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An optimal arrangement of electrodes during data collection is essential for

gaining a deeper understanding of neonatal sleep and assessing cognitive health

in order to reduce technical complexity and reduce skin irritation risks. Using

electroencephalography (EEG) data, a long-short-termmemory (LSTM) classifier

categorizes neonatal sleep states. An 16,803 30-second segment was collected

from 64 infants between 36 and 43 weeks of age at Fudan University Children’s

Hospital to train and test the proposed model. To enhance the performance of

an LSTM-based classification model, 94 linear and nonlinear features in the time

and frequency domainswith three novel features (Detrended Fluctuation Analysis

(DFA), Lyapunov exponent, and multiscale fluctuation entropy) are extracted. An

imbalance between classes is solved using the SMOTE technique. In addition, the

most significant features are identified and prioritized using principal component

analysis (PCA). In comparison to other single channels, the C3 channel has an

accuracy value of 80.75% ± 0.82%, with a kappa value of 0.76. Classification

accuracy for four left-side electrodes is higher (82.71% ± 0.88%) than for four

right-side electrodes (81.14% ± 0.77%), while kappa values are respectively 0.78

and 0.76. Study results suggest that specific EEG channels play an important role

in determining sleep stage classification, as well as suggesting optimal electrode

configuration. Moreover, this research can be used to improve neonatal care

by monitoring sleep, which can allow early detection of sleep disorders. As

a result, this study captures information e�ectively using a single channel,

reducing computing load and maintaining performance at the same time. With

the incorporation of time and frequency-domain linear and nonlinear features

into sleep staging, newborn sleep dynamics and irregularities can be better

understood.
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1 Introduction

Sleep is a natural, repetitive period of rest and unconsciousness

that is required for the healthy functioning of both the body and

the mind (Baker, 1985). During sleep, the body undergoes a series

of stages, and each stage offers a distinct benefit and influences

numerous physiological and psychological functions, including

memory consolidation, cognitive function, mood regulation, and

physical ability restoration (Song et al., 2024). As a general rule,

sleep involves a reduction in consciousness and awareness of

the environment, a reduction in voluntary muscle contraction, a

decrease in metabolism, and a reversible and periodic state (Arif

et al., 2021). As a result of inadequate sleep, cognitive function can

be impaired, the immune system weakens, and the risk of chronic

diseases increases. These diseases, including obesity, diabetes, heart

disease, and hypertension can increase (Khan S. et al., 2020; Killick

et al., 2022; Parish, 2009; Pan et al., 2024; Chen and Zhu, 2024).

The recommended amount of sleep for adults is between 7–9 h per

night (Baker, 1985). Neonates, however, have shorter sleep cycles,

making them more susceptible to unpredictable sleep patterns. It

is common for infants to sleep approximately 16–17 h per day, but

the duration varies depending on the individual.

Just like adults, neonates also go through various sleep stages

(Newson, 2017). In neonates, there are two main stages of sleep:

Active Sleep (AS) and Quiet Sleep (QS). The infant is in AS state

when he or she has rapid eye movements, involuntary breathing,

and a rapid heart rate. During this state of sleep, babies are able

to move, express their facial expressions, and are even capable of

sucking. The development of the brain and the learning process of

the infant are directly related to AS. During QS, babies’ hearts beat

slower, their breathing is regular, and they do not move very much.

Physical development and growth are strongly influenced by QS.

In addition to the AS and QS stages, infants also experience a third

transitional stage in their sleep cycle, which combines both the AS

and QS stages. There are twomain differences between Active Sleep

1 (AS1) and Active Sleep 2 (AS2). The main difference is howmuch

the brain is active and how much the eyes move. In AS1, highly

irregular brain waves and frequent changes in the eye movements

are characterized, however, in AS2, the eye movements are less

frequent and the brain activity is more regular. As an alternative,

QS can be divided into two categories, one of which is Quiet Sleep

1 and the other is Quiet Sleep 2. There is a significant difference

between QS1 and QS2, as the movements and brain waves differ

significantly. In QS1, there is increased activity, with abnormal

brain activity and body movements. As opposed to this, QS2 is a

quieter state in which the brain is more active regularly and the

body is less active.

1.1 Main motivation of the proposed
approach

The primary objective of this study is to evaluate the potential

for differentiating neonatal sleep into five states using single-

channel and multi-channel EEG data. To identify the best electrode

configuration and minimize technical difficulties and potential

irritation of the skin that may occur during the collection of EEG

data for neonates, data collected from single-channel EEG is being

used. The LSTM algorithm is used to classify an infant’s sleep

into five stages by using various EEG features including three

novel features (Detrended Fluctuation Analysis (DFA), Lyapunov

exponent, and multiscale fluctuation entropy).

1.2 Main contributions

There are five main parts to this study, and they are outlined

below:

1. Extraction of multiple linear and non-linear features in the time

and frequency domains.

2. As a non-linear state-of-the-art approach for EEG-based

neonatal sleep staging, Detrended Fluctuation Analysis (DFA),

Multiscale Fluctuation Entropy (MFE), and Lyapunov exponent

are taken into account.

3. To address class imbalance, the SMOTE technique is used to

balance the dataset.

4. PCA-based feature normalization and selection.

5. Using both one channel at a time as well as different

combinations of multiple channels at the same time to classify

five different sleep states.

In addition, the study examines the optimal configuration

of EEG electrodes for five-state classification, including how

many electrodes to use and where they should be placed. To

reduce complexity, skin irritation risk, and cost in neonatal sleep

studies, this study evaluated sleep stage classification accuracy

using various electrode setups.

This article is structured as follows: Section 2 reviews relevant

literature; Section 3 presents the methodology that has been

proposed and its findings based on the proposed methodology;

and A discussion of the proposed work’s findings and limitations

is provided in Section 4. In Section 5, the proposed study’s

conclusions are presented.

