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Fitting models to experimental intracellular data is challenging. While detailed 
conductance-based models are difficult to train, phenomenological statistical 
models often fail to capture the rich intrinsic dynamics of circuits such as 
central pattern generators (CPGs). A recent trend has been to employ tools 
from deep learning to obtain data-driven models that can quantitatively learn 
intracellular dynamics from experimental data. This paper addresses the general 
questions of modeling, training, and interpreting a large class of such models 
in the context of estimating the dynamics of a neural circuit. In particular, we 
use recently introduced Recurrent Mechanistic Models to predict the dynamics 
of a Half-Center Oscillator (HCO), a type of CPG. We construct the HCO by 
interconnecting two neurons in the Stomatogastric Ganglion using the dynamic 
clamp experimental protocol. This allows us to gather ground truth synaptic 
currents, which the model is able to predict–even though these currents are not 
used during training. We empirically assess the speed and performance of the 
training methods of teacher forcing, multiple shooting, and generalized teacher 
forcing, which we present in a unified fashion tailored to data-driven models 
with explicit membrane voltage variables. From a theoretical perspective, we 
show that a key contraction condition in data-driven dynamics guarantees the 
applicability of these training methods. We also show that this condition enables 
the derivation of data-driven frequency-dependent conductances, making it 
possible to infer the excitability profile of a real neuronal circuit using a 
trained model. 

KEYWORDS 

central pattern generator, artificial neural networks, machine learning, neural circuits, 
electrophysiology, system identification, dynamic clamp 

1 Introduction 

Constraining data-driven predictive models of biological neuronal circuits presents 
significant challenges. Neuronal circuits exhibit substantial variability in connectivity 
strength and intrinsic physiological characteristics across specimens, and they operate 
under time-varying inputs and uncertainties (Schulz et al., 2006, 2007; Marder, 2012; 
Anwar et al., 2022). These challenges become particularly visible in circuits with complex 
intrinsic dynamics, such as Central Pattern Generators (CPGs), where the interplay of 
membrane currents across multiple timescales defines circuit-level properties (Goaillard 
et al., 2009; Grashow et al., 2009; Franci et al., 2017; Drion et al., 2018), but the same issues 
are also at play in circuits whose outputs are less well-defined. 
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Until recently, two broad classes of modeling approaches 
were used to predict the activity of neural circuits. The first 
uses phenomenological stochastic neural dynamics to predict 
spike timing, sometimes with remarkable success (Paninski 
et al., 2005; Gerstner and Naud, 2009; Gerstner et al., 2014; 
Pillow and Park, 2016). These so-called statistical models can 
potentially fit data very well, but their general-purpose integrate-
and-fire structure limits mechanistic insight; in particular this 
approach cannot capture the rich intrinsic dynamics present 
in circuits such as CPGs. Additionally, with few exceptions 
(e.g., Latimer et al., 2019), statistical models fail to account 
for the mechanistic effects of membrane conductances, which 
limits their interpretability and prevents their use in closed-
loop experiments involving dynamic clamp or neuromodulation 
(Sharp et al., 1993; Prinz et al., 2004a). The second class 
of modeling approaches attempts to constrain biophysically 
detailed models to experimental data, and a number of methods 
have been developed for that purpose (Huys et al., 2006; 
Abarbanel et al., 2009; Buhry et al., 2011; Meliza et al., 2014; 
Lueckmann et al., 2017; Abu-Hassan et al., 2019; Alonso and 
Marder, 2019; Taylor et al., 2020; Gonçalves et al., 2020; Wells 
et al., 2024). Detailed models are interpretable, but suffer from 
excessive complexity that makes it difficult to fit them to 
data efficiently (Geit et al., 2008). In addition, no consensus 
exists on how much detail can be safely ignored while still 
capturing essential dynamical properties and accounting for 
experimentally observed constraints (Almog and Korngreen, 
2016). Existing methodologies require precise measurements 
and high computational resources, making it impractical to 
use within the time constraints of an experiment. Finally, 
these models may capture plausible parameter subspaces of 
misspecified models rather than the “true” parameters (Prinz et al., 
2004b). 

