapping from features to outcomes. 
Among the different types of DL algorithms, including autoencoders, 
generative adversarial networks (GANs), CNN, and RNN, CNNs are 
the most frequently used DL infrastructures.

CNNs are tailored to excel in tasks such as feature extraction, 
image classification, object detection, and image segmentation (Xu and 
Zhang, 2022; Derry et al., 2023). The CNN algorithm, as its name 
implies, utilizes a process called convolution. Feature extraction begins 
by applying convolution (filter multiplication) to the input data, 
yielding feature maps. Subsequently, the resulting feature maps 
undergo a non-linear activation function, typically ReLU, followed by 
pooling to reduce spatial dimensions and enhance computational 
efficiency, thereby preserving essential features while mitigating 
overfitting. The pooling stage also increases the field of view of 
convolutional kernels and encourages learning more abstract and 
global features. The flattened data derived from the feature extraction 
stage is then channeled into a fully connected neural network for 
classification. Herein, the network learns to differentiate between 
different classes based on the extracted features. An activation function 
and a corresponding loss function are applied in the final classification 
stage (Xu and Zhang, 2022; Derry et al., 2023). CNN architectures such 
as VGG (Simonyan and Zisserman, 2015), Inception (Szegedy et al., 
2016), Xception (Extreme Inception) (Chollet, 2017), and U-Net 
(Ronneberger et al., 2015) are notable in retinal and stroke imaging.

While VGG is acknowledged for its architectural 
straightforwardness and performance using compact 3×3 filter sizes 
supplemented by max-pooling layers for spatial down sampling, its 
deep configuration results in notable computational and memory 
requirements during training and evaluation. These demands could 
impede practical deployment in real-world applications (Simonyan 
and Zisserman, 2015; Szegedy et al., 2016). Despite this, it has been 
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adopted for various tasks, such as the detection of DR (Ting et al., 
2017), differentiation of active corneal ulcers from healed scars 
(Tiwari et al., 2022), stroke classification from MRI and CT images 
(Szegedy et al., 2016; Chen Y.-T. et al., 2022; Abbaoui et al., 2024), and 
prediction of functional outcomes of stroke (Lai et  al., 2022). In 
contrast to VGG, Inception, by applying an additional 1×1 filter and 
substituting fully connected layers with a global average pooling layer, 
balances computational efficiency and model performance, making 
Inception networks well-suited for scenarios with restricted 
computational resources and extensive datasets. Inception-v3 further 
refines this approach, by replacing larger convolutions with 
combinations of smaller ones, reducing parameters and computational 
complexity while maintaining performance standards (He et al., 2016; 
Szegedy et al., 2016). Additionally, Xception further decomposes the 
convolution operation into smaller, more manageable components, 
fostering parameter sharing within  localized regions of the input 
rather than across the entire dataset (Chollet, 2017).

ResNet addresses the vanishing gradient problem by introducing 
skip or residual connections, empowering the training of very deep 
(especially over 50 layers) networks without suffering from 
performance degradation typically associated with increased depth. 
However, this advancement comes at the expense of heightened 
computational requirements and increased susceptibility to overfitting 
specially when the model is trained on smaller datasets (Ebrahimi and 
Abadi, 2021). Nonetheless, the availability of pre-trained ResNet 
models simplifies transfer learning (TL) for various applications (He 
et al., 2016).

The U-Net architecture is distinguished by its U-shaped structure 
arising from the symmetrical arrangement of its contraction (encoding) 
and expansion (decoding) paths. Additional connections between 
encoder and decoder layers allow images to be processed at different 
levels of abstraction. It has garnered extensive application in medical 
image segmentation and detection tasks, even when confronted with 
limited training data (Ronneberger et al., 2015; Hemelings et al., 2019). 
ReLayNet, a variant inspired by U-Net, has achieved accurate 
segmentation of seven retinal layers and associated fluid in pathological 
OCT scans (Roy et al., 2017; Schmidt-Erfurth et al., 2018).

IterNet (Li et  al., 2020) and OCTA-Net (Ma et  al., 2021) are 
specialized architectures tailored for retinal vessel segmentation in CFP 
and OCTA images. IterNet incorporates multiple iterations of a mini-
UNet architecture, resulting in a network that is 4 times deeper. 
Conversely, OCTA-Net utilizes ResNet as its backbone architecture. 
Both IterNet and OCTA-Net have demonstrated slight improvements 
in performance compared to their foundational CNN algorithms, such 
as U-Net and Residual U-Net, in retina vessel segmentation tasks. 
Specifically, IterNet achieved an area under the curve (AUC) of 0.981, 
outperforming U-Net (AUC = 0.975) and Residual U-Net 
(AUC = 0.977). Similarly, OCTA-net achieved an AUC of 0.937, 
surpassing U-Net (AUC = 0.903) and Residual U-Net (AUC = 0.910) 
(Li et al., 2020; Ma et al., 2021).