2 Related work

Human sleep behavior was first studied using

electroencephalography (EEG) in Loomis et al. (1937). With

the advent of deep and machine learning algorithms, there are

a number of algorithms that have been developed in order to

categorize adult sleep patterns (Lajnef et al., 2015; Xiao et al., 2013;

Fonseca et al., 2016; Gudmundsson et al., 2005; Turnbull et al.,

2001; De Wel et al., 2017; Dereymaeker et al., 2017; Koolen et al.,

2017; Pillay et al., 2018; Ansari et al., 2020; Fraiwan and Lweesy,

2017). Pillay et al. (2018) developed a model based on multichannel

EEG recordings to automatically classify a person’s sleep using

Hidden Markov Models (HMMs) and Gaussian Mixture Models

(GMMs) and the Cohen’s Kappa of the model was 0.62, which

was higher than the Cohen’s Kappa of a GMMs. A CNN was also

used to classify sleep stages 2 and 4 (Ansari et al., 2020). Wake

states were not included in these techniques. In Awais et al. (2020),

developed using pre-trained CNNs to extract features to classify

neonatal sleep and wake. According to this study, a model that

has been pre-trained was inadequate for categorizing sleep and

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2025.1506869
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Siddiqa et al. 10.3389/fncom.2025.1506869

wake in neonates with high accuracy. In Awais et al. (2021), the

authors combine deep convolutional neural networks (DCNN)

with self-learning models to classify infant sleep and waking

states based on video facial expressions. EEG video data could be

classified accurately at 93.8 ± 2.2% and F1-scores were 0.93 ± 0.3.

It is worth mentioning that video EEG data can contain infant’s

faces and voices, creating privacy issues as a result.

A study conducted in 2021 by authors in Lee et al. (2021)

with IR-UWB radar to classify non-contact sleep and wake in

infants found an accuracy of 75.2%. According to another study

that classified quiet sleep based on EEG data, the value of Kappa was

0.77 ± 0.01 for eight-channels and 0.75 ± 0.01 for single bipolar-

channel (Ansari et al., 2021). According to a study conducted

by Abbasi et al., a MLP neural network algorithm developed

for binary classification of neonatal sleep has been tested and

the value of Kappa has been determined to be 62.5%, and the

accuracy has been determined to be 82.5% using the algorithm

(Abbasi et al., 2020). A three-state classification of the same dataset

was performed in 2022 using bagging and stacking ensemble

methods with an accuracy of 81.99% (Abbasi et al., 2022). By

using publicly available single-channel EEG datasets, Yu et al.

(2022) classified neonate’s sleep patterns into W, N1, N2, and

N3. The multi-resolution attention sleep network (MRASleepNet)

module was tested to classify sleep patterns. A feature extraction

module, a multi-resolution analysis module, and a gated MLP

module were all included in the algorithm. Through an adaptive

boosting (AdaBoost) classifier, Arasteh et al. (2023) classified AS

and QS with 81% accuracy achieved through cross-validation of

tenfold. The AutoML-based Random Forest estimator obtained

an accuracy rate of 84.78% and a kappa rate of 69.63% for

prediction of neonatal sleep and wake states in Siddiqa et al.

(2023). According to Ansari et al. (2018), an 18-layer CNN is

used to detect neonatal QS sleep stages with multichannel EEG

data. A Multi-Scale Hierarchical Neural Network (MS-HNN) has

been developed in Zhu et al. (2023) Using two, four, and eight

channels to automatically classify neonatal sleep states. Features

including temporal information were extracted using multi-

scale convolutional neural networks (MSCNN). They attained an

accuracy of 75.4% using single-channel classification and 76.5%

using a combination of eight channels for three-stage classification.

Supratak et al. (2017) performed classification of sleep states in

newborn with DeepSleepNet and attained 69.8% accuracy. In Eldele

et al. (2021), authors proposes AttenSleep, a deep learning approach

based on attention for sleep stage classification. Instead of using

RNNs, AttenSleep uses multi-head attention (MHA) to identify the

chronological relationship among different stages of neonatal sleep.

Using multi-branch CNN and reached classification accuracy of

74.27% with single channel and 75.36% with four channel EEG,

Hafza et al. proposed three-state EEG-based neonatal sleep state

classification (Siddiqa et al., 2024). The authors incorporated 74

features in the time and frequency domains.

As a result of limited classifications, privacy concerns, long

training times, and poor accuracy, existing approaches for

recognizing infant sleep stages have significant limitations.Without

taking into account awake, it is challenging to classify newborn

sleep accurately. Non-linear features which aren’t typically included

in current sleep staging methodologies for neonates include

DFA, MFE, and the Lyapunov Exponent. Further, these methods

require multichannel EEG data, which disrupts the skin and

causes discomfort, highlighting the need for methods that are

non-invasive. To effectively differentiate between the five-state

sleep patterns in newborns, it is crucial to develop a dependable

and privacy-conscious strategy that ensures high accuracy while

minimizing any potential negative consequences.

3 Materials and methods

An LSTM model for the categorization of neonate’s sleep into

five distinct states is introduced in this article. In this section, a step-

wise overview of the proposed design is provided. The sequential

flowchart of the proposed methodology is illustrated in Figure 1.

The process can be further explained by following these steps:

3.1 EEG dataset

EEG data was obtained from 64 neonates admitted to the

neonatal intensive care unit (NICU) at Children’s Hospital

of Fudan University (CHFU), located in China. This work

has obtained approval from the Research Ethics Committee

of Children’s Hospital of Fudan University, with the assigned

Approval No. (2017) 89. The proposed model was tested and

trained using these EEG recordings. The data was collected during

observations of neonates at various time points. A full 10-20

electrode installation system comprises the following 17 electrodes:

“FP1,” “FP2,” “F3,” “F4,” “F7,” “F8,” “C3,” “C4,” “P3,” “P4,” “T3,”

“T4,” “T5,” “T6,” “O1,” “O2,” and “Cz.” Every letter is associated

with a distinct region or lobe of the brain. The letters FP, F, T,

P, O, and C represent the prefrontal, frontal, temporal, parietal,

occipital, and central regions of the brain. Throughout this time

frame, we have witnessed a multitude of sleep patterns. The study

included EEG recordings from eight specific channels: “C3,” “C4,”

“F3,” “F4,” “P3,” “P4,” “T3,” and “T4.” TheNicoletOnemulti-channel

EEG equipment was utilized for the purpose of recording of the

EEG data at a sampling rate of 500 Hz. The NicoletOne EEG

devices have lightweight electrode caps that securely fasten scalp

electrodes, ensuring accurate signal capture. The NicoletOne EEG

device enables the acquisition of high-quality EEG signals with a

high sampling rate of up to 2 kHz and a broad frequency range

spanning from 0.053 to 500 Hz. Figure 2 illustrates the locations of

the eight electrodes used in this study, in accordance with the 10–

20 system recommendations. Nz represents the foundation of the

nose, whereas Iz indicates the protuberance.