To address these challenges, a third class of modeling 
approaches has recently emerged that leverages the power of 
artificial neural networks (ANNs) and deep learning to efficiently 
capture the complexity of intracellular dynamics in a quantitative 
fashion (Brenner et al., 2022; Durstewitz et al., 2023; Aguiar et al., 
2024; Burghi et al., 2025a). In such approaches, the vector field 
governing the membrane dynamics is parametrized using specific 
types of ANNs. The resulting models can therefore be interpreted 
as particular classes of Recurrent Neural Networks (RNNs) or 
Universal Differential Equations (Chen et al., 2018; Rackauckas 
et al., 2021), depending on whether time is treated as discrete 
or continuous. The goal of the present work is to understand 
how to efficiently train discrete-time models from this broad data-
driven class, and how to interpret them in electrophysiological 
terms. To answer these questions, we combine theoretical analysis 
with empirical investigation. To pursue the latter, we work with 
the recently introduced class of Recurrent Mechanistic Models 
or RMMs (Burghi et al., 2025a), a data-driven architecture based 
on structured state space models (Gu et al., 2022) and ANNs 
which is geared for rapid estimation of intracellular neuronal 
dynamics. 

Our empirical results show that RMMs can be trained to 
quantitatively predict the membrane voltage and synaptic currents 
in a non-trivial small neuronal circuit known as a Half-Center 

Oscillator (HCO). This circuit, composed of two reciprocally 
inhibitory neurons, autonomously generates anti-phasic bursting 
activity, and is the basis for oscillatory patterns in biology, such 
as the leech heartbeat (Calabrese et al., 1995; Wenning et al., 
2004; Calabrese and Marder, 2024). Due to the complex intrinsic 
dynamics and extensive morphology of the cells involved in 
HCOs, fitting quantitatively predictive models to those circuits 
has historically been extremely challenging, even with access 
to high-performance computing and state-of-the-art numerical 
methods. While HCOs exist in nature, in this work we obtain 
one using the dynamic clamp technique (Sharp et al., 1993). 
This is done by creating artificial synapses between two Gastric 
Mill (GM) neurons in the Stomatogastric Ganglion of the 
crab Cancer borealis, similarly to previous work (Sharp et al., 
1996; Grashow et al., 2009; Morozova et al., 2022). Defining 
the synaptic currents of the circuit ourselves provides ground 
truth connectivity data, which is used not for training but 
rather to assess the ability of RMMs to predict internal circuit 
connectivity. We show that RMMs can quantitatively predict 
synaptic currents from voltage measurements alone, that prediction 
accuracy depends on training algorithms, and that the accuracy 
improves when biophysical-like priors are introduced in the 
model. 

A key contribution of this work is an empirical assessment of 
the speed and predictive performance of the training methods of 
teacher forcing (TF; Doya, 1992), multiple shooting (MS; Ribeiro 
et al., 2020b), and generalized teacher forcing (GTF; Doya, 1992; 
Abarbanel et al., 2009; Hess et al., 2023), which we present in 
a unified fashion tailored to models with an explicit membrane 
voltage variable (such as RMMs). From the theoretical perspective, 
we show how a key contraction property (Lohmiller and Slotine, 
1998) of the internal neuronal dynamics guarantees the well-
posedness of all three aforementioned training methods. The 
contraction property, which can be verified in a data-driven model 
by means of linear matrix inequalities, has been exploited in 
control theory for system identification (Manchester et al., 2021), 
for robustly learning data-driven models (Revay et al., 2024), and 
for estimating conductance-based models in real-time (Burghi and 
Sepulchre, 2024). 

We also show that the contraction property enables a rigorous 
analysis of RNN-based data-driven models in terms of frequency-
dependent conductances, which generalize the familiar neuronal 
input conductance, and are related to the sensitivity functions of 
control theory (Franci et al., 2019). Using RMMs, we obtain and 
interpret data-driven frequency-dependent conductances of the 
experimental HCO circuit. 

In studying RNN-based methods using RMMs as a 
representative example, our results also extend the results of 
Burghi et al. (2025a), which focused on single-compartment 
dynamics. We find that our flexible, lightweight RMM approach 
enables us to build a predictive model of a complex neuronal 
circuit within the timeframe of an experiment. This paves the 
way for closed-loop, model-based manipulations of neural 
activity. Crucially, the model structure provides interpretable 
measurements of the circuit in quasi-real-time, facilitating novel 
types of diagnostic and scientific experiments on living neural 
circuits. 
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2 Results 

Our results address three key questions related to data-
driven neuronal circuit models where the membrane dynamics of 
individual neurons is parametrized with artificial neural networks 
(ANNs). First, how to best learn such models efficiently, that is, 
how to formulate an optimization algorithm capable of rapidly 
delivering good predictive models of the real neuronal circuit 
activity. Second, whether such models can accurately predict 
unmeasured synaptic currents inside a neuronal circuit. Third, how 
to interpret such a model in terms of biophysically meaningful 
quantities. 