Databases like the UK Biobank, Retinal OCTA Segmentation 
dataset (ROSE), and Anatomical Tracings of Lesions After Stroke 
(ATLAS) provide essential resources for training DL models; however, 
limited sample sizes present a significant challenge in their 
development (Liew et al., 2018; Ashayeri et al., 2024a). TL addresses 
this issue by utilizing a pre-trained model for one task, which is then 
adapted for a second task. TL has been shown to enhance model 
performance while reducing the need to increase the sample size 

(Chen J. et al., 2022; Ashayeri et al., 2024b). The GAN is a method that 
uses two CNN models: one generator and one discriminator. The 
generator creates images that mimic the original images, and the 
discriminator tries to identify the original images from fake images. 
The trained generator in GAN can be useful in tasks such as increasing 
image quality. However, the memory requirements of this method are 
high (Wang et al., 2021).

5 Retinal biomarkers in stroke

Retinal changes associated with stroke can be divided into two 
categories: those caused by stroke risk factors and those that indicate 
stroke risk independently of known risk factors. The latter category 
includes changes observed in stroke patients without any known risk 
factors and can serve as a tool for future stroke risk assessment 
(Cheung et al., 2013; Boehme et al., 2017; Reza et al., 2024). Identifying 
these changes can help researchers develop models to assess them in 
suspected patients. Recognizing these biomarkers with AI methods 
can lead to faster and more accurate stroke management.

Notably, a decrease in the central retinal artery (CRA) diameter 
and an increase in the central retinal vein (CRV) diameter are 
associated with both lacunar stroke and intracranial hemorrhage 
(Cheung et  al., 2017). Specifically, a systematic review and meta-
analysis involving 12,919 subjects demonstrated that decreased CRA 
diameter and increased CRV diameter resulted in hazard ratios (HR) 
of 1.18 (1.04–1.34) and 1.20 (1.10–1.31), respectively, for stroke (Girach 
et al., 2024). AI models, such as SVM-based models, can accurately 
detect the vessel diameter based on the retinal images and use the 
information to differentiate the high-risk vs. low-risk group (Barkana 
et al., 2017). Increased vessel tortuosity, arteriovenous nicking, and 
enhanced arteriolar light reflex have also been reported in stroke 
patients (Cheung et al., 2017). A study showed that straighter retinal 
arterioles was co-related with stroke risk (HR = 0.38); however, this 
linkage lost its significance when arteriolar tortuosity was considered 
as a continuous variable (Cheung et  al., 2013). Decreased retinal 
fractals are also reported to be associated with stroke (odds ratio (OR): 
1.85–2.28) (Wu et al., 2017). Additionally, according to Ong et al., the 
arteriolar network has been suggested to have a stronger association 
with stroke in comparison to the venular network (OR: 2.28 vs. 1.8) 
(Ong et  al., 2013a). Even after controlling for conventional 
cardiovascular risk factors, Liew et al. report an HR of 1.26 for stroke 
as retinal fractal decreases (Liew et al., 2021). Models that excel at 
image segmentation and feature extraction, such as CNN, may have an 
advantage in detecting venous form arterioles and degree of 
vessel tortuosity.

A study in patients with type 2 DM reveals that a higher fractal 
dimension is associated with a lower risk of stroke (Sandoval-Garcia 
et al., 2021). RNFL defects are indicators of acute or previous stroke 
in IS patients (Wang et al., 2014; Liang et al., 2022). Retinal vessel 
occlusion, such as central retinal artery occlusion (CRAO), central 
retinal venous occlusion (CRVO), and branch retinal vein occlusion 
(BRVO), are independent predictors of stroke due to their embolic 
origins (Dumitrascu and Koronyo-Hamaoui, 2020; Rim et al., 2020). 
Microvascular changes like arteriovenous nicking, arterial narrowing, 
and venous dilation are especially associated with lacunar infarction 
and higher stroke risk by two to threefold (Dumitrascu and Koronyo-
Hamaoui, 2020). In contrast to these findings, another study reports 
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severe arteriovenous nicking is associated with lobar ICH compared 
to lacunar infarcts (Baker et al., 2010).

Several diseases are proposed to alter the risk of cerebrovascular 
accident (CVA), and concomitantly affect the retina. Some of these 
risk factors are closely associated with metabolic syndrome, like high 
body mass index (BMI), DM, smoking, HTN, and 
hyperhomocysteinemia. Smoking and high BMI are associated with 
RNFL thinning (Yang et al., 2019; Salehi et al., 2022), and are also risk 
factors for DM and HTN. A study, which utilized dual-energy X-ray 
absorptiometry to measure body fat also reported no thinning in the 
RNFL layer. Instead, ganglion cell-inner plexus layer (GCIPL) 
thinning was notable. It appears that BMI is associated with RNFL and 
GCIPL thickness, but body fat percentage is only associated with the 
GCIPL layer (von Hanno et al., 2022). For further evaluation of the 
smoking effect, a study used OCTA to detect blood flow changes after 
smoking a single cigarette and reported a significant reduction, 
especially in the first 5 min of smoking. However, the relationship 
between this reduction and cerebrovascular accidents (CVA) due to 
long-term cigarette use remains unclear, necessitating further research 
(Ayhan et al., 2017).