3.2 Visual sleep scoring of EEG dataset

The EEG segments were visually classified by experienced

neurologists from Fudan children hospital Shanghai, based on five

main categories: Wakefulness, AS1, AS2, QS1, and QS2. When

classifying sleep states, non-cognitive features were employed in

conjunction with the EEG. In addition, the experts took into

account NICU videos when conducting the annotating procedure.

Table 1 provides comprehensive details regarding the dataset

(Siddiqa et al., 2024).
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FIGURE 1

A detailed flowchart of the proposed methodology.

FIGURE 2

The positioning of the 8 electrodes utilized in this research.

3.3 EEG dataset pre-processing

Distortion and artifacts during recording have an impact on

the quality and reliability of the EEG data. The EEG data was

recorded at a sampling rate of 500 Hz. These EEG recordings

underwent a pre-processing phase to eliminate noise and artifacts.

The pre-processing involves the following steps:

1. An FIR (Finite Impulse Response) filter was employed to

eliminate undesired signals from EEG recordings within the

frequency range of 0.3 to 35 Hz (High Pass = 0.3 Hz and Low

Pass = 35 Hz).

2. The EEG signals that have been processed by a filter are now

divided into segments of 30 seconds each.

3. Following the process of segmentation, a label given by

experienced neurologists is issued to each epoch. The five-state

classification assigns W as the first state, AS1 as the second state,

QS1 as the third state, QS2 as the fourth state, and AS2 as the

fifth state.

TABLE 1 A detailed description of the dataset (Siddiqa et al., 2024).

Variable/category Descriptions

Sampling frequency 500 Hz

Number of channels 8

Number of subjects 64

Number of epochs 16,803

Gestational age 38.3± 1.8 (wk+d)

Post-menstrual age 40.5± 1.7 (wk+d)

Gender 32 males and 32 females

Sleep time 1.44± 0.57 h

Wake time 0.71± 0.57 h

Weight 3.3± 0.6 kg

Reason for admittance Septicemia, Hyperbilirubinemia, and etc.

4. Artifacts and noise were introduced into the EEG recordings

during the recording and processing stages. Consequently,

following the pre-processing stage, there are a total of 16,803

epochs available for the testing and training over the channels

“C3,” “C4,” “F3,” “F4,” “P3,” “P4,” “T3,” and “T4.”

3.4 Feature extraction

The extraction of features from the EEG signals is essential

for categorization. Since it aids in distinguishing among various

sleep stages or events by analyzing patterns and characteristics.

Interpreting EEG data can be difficult because of the fact that there

are so many signals that change over time produced as a result

of electrical activity in the brain. This work utilizes linear and

non-linear feature extraction techniques to decrease the number

of dimensions of the data that need to be analyzed and identify

relevant characteristics of the data that can be employed for

categorization purposes, such as frequency and time distributions

(Gosala et al., 2023; Khan J. S. et al., 2020). Overall, 94 linear
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and non-linear features were retrieved from each channel utilizing

various procedures, which include:

3.4.1 Time domain features
• Statistical features of the EEG signal and its first and second

derivatives: To study and summarize the main statistical

features of the EEG signal as well as its derivatives, it would

be helpful to pull out features in the time domain of the

dataset in order to group newborn’s sleep stages (Siddiqa

et al., 2023). The extraction of time-domain features is a

valuable as well as practical approach to evaluating EEG

data, serving both clinical and research applications. Initially,

the signal’s nine statistical characteristics (mean, median,

standard deviation, minimum, maximum, kurtosis, skewness,

variance, and range) are computed. Subsequently, an identical

collection of five statistics is computed for both the first

derivative of the signals obtained from the EEG as well as the

second derivative.

• Detrended fluctuation analysis (DFA): It is a non-linear

feature, computed to measure if EEG signals are correlated

at either long or short ranges or if they are self-similar.

It also quantifies the extent to which the fluctuations of

a signal, after being combined and detrended at various

epochs, diverge from a linear pattern (Lal et al., 2023). The

DFA, or Detrended Fluctuation Analysis, is a mathematical

measure that quantifies the scaling exponent characterizing

the connection between the amplitude of fluctuations and the

corresponding time scales. The equation for calculating the

DFA is as follows:

F(n) =

√

∑

[Y(i)− y(i)]2

n
(1)

The fluctuations are represented by F(n) for window

size n, the integrated or cumulative profiles of the EEG

data are represented by Y(i), and the regression line is

represented by y(i). To calculate the DFA, this study uses

the nolds.dfa() function from the nolds library. The EEG

signal data are converted into NumPy arrays and the DFA

is calculated. Conversely, lower values of DFA imply less

reliable correlations or less predictable patterns, whereas

high values of DFA show better correlations over long

distances or similarity to itself, and this implies that a signal

is more structured and easier to predict. By utilizing the

various DFA characteristics, individuals can acquire a deeper

understanding of what is going on within the signal as well

as its intricacy. These characteristics have the potential to be

advantageous in a range of different applications, such as the

evaluation of signals, statistical analysis of time series, and

biological studies as well.

• Lyapunov exponent: The Lyapunov exponent, a nonlinear

feature, measures the responsiveness of a dynamical

system to its initial circumstances (Cao et al., 2023). EEG

feature extraction is a valuable tool for understanding

the predictability and stability of brain processes. The

Rosenstein approach is employed to calculate the Lyapunov

exponent based on EEG data. The algorithm involves defining

parameters for data embedding, initializing tangent vectors,

and performing Jacobian matrix calculations. The QR

decomposition is used to orthogonalize the tangent vectors,

which are then normalized to quantify the system’s sensitivity

to perturbations. Logarithms of Jacobians divided by tangent

vectors and iterations determine the Lyapunov exponent. The

Lyapunov exponent (λ) is given by:

λ = 1

N − 1

N−1
∑

n=1

x (2)

where,

x = log

(

d(n+ 1)

d(n)

)

(3)

This sum is taken over time steps from n = 1 to

N − 1, where N is the total number of time steps. The

variable x describes the relative changes in distances between

nearby trajectories in the dynamical system, which is used

in calculating the Lyapunov Exponent to characterize the

behavior and predictability of the dynamical system. The term

x represents the logarithm between d(n + 1) and d(n), which

are the distances of the perturbed trajectory at time n+1 and

n, respectively. The Lyapunov exponent values not only offer

insight into the classification of sleep stages in EEG analysis

but also provide information about how complex neonatal

sleep dynamics are and the extent to which they can be

predicted.