Our results are relevant to a wide class of data-driven models 
with ANN-based membrane dynamics. To facilitate working with 
sampled data, models are formulated in discrete time. The input-
output data used to train a model is given by a sequence {vt , ut}
of vector-valued measured intracellular membrane voltages vt and 
vector-valued measured injected electrical currents ut , observed at 
discrete time points t ∈ N. The dynamics of a circuit model with 
n ≥ 1 neurons is described by the discrete-time state-space model 

C ̂
vt+1 − v̂t 

δ 
= −hθ (v̂t , xt) + ut (1a) 

xt+1 = fη(v̂t , xt) (1b) 

where v̂t = (v̂1,t , . . . , v̂n,t) is a state vector gathering all predicted 
membrane voltages, ut = (u1,t , . . . , un,t) is an input vector 
gathering all (measured) injected currents, and xt is a state vector 
gathering internal (also known as hidden or latent) state variables. 
The system is parametrized by a fixed sampling period δ >  0, a 
learnable diagonal membrane capacitance matrix C, and learnable 
piecewise differentiable mappings fη and hθ , whose parameters are 
the vectors θ and η, respectively. Notice that C can in principle be 
estimated separately through voltage-clamp (Taylor, 2012); this is 
not pursued in our paper. 

The motivation behind Equation 1 comes from the simplest of 
all mechanistic constraints: the membrane dynamics is assumed to 
be reasonably modeled by Kirchoff’s laws. Equation 1 thus describes 
the balance between a capacitive current 

C ˙̂v ≈ Cδ−1(v̂t+1 − v̂t), 

an injected current u, and a number of ionic and synaptic 
currents whose sum total is given by the output of hθ . We are 
interested in models where the functions hθ and fη are constructed 
with ANNs. Models that follow this idea are Piecewise Linear 
Recurrent Neural Networks (Durstewitz et al., 2023), Recurrent 
Mechanistic Models (Burghi et al., 2025a), and traditional 
Recurrent Neural Networks (RNNs) where some of the states are 
explicitly identified with membrane voltages. All such models can 
be written in the form Equation 1 by re-labeling their states and re-
parametrizing learnable variables. Notice that such models can be 
formulated in continuous-time following the frameworks of Neural 
(Chen et al., 2018) and Universal (Rackauckas et al., 2021) ODEs. 
Discretized conductance-based models in the Hodgkin-Huxley 
style (Izhikevich, 2007; Hodgkin and Huxley, 1952) fit the structure 
of Equation 1, but do not traditionally incorporate ANNs. The 
dynamics of HH-type ionic currents are instead based on detailed 

modeling assumptions informed by voltage-clamp experiments. 
Abandoning the HH formalism raises the question of how to gain 
relevant insights about the physiology of a neuronal circuit. This is 
addressed at the end of Results. 

Over the next sections we describe different training methods 
used for inferring the dynamics of an arbitrary neural circuit 
using models of the form Equation 1: teacher forcing (TF), 
multiple shooting (MS), and generalized teacher forcing (GTF). 
Our experimental results assess the efficiency of TF, MS, and GTF 
by working with a Half-Center Oscillator circuit, which introduced 
next. 

2.1 Model of a half-center oscillator 

Concretely, we consider the neuronal circuit given by the 
experimental preparation illustrated in Figure 1A. The two-neuron 
circuit, which is commonly known as a Half-Center Oscillator 
(HCO), consists of two cells with measured membrane voltages 
v1,t and v2,t , interconnected via inhibitory synapses. In naturally 
occurring HCOs, synaptic currents are typically not measured due 
to the difficulty of obtaining them while the circuit is intact. For this 
reason, and to provide ground truth data against which synaptic 
current predictions of data-driven models can be validated, the 
HCO preparation used in this paper is created artificially with 
dynamic clamp (Sharp et al., 1993). Dynamic clamp is used to 
inject two electrical current components into the membrane of each 
neuron: a virtual inhibitory synaptic current Iij syn,t and a virtual 
hyperpolarization-induced current Ii h,t. In addition to dynamic 
clamp currents, each neuron is also excited with a noisy injected 
current ui,t , which is used to explore the dynamics of the circuit 
and ensure that the data is informative enough for the purposes of 
data-driven modeling. See applied current in Methods for details. 
The particular HCO used in this paper is created using two cells 
in the Stomatogasteric Ganglion of the crab, and the procedure 
for forming this circuit with dynamic clamp is can be found in 
Morozova et al. (2022). A diagram of the resulting HCO is shown in 
Figure 1B, where artificial circuit elements introduced by dynamic 
clamp are depicted in color, while biological elements are depicted 
in gray. 