DM and HTN cause retinopathy due to microvascular damage to 
retinal vessels (Henderson et al., 2011; Barot et al., 2013), increasing 
stroke risk (either hemorrhagic or ischemic) as the retinopathy stage 
progresses (Ong et al., 2013b; Hu et al., 2021; Wang et al., 2022). Two 
systematic reviews investigate the role of DR in stroke in type II DM 
revealed that the severity of DR is positively correlated with an 
increased likelihood of ischemic stroke, particularly microvascular 
IS. In the first review, HR for moderate NPDR was 2.08 times than that 
of mild NPDR. Similarly, the second review reported an HR of 2.01 
for mild NPDR and 2.27 for severe NPDR (Hu et al., 2021; Wang et al., 
2022). A study conducted over 2 years on HS patients due to primary 
HTN reports that over half of HS patients have high-stage hypertensive 
retinopathy compared to primary HTN patients without any previous 
HS. The higher stages of hypertensive retinopathy are associated with 
lower glasgow coma scores (GCS) at admission, which also worsens 
the prognosis (Thiagarajah et al., 2021). The study also reported that 
higher stages of retinopathy were linked to higher rates of hemorrhages 
with clots larger than 30  mL, which may reflect the extent of 
hemorrhage and correlate with GCS scores (Thiagarajah et al., 2021; 
Figure 3). Although each model hypothetically may have an advantage 
in extracting specific data, in real-life situations there are multiple 
factors determining the performance of architectures. Some of these 
variables are the use of pre-trained models, the number of training 
and testing sets, methods used to avoid overfitting or underfitting, and 
the computational power each model requires (Daich Varela 
et al., 2023).

6 AI-aided retinal biomarker detection 
in stroke risk-appraisal, diagnosis, and 
prognosis

It has been observed that concrete associations could be found 
between distinct retinal features and stroke identification or risk 
assessment. With further probing of the unidentified aspects of the 
field, the stroke risk estimation and diagnosis using retinal image 
analysis will rely on the development of intricate models encompassing 
a multitude of retinal features and data obtained from stroke patient 

history, physical examination, laboratory data, or various 
neuroimaging modalities. The AI models can use multiple inputs and 
extract features from retinal images which is useful in stroke risk 
assessment and diagnosis.

6.1 Risk assessment

Recent studies have utilized AI-based approaches to enhance the 
predictive abilities of retinal imaging for stroke incidence, with 
varying results. Stroke risk assessment could be  achieved using 
conventional globally renowned scoring systems, including CHA2DS2-
VASc or FRS, combined with novel AI tools or innovative risk 
evaluation algorithms using ML and DL, including retinal age gap and 
retinal vascular fractal dimension’s association with stroke risk.

A recent effort to combine DL algorithms with established stroke 
risk-stratifying assessment frameworks was conducted by Germanese 
et al. (2024), resulted in a reliable classification of 491 patients into  
low or intermediate-high stroke risk groups (AUC = 0.71–0.96) 
Additionally, the model predicted the CHA2DS2-VASc risk score with 
a maximum accuracy of 68%. The analysis was based on retinal 
vascular distortions observed in SS OCT-A images, using the 
EfficientNetV2-B3 tool. Similarly, Rudnicka et al. (2022) compared the 
predictive performance of the FRS with and without the addition of 
AI-assisted retinal vasculometry. They developed models using 
supervised ML and DL, trained on the UK Biobank cohort 
(n = 88,052), and validated externally in the EPIC Norfolk cohort 
(n = 7,411). QUARTZ system (Rudnicka et al., 2022) automatically 

FIGURE 3

Flowchart illustrating the sequence of events linking retinal changes 
to cerebrovascular accidents. HTN, Hypertension; DM, Diabetes 
Mellitus; AS, Atherosclerosis; ICP, Intracranial Pressure; IS, Ischemic 
Stroke; HS, Hemorrhagic Stroke.
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extracted retinal vessel width, tortuosity, and total vessel area, with a 
SVM assessing image quality and DL distinguishing arterioles from 
venules. Despite this advanced integration, the addition of retinal 
vasculometry did not significantly enhance model performance (UK 
Biobank: C-statistic of 0.74 for FRS-only vs. 0.73 for men and 0.75 for 
women in FRS-RV; EPIC Norfolk: C-statistic of 0.68 for men and 0.73 
for women in FRS-only vs. 0.691 for men and 0.714 for women in 
FRS-RV). While the study benefited from a large sample size and 
external validation, its generalizability may be  limited due to the 
predominantly white cohort used for model development.

A novel predictor of stroke risk called “retinal age gap” was 
introduced by Zhu et al. (2022) to explore an alternative AI application. 
Zhu’s study focused on a cohort from the UK Biobank (n = 11,052) to 
predict individual retinal age from fundus photography and OCT, by 
using the Xception DL model (Chollet, 2017). They assessed risk of 
stroke among 35,304 stroke-free participants by measuring the retinal 
age gap, defined as the difference between predicted retinal age and 
chronological age. Their findings showed that each one-year increase 
in the retinal age gap corresponded to a 4% increase in stroke risk 
(HR = 1.04, 95% CI: 1.00–1.08, p = 0.029), with those in the highest 
quintile of the retinal age gap exhibiting a significantly higher stroke 
risk (HR = 2.37, 95% CI: 1.37–4.10, p = 0.002). The study’s strengths 
include its large sample size, extended follow-up period, and 
comprehensive adjustment for confounding variables. However, its 
limitations, such as the lack of ethnic diversity, absence of external 
validation, and the relatively youthful cohort, suggest the need for 
further research to confirm these findings across more diverse 
populations. The predictive ability of retinal age alone was found to 
be  comparable to that of the established FRS (AUC = 0.676 vs. 
AUC = 0.661, p = 0.511). Notably, Zhu et al. (2022) achieved lower 
accuracy for FRS while using the same dataset compared to Rudnicka 
et al. (2022), which may be due to the smaller dataset size they used 
(63,839 vs. 35,304). This suggests that the “retinal age gap” model’s 
accuracy could be  enhanced by training on a larger, more 
diverse dataset.