• Multiscale fluctuation entropy (MFE): Within the scope of

the present study, MFE values have been computed for

every epoch of EEG data in order to measure the degree

of complexity as well as the irregularity of the signal (Wan

et al., 2023). The standard deviation is calculated segment by

segment using a scaling factor. The procedure entails multiple

sequential stages. The EEG signal is divided into segments

according to the scale factor. The variation of each segment

is determined by comparing the standard deviation of each

segment to the mean of each segment and then calculating

the average of the standard deviations of each segment. There

is a formula known as the Shannon entropy formula, which

is employed to calculate entropy for an ensuing string of

fluctuations. Mathematically, MFE can be written as:

MFE = 1

K

K
∑

k=1

Hk (4)

In this case, Shannon entropy at each scale is represented

by Hk, and total number of scales is represented by K. The

objective of this work is to obtain a deeper understanding

of the complexities and inconsistencies of neural activity

at different levels by calculating MFE values. It specifically

aids in the study of EEG data, which offers vital insights

into underlying brain activity through the examination of

fluctuation and complexity patterns.
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3.4.2 Frequency domain features
Frequency domain features play a crucial role in the

interpretation of EEG signals, since they are necessary for the

diagnosis of neurological illnesses and for monitoring the brain’s

activity during the performance of cognitive functions. This

research computed the subsequent features in the frequency

domain:

• Identification of central tendency features using EEG band’s

spectral features: The spectral analysis of the four frequency

bands (delta, theta, alpha, and beta) in an EEG signal can be

utilized for determining central tendency attributes such as

mean, median, mode, variance, standard deviation, kurtosis,

skewness, minima, and maxima (Siddiqa et al., 2023). The

central tendency of a dataset can be defined as the tendency

of a dataset to accumulate around the average value or center

of the dataset. A measure of the central tendency can offer

insights into the common or predominant values found in a

dataset. They have the ability to depict and provide a concise

overview of data distributions. In order to compute central

tendency characteristics based on spectral statistics, it was first

necessary to determine the power spectral density (PSD) of

the EEG data that was initially determined (Arif et al., 2023).

Using Welch’s method, PSD is calculated by segmenting the

EEG signal into overlapping windows, computing the Fourier

transform for each segment, and averaging the spectra to

estimate the PSD. Amore detailed spectral analysis of the EEG

signal can be obtained by using this method. As a default,

the resolution parameter is set to none. By doing this, the

function determines the segment length automatically based

on the input data length. As a default, the behavior attempts

to strike a reasonable balance between frequency resolution

and computational efficiency. Subsequently, the PSD has

been subdivided into distinct frequency ranges: delta (0.5–3

Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz).

Afterwards, a total of 32 features representing central tendency

of each frequency band were computed using frequency band

spectral statistics.

• Norm power of four EEG bands: The normalized power

is calculated by dividing the power inside each frequency

band by the integral of the overall power spectral density

(PSD) across all frequencies. By normalizing the power levels,

it ensures a justifiable comparison of power levels across

various frequency bands, while taking into consideration

the fluctuations in the total power spectrum of the EEG

signal. The normalized power values are useful parameters

for classifying infant sleep stages because they represent the

relative contribution and distribution of brain activity in

specific frequency ranges.

• Average frequency of four EEG bands: The average frequency

of each of four EEG band is determined by multiplying the

frequencies within the relevant frequency indices by their

respective PSD values. Subsequently, those values are added

together, and the outcome is divided by the total sum of

the PSD values within the specified frequency range. This

calculation yields a weighted average frequency that signifies

the central point or the most prominent frequency within

the particular range of frequencies under consideration. This

technique enables a numerical evaluation of the spectrum

properties of the EEG data and offers a valuable understanding

of the frequency distribution within each EEG band. It also

aids in the classification of various sleep stages in neonates.

• Maximum power of four EEG bands: The maximum power of

each EEG frequency band is determined by determining the

frequency indices in the PSD that correspond to the specific

frequency range of interest for each band. The indices are

derived by comparing the frequency values with the lower

and upper frequency limitations specified for each band. The

highest PSD value within these specific frequency indices is

subsequently obtained for each time point, resulting in the

peak power level within the corresponding frequency range.

In EEG signals, time points are discrete instances where

the PSD can be estimated. This computation allows for the

determination of the maximum intensity of brain activity

within each distinct frequency band and offers vital insights

into the prevailing power peaks found in the EEG signal.

• EEG band ratios: The power ratios between EEG frequency

bands are calculated by dividing the normalized power of one

band by the normalized power of another band. These ratios,

such as the delta-theta ratio, alpha-beta ratio, delta-alpha

ratio, theta-beta ratio, delta-beta ratio, and theta-alpha ratio,

enable the evaluation of the proportional distribution of power

and interactions among different frequency bands. The ratios

are calculated using the normalized power values derived

from the PSD analysis of the EEG data. The normalized

power quantifies the relative impact of a particular frequency

range in the complete power spectrum. The power ratios

are obtained by dividing the normalized power of one band

by the normalized power of another band. These ratios

offer vital information into the equilibrium and supremacy

of brain activity across various frequency ranges. Their

contribution involves analyzing EEG data to characterize

different sleep stages in newborns, providing insights on the

relative importance of specific frequency components in the

EEG spectrum.

• Fast fourier transform (FFT): By employing FFT, it is possible

to examine the time-domain EEG signal by interpreting it into

the frequency domain and analyzing its constituent frequency

components. The input EEG data was subjected to a FFT

to calculate its frequency spectrum. Subsequently, the 10

frequencies with the most significant FFT values were selected.

Consequently, all the above mentioned characteristics can be

used to create automated sleep staging algorithms that have the

potential to enhance the identification and treatment of infant’s

sleep disorders.