To estimate the HCO dynamics, we use the Recurrent 
Mechanistic Model (RMM) framework of Burghi et al. (2025a). The  
RMM used throughout this paper is depicted in Figure 1C. It is  
described in succinct form by 

C ̂
vt+1 − v̂t 

δ 
= −mlpθ (v̂t , xt) + ut 

xt+1 = Axt + Bv̂t 
(2) 

where A and B are matrices of the appropriate dimensions, and 
mlpθ (v̂t , xt) is a multi-layer perceptron (MLP) whose inputs are 
given by v̂t = (v̂1,t , v̂2,t) and xt . For a description of the model 
in terms of individual circuit neurons, see modeling details in 
Methods. It can be seen that the RMM in Equation 2 greatly 
constrains the more general formulation (Equation 1) by imposing 
a linear state-space dynamics of the internal states xt , and by 
imposing a feed-forward artificial neural network structure on hθ . 
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FIGURE 1 

Predicting the intracellular membrane voltages and synaptic currents of a real neuronal circuit. (A) we estimate the dynamics of a Half-Center 
Oscillator (HCO) constructed experimentally with dynamic clamp. Two neurons from the Stomatogastric Ganglion of Cancer borealis are given 
virtual hyperpolarization-induced intrinsic currents Ii h and virtual inhibitory synaptic currents Iij syn , which are implemented via dynamic clamp Prinz 
et al. (2004a) (see Methods). In addition to the dynamic clamp currents, a noisy current ui is also injected in each neuron. Illustration adapted from 
Morozova et al. (2022). (B) A diagram of the resulting HCO. Dynamic clamp currents are pictured in color; naturally occurring ionic currents are 
pictured in gray. (C) Conceptual diagram of a data-driven model used to learn the HCO dynamics, with a detailed diagram of neuron 1 on the right. 
The membrane dynamics of each of the neurons in the HCO is modeled using a combination of linear state-space models and multi-layer 
perceptrons, following the Recurrent Mechanistc Model paradigm of Burghi et al. (2025a) (see Methods for the specific model used in this figure). 
The data used to learn the model are the measured membrane voltages v1 and v2 and the noisy injected currents u1 and u2 . 

Training the RMM means finding good values for C and θ 
so that the model is able to predict the response of the HCO 
to the injected noisy currents u1,t and u2,t . For our purposes, 
the HCO response consists of the measured voltages v1,t and v2,t 
(which are used during training), and the synaptic currents I12 

syn,t 
and I21 

syn,t (which are not). Training the RMM allows us to assess 
various training algorithms that can also be used to train other 
types of data-driven models. RMMs are convenient for that purpose 
since they can be rapidly trained. In the results below we have 
intentionally limited the size of the RMM, as well as the amount 
of data used in training, so that a meaningful comparison between 
learning methods could be pursued. 

2.2 Training data-driven models: a unified 
perspective 

Training data-driven models of the form Equation 1 to learn 
complex dynamics such as spiking and bursting is in general not 

trivial. This is because the forward dynamics of neuronal models, 
i.e. the mapping from applied current (ut) to predicted membrane 
voltage (v̂t), is highly sensitive to changes in the model’s parameters. 
The sensitivity leads to the problem of exploding gradients (Pascanu 
et al., 2013) when one approaches the learning problem naively. 
To avoid exploding gradients, the standard approach for training 
neuronal models is to exploit the structure given by Equation 1 
and employ some variation or generalization of the method of 
teacher forcing (Doya, 1992). We approach the problem of training 
neuronal data-driven models from a unified perspective, relating 
the methods of teacher forcing, multiple shooting, and generalized 
teacher forcing to each other. Throughout this section, we consider 
an exponential contraction condition (Lohmiller and Slotine, 1998) 
on the internal dynamics of the generic model (Equation 1), which 
we show to be sufficient for the applicability of these training 
methods. To make this paper self-contained, this condition is 
recapped in the Methods section. In what follows, vt and ut 
denote the experimentally recorded voltage and applied current, 
respectively. 