Taking the investigation further into innovative predictive 
modeling, Li et al. (2023) explored the potential of multi-spectral 
fundoscopic imaging combined with DL to predict IS risk within 
1 year in patients with AF. By employing models like Inception V3, 
ResNet50, and SE50, Li et  al. built upon the foundational AI 
applications demonstrated by Rudnicka et al. (2022) and Zhu et al. 
(2022), but focused specifically on the predictive capabilities in a 
clinical context. They trained their models on 150 participants with 
AF and no history of IS, along with 100 participants with IS of 
unknown cause or recent AF diagnosis. The study demonstrated 
robust predictive abilities across all models, with the lowest AUC and 
accuracy values at 0.863 and 0.785, respectively. The multi-spectral 
Inception V3 model achieved the highest performance, with an AUC 
of 0.954 and an accuracy of 0.918. The models performed consistently 
better with 605 nm spectral images and multi-spectral data compared 
to single-spectral inputs. Despite these strengths, the study’s 
limitations included age-related confounding due to the older AF 
group, lack of validation sets, and a relatively small training 
sample size.

Additionally, Qu et al. (2022) applied a RF model to retinal images 
to assess stroke risk and differentiate IS from HS. The study involved 
231 stroke patients (145 IS, 86 HS) and 480 controls. Retinal features 
were extracted using ResNet50 CNN and the ARIA algorithm (Qu 

et al., 2022), focusing on texture and fractal dimensions associated 
with stroke subtypes. Logistic regression analysis showed that retinal 
characteristics alone provided superior predictive performance 
(AUC = 0.98 for both IS and HS) compared to clinical characteristics 
alone (AUC = 0.88 for IS, 0.91 for HS). The RF classifier demonstrated 
a sensitivity of 91.0%, specificity of 94.8%, AUC of 0.929 for ischemic 
stroke, and a sensitivity of 93.0%, specificity of 97.1%, and AUC of 
0.951 for HS. While the study successfully differentiated between 
stroke subtypes, its limitations include a small training dataset, lack of 
external validation, and a focus on intracerebral hemorrhage, which 
may limit generalizability to other HS types.

6.2 Diagnosis

In a comparable effort to improve diagnostic capabilities, 
Raveendran Susha et al. (2020) utilized AI to analyze retinal vascular 
features for stroke prediction. By using the Vessel Assessment and 
Measurement Platform for Images of the Retina (VAMPIRE) 
annotation tool (Perez-Rovira et al., 2021) to assess a dataset of 130 
retinal images, they identified key features such as fractal dimension 
and branching coefficients, achieving high accuracy with the NB 
classifier (AUC of 0.976 and accuracy of 0.965). However, the study’s 
small sample size and single-source data limited its applicability.

Further expanding on diagnostic improvement topic, Lim et al. 
(2019) applied the VGG19 DL architecture (Simonyan and Zisserman, 
2015) to predict IS using a diverse dataset of retinal images from 
multiple sources. They utilized both “templated” images (with noise 
reduction and border standardization) and “vessel” images (segmented 
using U-Net; Ronneberger et al., 2015) to analyze 4,528 stroke-positive 
images from the Multi-Centre Retinal Stroke (MCRS) study and 6,622 
stroke-negative images from five other datasets. The study deployed 
three experimental setups: E-All (all six datasets), E-Split1 (Singapore 
datasets for negative images), and E-Split2 (Melbourne and Singapore 
datasets for negative images). While the E-All-Templated model 
initially performed best (AUC = 0.987), it exhibited a significant drop 
in accuracy when tested on geographically diverse datasets, indicating 
potential overfitting to environment-specific features. This concern 
echoed the need for better generalization, as highlighted by Rudnicka 
et al. (2022) and Zhu et al. (2022). To mitigate this issue, the study 
employed vascular tree segmentation to enhance generalizability, 
though this approach resulted in slightly lower AUCs (E-All-Vessel 
AUC = 0.855). Despite the improved generalizability of vessel images, 
the study faced limitations, including a small number of stroke-
positive images, reliance on a single source for these images, and a lack 
of diversity in stroke-negative images, all of which contributed to 
overfitting and limited the model’s broader applicability.