3.5 Feature importance and feature
selection

In order to classify sleep states using EEG, we need to define

what features in the frequency and time domains are the most

informative. By using these techniques, we can distinguish sleep

stages by using the most informative features. Using machine
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learning models, you can achieve better performance and more

accurate results by selecting and emphasizing features (Ilyas et al.,

2020). In this research, Principal Component Analysis (PCA)

is utilized to select and prioritize features. The PCA algorithm

determines which of the principal components captures the greatest

proportion of variance in a dataset by analyzing its variance

(Wold et al., 1987). The explained variance ratio can be used to

determine a subset of principal components can be selected to

reduce the dimensionality of the data. High variances indicate that

the number of features in the dataset captures as much information

as possible. By preserving the variance in the dataset, information

which is the most important and relevant to the data can be

preserved, and at the same time, the least important data can be

eliminated. As a result of the designed PCA, 95% of the variance

in the EEG was explained by the most informative features. A

small number of principal components account for 95% of the

variance in the dataset. After scaling the dataset and performing

PCA, we found that a few principal components captured most

of the variance. Using the columns that have been selected and

the variable that is being targeted, a new dataframe is generated

based on how many principal components there are. As a result,

the information relevant to the prediction of the variable that

is being targeted remains, and at the same time, the data is

reduced in dimensionality. In the original dataset, 94 features from

preprocessed EEG data were extracted. The resulting dataframe

is used to classify sleep into five states using an LSTM model.

However, based on PCA results, a total of 21 features have been

decided upon for further consideration.

3.6 Synthetic minority oversampling
technique analysis

SMOTE is a widely utilized data augmentation approach

employed to deal with class imbalance in machine learning

(Fernández et al., 2018). It is especially efficient when handling

datasets in which one class is considerably less represented than

the other. The process involves generating artificial data points for

the underrepresented category by interpolating between adjacent

examples. The objective of this strategy is to create more synthetic

instances that closely resemble the existing samples from the

minority class, hence enhancing their presence in the dataset

(Fernández et al., 2018). The creation of synthetic samples includes

the subsequent steps:

1. Determine the instances belonging to the minority class:

Initially, the dataset is examined to identify the instances that

belong to the minority class.

2. Randomly choose an instance xi from the specified minority

class instances.

3. Locate the k nearest neighbors: The k nearest neighbors of the

given instance are determined using a selected distance metric,

such as Euclidean distance (Li et al., 2024).

x̂i = Kixi (5)

4. Choose one of the k nearest neighbors at random: A single

neighbor is selected at random from the k nearest neighbors.

5. Create a synthetic instance xnew: A novel synthetic instance is

generated by interpolating between the selected instances and

the chosen neighbor. This is achieved by employing a random

selection process to choose a point located on the line segment

that connects the two instances (Li et al., 2024).

xnew = xi + (x̂i − xi)δ (6)

Interpolation between the xi and x̂i is controlled by δ, a

value between 0 and 1. The value of δ specifies the extent of

“smoothing” or “stretching.” The closer the synthetic samples

are to the originals, the smaller the value of δ, and the farther

they are from them, the larger the value.

6. Iterate the procedure: Steps 2 to 5 are iterated until the required

extent of oversampling of the minority class is attained.

When applying SMOTE in the analysis of EEG features,

the default delta value was used for oversampling, as specified

by the SMOTE implementation. By defaulting the delta value,

the implementation process becomes easier, ensuring a standard

oversampling level without the need to tweak parameters manually,

thereby making class imbalances easier to handle. The SMOTE

algorithm is utilized in this specific study, employing the

implementation provided by the scikit-learn module. The SMOTE

function begins execution with a random state of 42. The

effectiveness of the SMOTE technique is assessed by computing

and presenting the counts of the resampled labels using a Pandas

series. This analysis offers valuable information on the distribution

of the balanced classes following the implementation of SMOTE.

Figure 3 shows pie class distribution before and after SMOTE.

This algorithm provides synthetic samples for the training set,

improving the model’s generalization and prediction capabilities

(Gamel et al., 2024). A more precise representation of the

fundamental distribution of the data is provided by this approach,

which lessens the challenges faced by imbalanced datasets. The

proposed methodology thus eliminates class imbalances and

improves the performance of the model by training it on a more

representative and balanced dataset. Using SMOTE, data leakage

was prevented and model evaluation was ensured in this research

after the train-test split. As a result of applying SMOTE only

to the training set, the test data was kept intact, enabling us to

assess model performance accurately. By doing so, the test set

remains intact, simulating real-world conditions and enhancing

model generalization.

3.7 Long short-term memory

An LSTM (Long Short-Term Memory) model is a variant

of a recurrent neural network (RNN) that addresses long-term

dependencies in sequential data. When processing long sequences,

traditional RNNs struggle to capture information from earlier

time steps due to the vanishing gradient problem. It can process

entire sequences of data, not just individual data points, due to

its feedback connections, unlike traditional neural networks. As

a result, it is very effective at identifying and predicting patterns

in sequential data, such as time series, text, and speech. As a

powerful tool for artificial intelligence and deep learning, LSTMs

are enabling breakthroughs in a wide range of fields by capturing

valuable insights from sequential data.
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FIGURE 3

(a) Pie class distribution before SMOTE and (b) pie class distribution after SMOTE.

3.7.1 LSTM architecture
A LSTM network resolves the problem of vanishing gradients

faced by RNN. At a high level, LSTM functions similarly to an

RNN cell. Figure 4 illustrates its internal workings. As shown in

Figure 4, the LSTM network architecture is composed of three

components, each of which performs a specific task. Based on the

previous timestamp, the first component determines whether the

information is relevant or not. Using the input in this cell, the

second component tries to learn new information. Finally, in the

third component of the cell, the current timestamp is passed on to

the next timestamp. The single-time step of the LSTM is considered

to be one cycle. Gates are three components of LSTM units. The

flow of information between the memory cell and the LSM cell is

controlled by them. The forget gate is the first gate, the input gate is

the second gate, and the output gate is the last gate. LSTM units

composed of these gates and memory cells are similar to layers

of neurons in traditional feed-forward neural networks, with each

neuron having a current state and a hidden layer. Following is the

step-by-step explanation of each gate:

1. Forget gate: This gate determines which information from

the previous cell state should be discarded. Using the sigmoid

activation function, which squashes values between zero and

one, the forget gate output (ft) is calculated from the current

input (xt) and the previous hidden state (ht−1).

A forget gate can be described mathematically as follows:

ft = σ (Wf · [ht−1, xt]+ bf ) (7)

In this equation, σ represents sigmoid function, Wf

represents the forget gate’s weight matrix, [ht−1, xt] represents

the concatenation of the previous hidden state with the current

input, and bf is the gate’s bias term.