Frontiers in Computational Neuroscience 04 frontiersin.org 

https://doi.org/10.3389/fncom.2025.1515194
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Burghi et al. 10.3389/fncom.2025.1515194 

2.2.1 Recurrent and feed-forward teacher 
forcing (TF) 

The idea in the teacher forcing method is to train a model of the 
form Equation 1 by solving the optimization problem 

min 
θ ,η,ξ ,C 

1 
N 

N−1 

t=0 

vt+1 − v̌t+1 2 + rρ(θ , η) (3a) 

subject to v̌t+1 = vt + δC−1(−hθ (vt , x̌t) + ut) (3b) 

x̌t+1 = fη(vt , x̌t), x̌0 = ξ (3c) 

where rρ(θ , η) is a regularization term, and ρ is a positive 
hyperparameter. We shall use rρ(θ , η) = ρθ2 + ρη2 

throughout the paper. Equation 3 corresponds to minimizing the 
squared one-step-ahead voltage prediction error, with the one-
step-ahead prediction v̌t+1 obtained by forcing the vector field 
of the model (Equation 1) with the “teacher” signal vt . Notice 
that it is crucial to distinguish the predictions used for training 
(v̌t), computed with Equations 3b–3c, from the predictions of the 
simulated model (v̂t), computed with Equation 1. Teacher forcing 
uses the former as a means to improve the latter, and it should 
be emphasized that good v̌t predictions do not necessarily imply 
good v̂t predictions. Letting L(θ , η, ξ , C) denote the overall loss 
function of Equation 3, obtained by simulating Equation 3b–3c and 
substituting the result in Equation 3a, the problem is usually solved 
using some variant of the basic gradient descent (GD) method, 
which in our context can be written as 

θk+1 = θk − β∇θL(θk, ηk, ξk) (4) 

for θ , and analogously for η, ξ , and C (here, β is the step size and 
k = 0, 1, 2, . . .  are the training epochs). In non-convex problems, 
two conditions are necessary for finding good data-driven model 
parameters with gradient descent or any of its enhanced versions, 
such as ADAM (Kingma and Ba, 2017). First, one must choose 
a reasonable set of initial training parameters ξ0, θ0, η0, and C0. 
Second, one must ensure that the gradients in ∇L(θk, ηk, ξk) remain 
well-behaved throughout training. 

TF as stated in Equation 3 involves temporal recurrence in the 
dynamic constraints (Equation 3b–3c). Consequently, computing 
the gradients in Equation 4 requires backpropagating through time, 
which might be computationally costly depending on the length 
of the dataset. Recurrence can be eliminated from the problem 
by foregoing the learning of the initial state ξ and the internal 
dynamics parameters η. If both ξ and η remain constant during 
training, TF becomes a feed-forward learning problem. One can 
then divide training into two steps: first, simulate 

x̌ 0 
t+1 = fη0 (vt , x̌ 0 

t ), x̌ 0 
0 = ξ0 (5) 

for fixed η0 and ξ0, then, solve the (unconstrained) problem 

min 
θ ,C 

1 
N 

N−1 

t=0 

vt+1 − vt − δC−1(−hθ (vt , x̌ 0 
t ) + ut) 2 + rρ(θ) (6) 

using the fixed time series of internal states x̌0t . We say  Equation 
6 is a feed-forward problem because it reduces to training the 

mapping C−1(hθ (vt , x̌0t ) + ut), which in data-driven models such 
as Equation 2 will usually contain feed-forward ANNs. Solving this 
problem is significantly faster than solving its recurrent counterpart 
(Equation 3), since backpropagating through time is no longer 
required—backpropagation is limited to the layers of hθ . This idea, 
which we call feed-forward TF, has previously been used to train 
conductance-based models by taking existing ion channel models, 
and training the voltage dynamics with fixed ion channel kinetics 
(Huys et al., 2006). 

An exponential contraction condition of the internal states 
(see contraction theory in Methods) guarantees that both recurrent 
and feed-forward versions of TF are well-posed. In the former, 
it precludes exploding gradients, since one can show that if the 
internal dynamics is contracting, uniformly in v and η, then the loss 
gradients ∇L remain bounded. In addition, in both versions of TF 
above, contraction helps to improve learning performance by using 
warmed up initial conditions ξ0 (see training details in Methods). 