Coronado et  al. (2021) addressed this issue by employing a 
different approach, using vasculature embeddings combined with DT 
gradient boosting (LGBM). Vasculature embeddings, derived from a 
U-shaped neural network and fine-tuned with LGBM, were evaluated 
using fundus images from 2,060 stroke-free individuals and 412 stroke 
patients from the UK Biobank. The vasculature embeddings achieved 
an AUC of 0.626, outperforming VGG19 (AUC = 0.548) and 
Inception-v3 (AUC = 0.499), while also being more computationally 
efficient. In an age-restricted cohort, VGG19 showed improved 
performance (AUC = 0.714), but LGBM achieved similar accuracy 
(AUC = 0.674) with fewer parameters. Inception-v3 underperformed 
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across datasets, likely due to its higher-dimensional feature vector, 
which may have led to overfitting to real-world image features rather 
than stroke-specific patterns.

Pachade et  al. (2022) used ResNet-50  in a self-supervised 
contrastive learning approach to extract features from OCT-500 and 
ROSE datasets, including CFP and OCTA images. Analyzing 112 
retina images from 16 stroke patients and 73 controls, they refined the 
cohort to 15 IS patients and 21 age-matched controls. Vessel 
segmentation was performed using IterNet and OCTA-Net, followed 
by extraction of fractal dimension and macular vessel density features. 
The highest AUCs were achieved for microvasculature density by 
using KNN (k = 9) with leave-one-subject-out (LOSO) validation 
strategy (0.87 in the full cohort, 0.88 in the age-controlled cohort). 
Fractal dimension was significant only in fundus images (AUC = 0.57 
full, 0.72 age-controlled) and multimodal images (AUC = 0.70 full). 
The self-supervised model, which employed momentum contrast 
(MoCo) with Mean Square Error (MSE) loss, performed better than 
MoCo with Barlow Twins (BT) loss in feature extraction, especially in 
the full dataset. Moreover, KNN achieved the best overall AUCs of 
0.81 (full cohort) and 0.66 (age-controlled), followed by NB (0.76), RF 
(0.74), and others. The study’s strengths include the use of multimodal 
imaging near stroke occurrence, but it was limited by a small sample 
size, inability to distinguish stroke types, and low-quality images.

Zhou et al. (2023) developed the “RETFound” Self-Supervised 
Learning (SSL) model using CFP and OCT images to detect ocular 
conditions like DR and glaucoma, as well as systemic diseases 
including IS and myocardial infarction. The model combined 
generative SSL with contrastive methods such as SimCLR (Chen et al., 
2020), SwAV (Caron et al., 2020), DINO (Caron et al., 2021), and 
MoCo-v3 (Chen et  al., 2021). They compared three pre-trained 
models: SL-ImageNet, SSL-ImageNet, and SSL-Retinal. The 
RETFound-MAE model was trained sequentially on natural images 
from ImageNet-1 k and then on 904,170 CFP and 736,442 OCT 
retinal images, primarily from the Moorfields Diabetic Retinopathy 
Dataset, with image classification performed by MLP. Performance 
was validated internally using the AlzEye dataset (353,157 subjects) 
and externally with the UK Biobank (82,885 subjects). 
RETFound-MAE performed well in detecting ocular diseases but 
showed limited accuracy in predicting systemic diseases, particularly 
stroke, during external validation. The AUROC for AlzEye was 0.75 
for both CFP and OCT images, but it dropped to 0.59 for CFP and 
0.56 for OCT in the UK Biobank, suggesting overfitting and shortcut 
learning. Despite this, RETFound-MAE outperformed other strategies 
in AlzEye for stroke prediction, while RETFound-DINO performed 
better in the UK Biobank, though neither matched the internal 
dataset’s performance. RETFound-MAE also exceeded the 
performance of other pre-trained models in both datasets. Strengths 
of the study include diverse cohorts, a large training set, external 
validation, and the inclusion of both CFP and OCT images. However, 
limitations involve the model’s development primarily on a diabetic 
cohort, lack of multimodal imaging for model development, and the 
geographical concentration of the training dataset within the UK.

6.3 Outcome prediction

Leptomeningeal collateral circulation, which connects cerebral 
artery branches, is critical in IS outcomes, with poor collateral status 

leading to larger infarctions and higher mortality (Maguida and 
Shuaib, 2023). Khan et  al. (2022) utilized SVM on retinal vessel 
parameters to predict collateral status in 35 stroke patients with 
middle cerebral artery occlusion and 21 healthy controls. Collateral 
status was graded by computed tomography angiography on a scale of 
0 (poor) to 3 (good) following the criteria outlined by Tan et al. (2009). 
Using principal component analysis for dimensionality reduction, the 
SVM model achieved 74.3% accuracy, 74.3% sensitivity, and 70.7% 
specificity. The study’s strengths include double-blinded, semi-
automated retinal vessel analysis, though it was limited by a notably 
small sample size, lack of external validation and inclusion of only 
moderate stroke patients. Table 1 summarizes the various AI model 
performances across different studies and datasets.

7 Challenges and limitations

Investigating retinal biomarkers of stroke encounters several 
challenges and limitations. The lack of standardized protocols while 
selecting retinal imaging modalities (such as fundus photography, 
OCT, and OCTA) for distinguishing individual retinal features makes 
it difficult to compare findings across studies. Furthermore, the 
abundance of image acquisition techniques, numerous analytic 
approaches, and the expression of the results using divergent 
parameters can lead to inconsistent interpretations of retinal features 
associated with the risk of stroke (Girach et al., 2024). Furthermore, 
the precise biological mechanisms linking specific retinal vascular 
changes to stroke risk are not fully understood and require further 
elucidation, which could enhance the logical process behind AI-driven 
modules and lead to higher accuracy.