2. Input gate: As the input gate determines the amount of new

information to be stored in the state of the cell, it takes into

account both the current input and the previous hidden input

(ht−1). A sigmoid activation function is used to compute the

input gate output (it).

Input gates are mathematically defined as follows:

it = σ (Wi · [ht−1, xt]+ bi) (8)

Ct = tanh(WC · [ht−1, xt]+ bC) (9)

In this case, Wi and WC stands for the weight matrices

associated with the input gate, ht−1 and xt stand for the previous

hidden state and current input, while bi and bC stands for the

bias terms associated with the gate.

3. Output gate: By comparing the current input (xt) with the

previous hidden state (ht−1), it determines which parts of the cell

state should be output. The output gate output (ot) is determined

by the sigmoid activation function.

An output gate’s mathematical equation is as follows:

ot = σ (Wo · [ht−1, xt]+ bo) (10)

ht = ot · tanh(Ct) (11)
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FIGURE 4

General architecture of LSTM model.

Here, Wo represents the weight matrix associated with

the output gate, [ht−1, xt] represents the concatenation of the

previous hidden state and the current input, while bo represents

the output gate bias term and ht shows the output for hidden

state.

In an LSTM cell, the gate outputs (ft , it , ot) are important for

controlling information flow. As a result, they determine which

parts of the previous cell state should be forgotten, which new

information should be added to the cell state, and which parts of

the updated cell state should be hidden.

3.8 Proposed model architecture

The proposed LSTM model for neonatal sleep staging is

presented in this subsection with detailed descriptions of the

mathematical model, its architecture, and all parameters. In this

paper, an eight-layer LSTM architecture has been proposed in

order to represent the LSTM. Figure 5 provides a comprehensive

depiction of the model’s structure and offers in-depth insights

into its individual layers. Sequentially stacking LSTM layers, this

model consists of three layers with different regularization levels

and units. There are 500 units in the first layer, and it returns

sequences, while there are 250 units in the second layer, and

it also returns sequences. LSTM layers are regularized using

L2 regularization with a factor of 0.0001 to prevent overfitting.

The third layer does not return sequences and has 100 units.

Each LSTM layer is followed by a batch normalization layer

for speed and stability. After two dense layers of 100 and 50

units, respectively, and ReLU activation, a final dense layer with

a number of units corresponding to the classification task’s classes

is added, and class probability is output using softmax activation.

Adam’s optimizer, cross-entropy loss function, and accuracy metric

are used to compile the model. During training, the model’s

states and parameters are reset, and with a batch size of 128

and an early stopping with a patience of 10 is implemented.

Table 2 presents details about all other hyper-parameters used

in proposed LSTM. Experimentation was conducted in order

to select and tune all hyperparameters in order to optimize

performance and convergence during training. The model is

trained and evaluated for one epoch using the data provided. Then

the model’s performance on the validation set is evaluated after

each epoch.

3.9 Performance assessment metrics

In order to test and evaluate the proposed scheme, different

performance metrics are used, including confusion matrix,

accuracy, Cohen’s kappa, recall, precision, Mathew’s co-relation

coefficient, and F1-score. In this study, the classification model

is examined based on these metrics to determine whether it can

accurately identify EEG patterns.

• Confusion matrix: An analysis of a classification model’s

quality is conducted using a confusion matrix. In multi-

class classification, confusion matrixes show the number

of correct and incorrect predictions for each class as a

tabular representation of the model’s performance. Identifying

specific types of classification errors helps to improve the

model’s accuracy for individual classes. It is possible to

evaluate the model’s performance across multiple classes by

calculating metrics such as precision, recall, and F1-score.

• Accuracy: The accuracy of machine learning (ML) algorithms

is commonly measured as a percentage of correctly classified

measurements. The formula (Ali et al., 2020) can be used to

calculate this percentage:

Acc = (TP + TN)

(TP + TN + FP + FN)
(12)

• Cohen’s Kappa: The Cohen’s Kappa is commonly used to

estimate how well two raters agree. It is also used to determine

the performance of classifiers. The confusion matrix cells are

used to calculate it as follows (Chicco et al., 2021):

kappa = 2(TP · TN−FP · FN)

(TP + FP) · (FP + TN)+(TP + FN) · (FN + TN)
(13)
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FIGURE 5

(a) Detailed information about LSTM layers. (b) An overview of the model’s architecture.

TABLE 2 Details about hyper-parameters.

Parameter Value

Epochs 50

Batch size 128

Optimizer Adam

Kernel regularization L2

Learning rate 1× 10−4

Cross-validation k-folds 10

Loss function Binary cross-entropy

When Kappa is –1, it is the worst, and when it is +1, it is

the best.

• Recall: Recall in machine learning refers to how well an

algorithm can identify a class based on a set of sampled data.

In mathematics, recall is expressed as Shaukat et al. (2020):

Rec = TP

TP + FN
(14)

• Precision: In order to determine a model’s precision, it must

be able to identify a significant number of relevant items.

Accordingly, it can be written as follows (Shaukat et al., 2020):

Pre = TP

TP + FP
(15)

• Matthews correlation coefficient (MCC): MCC measures the

difference between the predicted values and recorded values.

The confusion matrix is used to calculate this (Chicco et al.,

2021):

MCC = TP · TN−FP · FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(16)

MCC value of –1 is the worst, while a value of +1 is the

best.

• F1-Score: F1-score is the combination of recall and precision,

making it a powerful metric. It is mathematically computed by

Shaukat et al. (2020), and Bing et al. (2022):

F1_Score = 2× Pre× Rec

Pre+ Rec
(17)
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• Accuracy line graph: The accuracy line graph permits

comparisons, thresholds, and determinations of the model’s

performance over a range of values. This graph displays

accuracy values along the Y-axis and fold counts along the X-

axis. On the graph, every data point represents an individual

cross-fold’s accuracy. As the number of folds increases, the line

connecting the data points indicates a trend in accuracy.

• Validation accuracy curve: Validation accuracy curves for N-

fold cross-validation show how accuracy changes over time for

each of the N folds. One can visualize the model’s performance

across different subsets of data by plotting validation accuracy

vs. training iterations or epochs. As well as providing valuable

insights into the model’s learning behavior, this visualization

allows assessment of the model’s stability and generalization

ability.