In feed-forward TF, two tricks can be employed to speed up 
training and yield models that generalize better on unseen data. 
First, one can use mini-batching (Li et al., 2014) to perform GD 
parameter updates that only use part of the dataset. This is done by 
taking gradients of partial sums of the total loss function (Equation 
6), resulting in better exploration of the loss landscape. Second, 
one can shuffle (Meng et al., 2019) the dataset (that is, randomly 
permute the data points) before partitioning the summation in the 
cost (Equation 6) into mini-batches; this can sometimes lead to 
better generalization. In Figure 2 we apply feed-forward TF to the 
RMM data-driven model of the HCO, and compare the effect of 
mini-batch size and shuffling on the predictive power of trained 
models. Models are obtained with ρ = 5×10−8 , which was selected 
after a simple grid search over regularization constants. Validation 
traces are shown in terms of a modified cosine similarity metric 
which is applied after filtering and smoothing out the spikes in 
the dataset, see Methods. It is seen that in general, increasing the 
number of batches in a dataset (decreasing the mini-batch size) is 
beneficial up to a point. It can also be seen that shuffling the dataset 
during training results in faster improvements on the validation 
metric, but quicker overfitting due to the significant increase in 
convergence speed. 

The most distinctive aspect of TF training is its susceptibility 
to overfitting, which can be observed in Figure 2A and is more 
prominent when shuffling is enabled. This is because the TF 
problem in Equation 3a or 6 minimizes discrepancies in the 
map (the right-hand side) of the voltage dynamics in Equation 
1, whereas the validation metric assesses discrepancies in the 
simulated voltage trace. By saving “snapshots” of trained models 
during training with feed-forward TF, overfitting can be avoided, 
and reasonably good models obtained in a short amount of time. 
This is shown in Figure 2B, where the performance of the best 
model over the course of training for for different number of 
mini-batches is plotted. As Figure 2C shows, a validation metric of 
around 0.73 results in visually adequate good predictions, with a 

few intra-burst spikes of one of the HCO neurons being missed over 
a few bursts. Increasing model size, choosing a better exploratory 
injected current ut , and conducting an extensive hyperparameter 
search are all strategies that can be pursued to improve models 
obtained with TF. 
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FIGURE 2 

Effect of number of mini-batches and dataset shuffling in feed-forward teacher forcing (TF). To assess predictive performance of trained models, we 
use a modified cosine similarity metric ranging from 0 (no spike alignment) to 1 (perfect spike alignment), see training details in Methods. (A) TF 
training losses over epochs, with shuffling disabled and enabled, for varying numbers of mini-batches. In both cases, increasing the number of 
mini-batches (i.e., reducing batch size) generally improves convergence speed of training loss, since more gradient descent steps are taken per 
epoch. Smaller batch sizes (more batches) accelerate convergence but overfit more quickly, as shown by the drop in validation metric after an initial 
rise. In contrast, larger batch sizes (fewer batches) converge more slowly but yield stabler validation results from where to choose a suitable model 
(models are saved every 5 epochs). Overfitting in TF is an expected consequence of the difference between training and validation objectives. A first 
sharp drop in TF losses leads to a sharp increase in predictive performance, while a second sharp drop leads to overfitting. Shuffling leads to a 
significant increase in convergence speed and quicker overfitting. (B) Best validation metric attained during training for each mini-batch 
configuration, comparing shuffled (bottom) and non-shuffled (top) datasets. (C) Target voltage traces (held-out data, in black) and predicted voltage 
traces (in green) obtained by simulating the best HCO data-driven model (RMM) after TF training (mini-batch size: 50; shuffling enabled). 

2.2.2 Multiple shooting trades off speed for 
performance 

Teacher forcing is significantly limited by the quality of 
the data. This becomes evident when one interprets the loss 
(Equation 6) in terms of a target voltage difference vt+1 − vt . 
This difference is a high-pass filtering operation that amplifies the 
variance in measurement noise, which is ubiquitously present in 
neurophysiological applications. To deal with this problem, one 
must take into account the recurrence between voltage and internal 
dynamics, which is accomplished by generalizing teacher forcing. 
One way to do so is to employ multiple shooting, which is based 
on a classical method for finding numerical solutions of differential 
equations (Ribeiro et al., 2020b). 