Current predictive models using retinal imaging have not 
exhibited consistent and substantially better performance while 
comparing with traditional risk scores. Although AI algorithms show 
promise in analyzing retinal images, there are concerns about the 
accuracy of these predictive models. It has been indicated that while 
features seen in retinal imaging may suggest the risk of stroke, they 
do not consistently provide better predictive capabilities than 
established clinical risk assessment tools. Additionally, the 
effectiveness of retinal imaging in different populations, across 
various demographic categories, and clinical settings needs to 
be  confirmed as a tool for assessing stroke risk through more 
extensive validation studies, and their generalizability constitutes a 
major concern. However, many existing studies rely on limited 
groups that may not accurately represent the wider population at risk 
for stroke.

Developing reliable AI models requires high-quality, diverse 
datasets with larger populations for training and validation. Besides, 
annotating retinal images for training AI models requires expert 
input, limiting the availability of sufficiently large and well-annotated 
datasets and drawing attention to the widely considered TL algorithms 
(Zhou et al., 2023; Tan et al., 2024).

The use of AI in analyzing retinal images raises ethical and 
regulatory concerns. Data privacy, informed consent, and the potential 
for algorithmic bias need to be addressed to ensure the responsible use 
of AI applications in retinal imaging. Additionally, the regulatory 
frameworks governing the use of AI in healthcare are still evolving, 
which can create uncertainty for clinicians and researchers (Zhou 
et al., 2023; Tan et al., 2024).
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TABLE 1 Summary of the performance of AI models for assessment of stroke via retinal imaging.

References Year Total number of 
samples  

(Stroke-negative 
and Stroke-positive 
or Stroke-negative/ 

IS/HS)

Observation 
method

AI algorithm Database Results

Risk assessment

Qu et al. (2022) 2022 711 (480/145/86) Retinal 

photography

ARIA and ResNet50 

(feature extraction),

RF (stroke subtype 

classification)

Shenzhen 

Traditional 

Chinese 

Medicine 

Hospital

1. IS risk estimation:

 • Sensitivity: 91.0%

 • Specificity: 94.8%

 • AUC: 0.929 (95% CI: 0.900 to 0.958)

2. HS risk estimation:

 • Sensitivity: 93.0%

 • Specificity: 97.1%

 • AUC: 0.951 (95% CI: 0.918 to 0.983)

Zhu et al. (2022) 2022 35,304 (35,022/282) Fundus 

photography—

OCT

Xception (prediction of 

retinal age)

UK Biobank 1.  Retinal age gap (Xception-predicted age 

minus chronological age):

 • AUC = 0.676

2. Risk-factor model:

 • AUC = 0.661

Rudnicka et al. 

(2022)

2022 Training: 63,839 (63,393/446)

External Validation: 5,708 

(5,497/211)

Fundus 

photography

QUARTZ (feature 

extraction),

SVM (image quality 

score),

CNN (arteriole/venule 

classification)

UK Biobank 

(training),

EPIC-

Norfolk 

(external 

validation)

1. AI-Enabled Retinal Vasculometr:

 • C-statistic = 0.66–0.77

 • R2 statistics = 0.17–0.39

2. FRS:

 • C-statistic = 0.67–0.77.

 • R2 statistics = 0.2–0.43.

Li et al. (2023) 2023 250 (150/100/0) Multi-spectral 

fundus 

photography

Inception V3, 

ResNet50 and SE50 

(stroke classification)

Chinese Han 

population

1. Accuracy > 0.78 for IS risk prediction 

(secondary to AF).

2. Multi-spectral models outperformed 

single-spectral models (the highest 

AUC = 0.954).

Germanese et al. 

(2024)

2024 491 (225 low 

neurocardiovascular risk, 

266 intermediate–high 

neurocardiovascular risk)

SS OCT-A ML: DT, RF, SVM, 

logistic regression

DL: EfficientNetV2-B3 

(predict the CHA2DS2-

VASc 

neurocardiovascular 

risk)

RASTA ML Models (SS OCT-A + Clinical Data):

1. SVM (AUC = 0.98, accuracy = 0.851)

2. logistic regression (AUC = 0.96)

3. RF (AUC = 0.91)

4. DT (AUC = 0.78)

DL Model (SS OCT-A Only):

1. EfficientNetV2-B3 (accuracy = 0.68)

2. RF variants (accuracy = 0.61 and 0.54)

Diagnosis

Lim et al. (2019) 2019 11,150 (6,622/4528/0) Fundus 

photography

VGG19 (stroke 

classification)

Stroke-

positive: 

MRCS

Stroke-

negative: 

SCES, 

SiMES, 

SiNDI, SP2, 

DMPMelb

Templated Model Performance: 

1.  Overall Performance: AUC ≥ 0.966 for 

stroke prediction.

2.  Feature Isolation: AUC = 0.754–0.855 

with vessel images.

3.  Dataset Ablation: AUC = 0.496–0.994 

on unseen data.