4 Results

To evaluate the performance of the model, a 10-fold cross-

validation procedure was used. The data sets were shuffled

randomly beforehand to avoid bias. Ten subsets of data were

used for this methodology, with one set serving as the testing

set and the remaining nine sets serving as the training set. Thus,

it was possible to assess the generalization performance of the

model in a way that minimized the leakage between the training

and testing phases. As a result of the rigorous methodology

used in this study, the performance of the proposed model has

been rigorously and unbiasedly evaluated. In this study, the F3-

channel and C3-channel show the greatest confusion matrix values

when it comes to single-channel EEG data. In Figure 6, confusion

matrices for the combinations of channels on the left and right

sides and all single channels are shown. Tables 3, 4 present the

analytically computed values for each performance assessment

metric. For the combinations of channels on the left and right

sides and all single channels, a line graph showing the level

of accuracy can be seen in Figure 7. The accuracy values are

displayed on the Y-axis in Figure 7. In Figure 7, accuracy line

graphs represent model performance during 10 cross-folds. Lastly,

Figure 8 illustrates validation accuracy curves for C3 single-channel

and a combination of four left-side channels.

5 Discussion

Using an LSTM classifier, this study proposes a method of

neonatal sleep staging based on single-channel and then four-

channel EEG data. In order to determine which EEG channel

is important in neonatal sleep staging and which channels are

most appropriate for five-state classification, single-channel EEG

data needs to be used to determine which channel and which

side of the head should be used. After preprocessing the EEG

data collected from 64 infants, 16,803 segments are left for testing

and training of channels F3, F4, C3, C4, P3, P4, T3, and T4.

EEG data is then processed for 94 linear and non-linear features.

These features are divided into the time and frequency domains.

A total of 27 statistical parameters were included in the analysis

for the time domain, including mean, median, standard deviation,

minima, maxima, range, skewness, and kurtosis. The data was

further processed to extract nonlinear features such as Detrended

Fluctuation Analysis (DFA), Lyapunov exponents, and Multiscale

Fluctuation Entropy. A FFT is used in order to extract frequency

domain features by separating ten features based on their FFT

values and then using spectral statistics to calculate 36 central

tendency features for each frequency band in the first place.

Through the capture of complex dynamics and irregularities in

neonatal EEG signals, these features allow a better understanding

of neonatal sleep patterns. By preserving 95% of the variance of

the data, we reduced the dimensionality and retained the most

informative features by applying Principal Component Analysis

(PCA). The SyntheticMinority Oversampling Technique (SMOTE)

is also applied for data augmentation to address the imbalanced

nature of the dataset. By using this technique, we were able to

improve the classification model by balancing the classes.

A description of the proposed LSTM has already been provided

in Section 3. A model is used to classify sleep states using 94

features that are obtained from each channel of the EEG signals.

Four channels on the left side and four channels on the right

side are combined in order to determine the neonate’s sleep states.

Figure 5 shows the proposed LSTM in its entirety. The description

of all layers and their types, as well as their parameters, can also

be found in Figure 5. It has been tried many times to get the

best performance from the model by testing kernel regularization,

unit number, and activation function in the real world. A final

choice was made by considering how to balance the complexity

of the model with the generalizability of the models after testing

a variety of combinations and assessing the effectiveness of each

combination. The performance evaluation step involved a 10-fold

cross-validation procedure. This methodology used ten subsets of

data, nine of them as training sets and one as a test set. In order

to eliminate bias in the data sets, the data sets were shuffled prior

to the analysis at random. Thus, the generalization performance of

the proposed model could be assessed without leaking information

between the phases of training and testing of the model. This

unbiased evaluation method was used to rigorously and unbiasedly

evaluate the performance of the proposed method. In this study,

accuracy and other matrices values are expressed as Mean ±
SD. Using the mean, one can see how accurate the experiments

are, while the standard deviation indicates how uncertain or

variable the accuracy measurements are. Averaging the individual

accuracy values obtained from multiple trials yielded the mean

accuracy, whereas the standard deviation measures how far the

accuracy measurements are from the mean. By presenting the

accuracy results in this way, we can gain insight into both their

central tendency and their variability. In Tables 3, 4, data from

single channel and four channel EEGs for five-state neonate sleep

classification is used. In single-channel five-state classification, the

F3, F4, C3, and C4 channels achieve maximum mean accuracy and

kappa. For the F3 channel, the accuracy and the kappa values are

80.41 ± 0.94% and 76%, respectively. For the F4, these values are

80.52 ±1.14 % and 76%. For the C3 channel, these values are 80.75

± 0.82 and 76%, respectively. For the C4, these values are 80.40

± 1.13 and 76%, respectively. There is also evidence to suggest

that by combining four left-side channels (F3, C3, P3, and T3),

the highest mean accuracy and kappa values can be achieved, with

accuracy and kappa values of 82.71 ± 0.88 and 78%, respectively.
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FIGURE 6

Confusion matrices for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (g) T3, (h) T4, (i) Left side, and (j) Right side.

Right side electrode combinations (F4, C4, P4, and T4) have values

of 81.14 ± 0.77 and 76%, respectively. In addition, accuracy line

curves and confusion matrices for five states are also shown in

Figure 7 in order to visualize the model’s performance and learning

progress. As shown in the above Table 3, for the classification of

the five-state sleep stage of newborns, channels P3, P4, T3, and T4
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TABLE 3 Single-channel EEG classification results for five states.

Channel Acc (%) Kappa Rec (%) Pre (%) MCC (%) F1_Sco (%)

F3 80.41± 0.94 0.76 80.41± 0.94 80.08± 1.06 76± 0.01 80.01± 1.02

F4 80.52± 1.14 0.76 80.52± 1.14 80.20± 1.20 76± 0.01 80.24± 1.21

C3 80.75± 0.82 0.76 80.75± 0.82 80.39± 0.91 76± 0.01 80.41± 0.89

C4 80.40± 1.13 0.76 80.40± 1.12 80.17± 1.17 76± 0.01 80.15± 1.15

P3 78.94± 0.72 0.74 78.94± 0.72 78.53± 0.78 74± 0.01 78.54± 0.76

P4 78.18± 0.58 0.73 78.18± 0.58 77.72± 0.59 73± 0.01 77.83± 0.58

T3 79.56± 0.58 0.74 79.56± 0.57 79.16± 0.72 75± 0.01 79.18± 0.64

T4 79.84± 0.67 0.75 79.84± 0.67 79.46± 0.71 75± 0.01 79.51± 0.71

TABLE 4 Four-channel EEG classification results for five states.