Thea idea in multiple shooting is to divide a dataset of length 
N into Ns = N/s intervals or “shots” of size s > 1, and then 
train the model by simulating it in parallel over each of the shots 
separately (we use · for the round-down operator). Figure 3A 
illustrates this idea. Mathematically, when applied to models of the 

form Equation 1, multiple shooting takes the form 

min 
θ ,η,ξ (n),υ(n),C 

1 

sNs 

Ns−1 

n=0 

s−1 

t=0 

vt+ns − v̌(n) t  2 + rρ(θ , η) 

+ ρvv̌(n) s − υ(n+1) 2 + ρxx̌(n) s − ξ (n+1)2 
D (7a) 

subject to v̌(n) t+1 = v̌(n) t + δC−1(−hθ (v̌
(n) 
t , x̌(n) t ) + ut+ns), 

v̌(n) 0 = υ(n) (7b) 

x̌(n) t+1 = fη(v̌
(n) 
t , x̌(n) t ), x̌(n) 0 = ξ (n) (7c) 

where Equations 7b–7c describe the Ns simulations involved in 
the learning algorithm, run for t = 0, 1, . . . , s − 1. In Equation 
7a, the initial conditions of the voltage and internal states in each 
shot, υ(n) and ξ (n) respectively, must be learned. Assuming that 
the contraction condition holds, initial GD conditions ξ (n) 0 can be 
chosen effectively by warming up the model (see Methods); for 
voltage, one can simply take υ(n) 

0 = vns. When s = N, multiple 
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FIGURE 3 

Training and validating the RMM (Equation 2) using multiple shooting, which trades off training speed for predictive performance. Here, modified 
angular separation in the interval [0, 1] is used as validation metric, see training details in Methods (A) Illustration of predictive “shots” during multiple 
shooting training. As training progresses, initial shot conditions as well as model parameters are learned. (B) Multiple shooting training loss (top) and 
modified angular separation (validation metric) of trained models, plotted for four different shot sizes. Increasing the shot length, training losses and  
training time increase, but predictive power of trained models (as measured by angular separation) may also increase. One advantage of Multiple 
shooting over Teacher Forcing is the relatively stable and monotonic increase in validation performance as a function of training epoch. (C) 
Maximum validation metric attained for each of the shot sizes plotted, and voltage traces of validation target (held-off data) and predictions of the 
best model (shot size of 30 samples). All models were trained starting from random MLP weights (Methods). 

shooting becomes equivalent to minimizing the discrepancy 
between the measured v and the simulated ˆ v from Equation 1 over 
the entire dataset, which requires backpropagating through many 
bursts and spikes, and likely leads to exploding gradients. For s = 1, 
and fixed υ(n) = vn, multiple shooting becomes equivalent to 
the dynamic TF problem (Equation 3a). Hence multiple shooting 
provides a means to trade off the speed of feed-forward TF for the 
enhanced predictive power of models trained with backpropagation 
through time, while avoiding exploding gradients due to the limited 
simulation horizon of each shot (Ribeiro et al., 2020a). It is worth 
noticing the term involving ρx > 0 in the cost function (Equation 
7a): it is a regularizing term that attempts to drive the final internal 
states in each shot toward the initial states of the next shot. 

When using multiple shooting in practice, it is not obvious 
how to choose values for the hyperparameters s (shot length), ρ 
(parameter regularization) and ρv, ρx (final state regularization). 
Such questions are nearly impossible to answer theoretically, 
and one must resort to using hyperparameters that are found 
empirically to be the best for fitting a given neuronal circuit. Fixing 
the regularization constants ρ = 5 × 10−9 , and ρv = ρx = 500, 

Figure 3 illustrates the effect of increasing the shot length s on 
training and validation with multiple shooting. In Figure 3B, It can  
be seen that by increasing the shot length s, predictive power of 
the models may increase, but this comes at the cost of increased 
training times. In particular, for the hyperparameters tested in 
this paper, MS results in a better model than TF (modified cosine 
similarity of 0.8 for MS versus 0.73 for TF, cf Figures 2, 3). One 
advantage of multiple shooting over TF is the fact that increases 
in the validation metric are relatively monotonic as a function of 
epochs. This means that, to obtain a good model, one can save 
“model snapshots” at a lower rate during training. 