Raveendran Susha 

et al. (2020)

2020 130 (80/50/0) Fundus 

photography

SVM, MLP, RF, DT, NB 

(stroke classification)

Sree 

Gokulam 

Medical 

College and 

Research 

Foundation

NB classifier:

1. Accuracy = 0.9692

2. AUC = 0.968

SVM: Accuracy = 0.89

RF: Accuracy = 0.8977

DT: Accuracy = 0.873

MLP: Accuracy = 0.857

(Continued)
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References Year Total number of 
samples  

(Stroke-negative 
and Stroke-positive 
or Stroke-negative/ 

IS/HS)

Observation 
method

AI algorithm Database Results

Coronado et al. 

(2021)

2021 Full: 2,472(2,060/412)

age-restricted: 1,200 

(1,001/199)

Fundus 

photography

LGBM, VGG19, 

Inception-v3 (stroke 

classification)

UK Biobank 1.  The vasculature embedding-LightGBM 

model:

AUROC = 0.626

2.  The vasculature embedding-LightGBM 

model (age-restricted dataset):  

AUROC = 0.674

3. VGG19: AUROC = 0.548

4.  VGG19 (age-restricted dataset):  

AUROC = 0.714

5. Inception-v3: AUROC = 0.499

6.  Inception-v3 (age-restricted dataset): 

AUROC = 0.512

Pachade et al. 

(2022)

2022 89 (73/15/1)

+ 729 Unlabeled

Fundus 

Photography, 

OCT-A

Iternet, OCTA-Net 

(Vessel segmentation),

PCA and KNN (feature 

engineering),

ResNet50 (self-

supervise learning),

KNN, DT, RF, MLP, 

AdaBoost, Gaussian 

NB (stroke 

classification)

Memorial 

Hermann 

Texas 

Medical 

Center, 

OCT-500, 

ROSE

1.  Feature Engineering: AUC = 0.87 –0.88, 

with fractal dimension features showing 

no significant impact.

2.  Self-Supervised Learning: Momentum 

contrast approach achieved AUC of 0.81 

(full cohort) and 0.66 (age-stroke-

controlled cohort).

3.  Supervised Classifiers (Self-Supervised 

Features):

KNN: AUC = 0.81

RF: AUC = 0.78

DT: AUC = 0.75

MLP: AUC = 0.74

AdaBoost: AUC = 0.72

Gaussian NB: AUC = 0.68

Rudnicka et al. 

(2022)

2022 Training: 63,839 

(63,393/446)

External Validation: 5,708 

(5,497/211)

Fundus 

photography

QUARTZ (feature 

extraction),

SVM (image quality 

score),

CNN (arteriole/venule 

classification)

UK Biobank 

(training),

EPIC-

Norfolk 

(external 

validation)

1. AI-Enabled Retinal Vasculometr:

 • C-statistic = 0.66–0.77

 • R2 statistics = 0.17–0.39

2. FRS:

 • C-statistic = 0.67–0.77.

 • R2 statistics = 0.2–0.43.

Zhu et al. (2022) 2022 35,304 (35,022/282) Fundus 

photography - 

OCT

Xception (prediction of 

retinal age)

UK Biobank 1.  Retinal age gap (Xception-predicted age 

minus chronological age):

 • AUC = 0.676

2. Risk-factor model:

 • AUC = 0.661

Zhou et al. (2023) 2023 2,526 (1,263/1,263/0)

308 (154/154/0)

Fundus 

photography, 

OCT-A

RETFound (masked 

autoencoder for SSL, 

MLP for stroke 

classification), SL-

ImageNet, SSL-

ImageNet, SSL-Retinal

MEH-

MIDAS, 

MEH-

AlzEye, UK 

Biobank

RETFound Performance for Stroke 

Prediction:

1.  Internal Dataset (MEH-AlzEye): 

AUROC = 0.754.

2.  External Dataset (UK Biobank): 

AUROC = 0.559–0.594.

3.  Better performance than SL-ImageNet 

and SSL-Retinal.

TABLE 1 (Continued)

(Continued)
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8 Future direction

Outlining the direction of future research would become more 
achievable, acknowledging the current research horizon and 
broadening it by applying the solutions found to narrow the gaps and 
resolve the challenges and controversies. In summary, AI models 
trained on large retinal imaging datasets, along with patient 
demographics and clinical data, play a key role in accurately identifying 
stroke risk and predicting future events. These happen through the 
identification of specific retinal vasculature changes, which are either 
directly or indirectly associated with heightened stroke risk. Current 
studies suggest that features such as retinal vessel diameter, tortuosity, 
and the presence of specific retinal pathologies may serve as indicators 
of stroke risk. One of the most beneficial and prominently discussed 
functions of AI algorithms within our topics constitutes the 
development of stroke risk stratification tools that categorize patients 
into different risk groups. Additionally, the AI-powered Retinal image 
analyzers could potentially detect strokes without apparent clinical 
symptoms, called silent stroke, that may precede major strokes and 
mandate the clinicians for timely intervention and preventative 
measures. AI can also be used to track changes in retinal vasculature 
after stroke treatment, helping to assess treatment efficacy and 
personalize follow-up care.