Channel Acc (%) Kappa Rec (%) Pre (%) MCC (%) F1_Sco (%)

Four-channel (Left) 82.71± 0.88 0.78 82.71± 0.88 82.47± 0.94 78± 0.01 82.46± 0.92

Four-channel (Right) 81.14± 0.77 0.76 81.14± 0.77 80.87± 0.83 77± 0.01 80.83± 0.85

Left side channels: F3, C3, P3, T3 & Right side channels: F4, C4, P4, T4.

are far less helpful than channels P3 and P4 in determining the

sleep stage. However, F3, F4, C3, and C4 perform well. When there

are four channels, left-side channels perform better than right-side

channels. Even with fewer channels, performance is still favorable

when the parameters relating to performance are compared with

those presented in Tables 3, 4. It has been shown that sleep analysis

can enhance the care of neonates and enable them to be monitored

effectively in order to detect sleep-related abnormalities, such as

sleep disorders, early in order to treat them early.

Comparisons of existing and proposed methods are presented

in Table 5. This article and Zhu et al. (2023) refer to the same

dataset, ensuring consistency and comparability in evaluating the

models listed in Table 5. Most of the models in this Table have

been evaluated on this dataset by Zhu et al. (2023), and the results

obtained are also reflected in that Table. The proposed study uses

datasets that are several times larger than those used in Ansari et al.

(2020) and Ansari et al. (2018). On the basis of this dataset, these

models were found to be underfitting. For adult sleep, Supratak

et al. (2017) and Eldele et al. (2021) are presented. Taking into

account the difference in sleep patterns between infants and adults,

these models are prone to convergence problems and overfitting.

Therefore, it is hard to transfer an adult sleep staging model

directly to neonate data because this causes convergence problems

and overfitting. The model needs to be modified to reflect the

neonate’s sleep characteristics. A serial recurrent neural network

(RNN) is used as part of the TIL module in the model architecture

in Zhu et al. (2023), which results in a lengthy training time and

inefficient training.

Based on the experiments, limitations and future directions

should be identified. Using only EEG signals as inputs to the

proposed scheme in this paper is the primary objective of this

paper, which is to assess its feasibility and reliability. In this

study, electrooculography (EOG), electromyography (EMG), and

electrocardiography (ECG) were not used. However, they could

be used in the future to assess neonatal sleep with various

input signals. Further improvement could be accomplished by

using Transformer (Vaswani et al., 2017) rather than CNN to

learn. Additionally, all subjects were randomly divided into a

set of training subjects and a set of test subjects in this study.

Future research can increase the accuracy of the classification

of neonatal sleep stages by incorporating an independent set

of subjects in the training and testing phases. As a result, the

performance of MFE in the context of sleep staging should

be compared to Multiscale Dispersion Entropy and Multiscale

Fluctuation Dispersion Entropy. A number of studies have shown

that these methods are better at detecting meaningful patterns

(Zandbagleh et al., 2023; Chakraborty et al., 2021). In addition

to potential overfitting from the Multi-Branch CNN, its limited

capacity for hierarchical temporal learning may have made it

difficult to capture long-range EEG signal dependencies. Further,

its inefficiency in learning sequential patterns and its sensitivity

to signal variability could have adversely impacted generalization

and contextual understanding. In comparison to 1D CNNs, LSTM

models generally perform better when dealing with time series data.

LSTM networks, on the other hand, yield more accurate results

by retaining long-term dependencies, interpreting context over

sequences, and capturing fine-scale changes in EEG data, making

them more suitable for effectively identifying five distinct sleep

states. With the integration and evaluation of these techniques,

future research can enhance sleep staging algorithms.

6 Conclusion

Using an LSTM classifier that takes into account features in the

time and frequency domains, this study proposes an efficient and

accurate classification of neonatal sleep states based on EEG, using

single and multi-channel EEG data. A combination of Detrended

Fluctuation Analysis (DFA), Multiscale Fluctuation Entropy, and

Lyapunov Exponents is used to analyze the data in this study. PCA

is used to select features.With the use of both single-channel as well

as multiple-channel EEG data, it achieves favorable and comparable
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FIGURE 7

Accuracy line graphs for the channels: (a) F3, (b) F4, (c) C3, (d) C4, (e) P3, (f) P4, (g) T3, (h) T4, (i) Left side, and (j) Right side.

results. The number and placement of channels play a critical

role in the optimal electrode configuration for the assessment of

neonatal sleep stages and the most effective channels in five states.

Using a variety of electrode setups, the purpose of this study was

to evaluate the accuracy of sleep stage classification for neonatal

sleep studies in order to reduce complexity and cost. The frontal
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FIGURE 8

Validation accuracy curves for the channels: (a) C3 and (b) Left side.

TABLE 5 Comparison of existing and proposed methods.

References Algorithms No. of
channels

Accuracy Kappa

Ansari et al.

(2020)

Conv-2d 8 52.3% 0.41

Ansari et al.

(2018)

Conv-2d 8 53.5% 0.48

Zhu et al.

(2023)

MS-HNN 1 75.4% 0.72

Zhu et al.

(2023)

MS-CNN 1 69.3% 0.65

Supratak et al.

(2017)

DeepSleepNet 2 69.8% 0.64

Eldele et al.

(2021)

AttnSleep 1 68.0% 0.65

Siddiqa et al.

(2024)

Multi-Branch

CNN

1 74.27% 0.61

Siddiqa et al.

(2024)

Multi-Branch

CNN

4 75.36% 0.63

This study LSTM 1 80.75%±
0.82%

0.76

This study LSTM 4 82.71%±
0.88%

0.78

and central EEG channels worked better independently or jointly,

based on the results. In the future, neonate sleep staging can be

simplified, comfort levels can be increased, and data analysis can

be sped up by reducing the number of channels. Through sleep

analysis, it is possible to detect sleep-related abnormalities, such

as sleep disorders, early, allowing for more effective neonate care

and monitoring of sleep. Also, the experimental results suggest

that the proposed approach captures information effectively

within a single channel, reducing computing load by reducing

the number of channels, while maintaining good performance.

Furthermore, including linear and non-linear features in the time

and frequency domains of neonatal sleep staging can improve

accuracy and provide insights into newborn sleep dynamics

and irregularities.
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