Future research in analyzing retinal images for stroke diagnosis 
and management requires developing more robust and generalizable 
AI models. This escalation necessitates algorithms with refined 
capability in handling big data, analyzing more diverse datasets, and 
employing techniques to enhance model interpretability (using 
explainable AI (XAI) techniques). They aim to improve the accuracy 
and reliability of predicting strokes from retinal images, explaining 
the performed functions and exhibited results. Improving the 
interpretability of AI models is crucial for gaining clinician trust and 
facilitating the adoption of these technologies in clinical workflows. 
Future developments should focus on creating XAI systems that 
provide insights into the decision-making processes (Mesinovic et al., 
2023; Abdollahi et  al., 2024; Frasca et  al., 2024). By offering 
transparent explanations of decision-making processes, AI systems 
can help clinicians validate recommendations and foster a more 
collaborative approach to patient care.

Moreover, future research would further gain advantage of the 
capability of the AI models to transfer the determined weights of model 
training from the source domain to the target domain, also known as 
TL, which could substantially enhance model efficacy in small datasets. 
These models can analyze complex patterns of distortion in retinal 
blood vasculature that may be linked to cerebrovascular conditions 
(Arnould et al., 2023). By training AI systems on extensive and diverse 
datasets, researchers can improve the generalizability of these models, 
confirming their external validity and ensuring their reliability and 
effectiveness across different populations and clinical settings. This 
validation process is essential for building trust in the clinical utility of 
retinal imaging technologies (Pachade et al., 2022; Zhou et al., 2023). 
Furthermore, combining retinal imaging modalities with the results of 
other diagnostic methods, such as MRI and blood tests, can provide a 
more comprehensive stroke risk evaluation, leading to better-informed 
comprehensive clinical decisions (Chew et al., 2024). The integration 
of Quantum AI into stroke management holds promise for 
revolutionizing diagnostics, treatment, and research. However, the full 
realization of these applications will require ongoing collaboration 
between AI researchers, clinicians, and healthcare institutions to 
address the challenges associated with implementation in clinical 
practice (Zeleňák et  al., 2021; Davids et  al., 2022; El Naamani 
et al., 2024).

Future investigations should aim to identify and validate 
additional biomarkers through longitudinal studies tracking changes 
in retinal health over time (MacGillivray et al., 2014; Phadikar et al., 
2017). These studies are also crucial for enhancing the predictive 
accuracy of existing AI models (Carrasco-Ribelles et  al., 2023). 
Furthermore, long-term, larger-scale, and prospective studies are 
crucial in understanding how changes in the retina over time are 
connected to stroke risk and outcomes (Wolcott and English, 2024). 
This approach could lead to the development of more robust 
predictive models that combine traditional risk factors with novel 
retinal indicators. Future efforts should prioritize the standardization 
of retinal imaging protocols to address the variability in data quality 
and interpretation. Establishing clear image acquisition, processing, 
and analysis guidelines will ensure consistency across studies and 
clinical applications. Standardization will further facilitate this 
integration (Lee et al., 2021; Rudnicka et al., 2022; Sampson et al., 

References Year Total number of 
samples  

(Stroke-negative 
and Stroke-positive 
or Stroke-negative/ 

IS/HS)

Observation 
method

AI algorithm Database Results

Outcome prediction

Khan et al. (2022) 2022 56 (21/35/0) OCT SVM (Classification of 

pial collateral status)

Hamad 

General 

Hospital

1.  Retinal Vessel Multifractal Dimensions: 

Significantly higher in patients with poor pial 

collaterals compared to good pial collaterals.

2. SVM Model for classification:

 • Accuracy = 0.743

 • Sensitivity = 0.743

 • Specificity = 0.707

DMPMelb: Diabetic Management Programme (Melbourne); EPIC-Norfolk: European Prospective Investigation into Cancer and Nutrition - Norfolk Study; MEH-MIDAS: Moorfields Eye Hospital 
Medical Image Dataset for AI Systems; MCRS: Multi-Centre Retinal Stroke Study; RASTA: Retinal oct-Angiography and cardiovascular STAtus dataset; ROSE: Retinal OCT-Angiography Vessel 
Segmentation Dataset; SCES: Singapore Chinese Eye Study; SiMES: Singapore Malay Eye Study; SiNDI: Singapore Indian Eye Study; SP2: Singapore Prospective Study Program.

TABLE 1 (Continued)
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2022). Additionally, to improve AI integration in clinical care, the 
establishment of AI Quality Improvement (AI-QI) units in hospitals 
has been proposed. These units would use tools like statistical process 
control to monitor algorithm performance, enhancing stroke patient 
care and recovery (Feng et al., 2022).

Establishing robust ethical and regulatory frameworks will 
be essential as AI technologies advance. These frameworks should 
address concerns related to data privacy, informed consent, and 
algorithmic bias. Ensuring patient safety and equity in AI model 
development will be essential for fostering their effective and fair 
implementation in stroke care (Solanki et al., 2023).

9 Conclusion

This research reviews the use of artificial intelligence algorithms 
in diagnosing and evaluating stroke risk through retinal imaging 
findings. We demonstrated that artificial intelligence improves stroke 
diagnosis and risk stratification performance, although further 
studies are required to confirm the validity and applicability of the 
obtained results across different datasets and various populations. 
Novel techniques would guide the researchers through overcoming 
the challenges of AI applications.
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