2.2.3 Generalized teacher forcing yields a filter 
for the membrane dynamics 

Generalized teacher forcing (GTF), first suggested by Doya 
(1992) and recently revisited in Hess et al. (2023), extends TF 
by forcing the model dynamics with a convex combination of 
the data and the model’s outputs. GTF was formulated with the 
same goal as multiple shooting: to avoid exploding gradients when 
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FIGURE 4 

Generalized teacher forcing yields a data-driven filter or observer for the voltage dynamics. (A) learning curves when training the RMM (Equation 2) 
using GTF in combination with multiple shooting (shot length s = 20 samples). (B) There is no obvious benefit to using GTF if the purpose is to use 
data-driven models solely for simulation: trained model performance deteriorates for positive values of γ . (C) Simulation of trained model with γ = 0 
(equivalent to MS). (D) Simulation of the filter equations for the model trained with GTF and γ = 0.05. GTF provides a nonlinear filter of the voltage 
dynamics which can be used to improve the quality of recordings, as well as to obtain better estimates of the internal states of the model. 

learning recurrent models. When specialized to neuronal data-
driven models, GTF can be formulated by replacing the voltage data 
vt in the TF problem (Equation 3) by a convex combination of vt 
and voltage predictions v̌t . GTF has also been proposed, although 
not under that name, to learn continuous-time conductance-based 
models in Abarbanel et al. (2009) (see also Brookings et al., 2014). 
To learn the dynamics of discrete-time neuronal models, the GTF 
formulations of both Doya (1992) and Abarbanel et al. (2009) can 
be reconciled through the following problem: 

min 
θ ,η,ξ 

1
N 

N−1 

t=0 

vt − v̌t 2 + rρ(θ , η) (8a) 

subject to v̌− 
t+1 = v̌t + δC−1  −hθ (v̌t , x̌t) + ut 

 
(8b) 

x̌t+1 = fη(v̌t , x̌t) (8c) 

v̌t = v̌− 
t + γ (vt − v̌− 

t ) (8d) 

v̌− 
0 = v0, x̌0 = ξ 

where γ ∈ (0, 1) is a hyperparameter of the problem. Notice that 
setting γ = 0 turns (Equation 8) into a standard simulation-
error system identification problem (Ljung, 1999), usually solved 
with GD and backpropagation through time; setting γ = 1 
recovers the TF problem (Equation 3). Notice also that Equation 
8d, which implements a convex combination of measurements and 
predictions, can also be interpreted as an update of the prediction 
v̌−t+1 using the data vt+1. The latter allows interpreting GTF for 
neuronal systems a method to learn a filter or observer (signal 
processing and control engineering terminologies, respectively) for 

the neuronal membrane voltage. This is how Abarbanel et al. (2009) 
interpreted their continuous-time version of the problem, which 
was applied to conductance-based models. The control theoretic 
interpretation allows one to explore further generalizations of 
teacher forcing involving, for instance, the Extended Kalman Filter, 
in which γ is made adaptive, see Burghi and Sepulchre (2024). 

Because GTF in neuronal models exploits measured voltages 
but not measured internal states (the latter are not available), 
exploding gradients can in general still be observed during 
training. However, here we find another benefit of the contraction 
assumption (see contraction theory in Methods). If a neuronal data-
driven model possesses a uniformly contracting internal dynamics, 
then there is a value of γ sufficiently close to 1 such that exploding 
gradients are precluded during gradient descent. But even if γ is 
chosen to avoid exploding gradients, one may still find that solving 
the problem (Equation 8) takes too much time, especially when the 
dataset length N is large. For that reason, one can combine GTF 
with multiple shooting. Doing so is trivial: the multiple shooting 
cost (Equation 7a) can be obtained by partitioning the GTF cost 
(Equation 8a) according to a desired shot length, and using the 
GTF constraints with γ = 0 within each shot. The combined GTF-
multiple-shooting problem for γ > 0 is obtained in the same way 
by keeping the GTF constraints (Equations 8b–8d) with γ > 0. 

An important question is whether combining GTF with 
multiple shooting yields better models than multiple shooting 
alone. Figure 4A illustrates typical training curves obtained with the 
combined GTF-multiple-shooting method, for different values of 
γ . It can be seen that increasing the value of γ > 0 in general leads 
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FIGURE 5 

Synaptic current predictions in data-driven models are affected by training algorithms and model priors. Leftmost two panels: membrane voltage 
and synaptic current predictions of fully data-driven RMMs trained with feed-forward Teacher Forcing (TF) and Multiple Shooting (MS). Both methods 
yield a model with reasonable voltage prediction accuracy, with modified cosine similarities (see Methods) of around 0.73 and 0.8, respectively. 
Predictions of the synaptic currents are reasonably good in terms of magnitude and timing, but show a discrepancy with respect to the shape of the 
ground truth currents recorded during dynamic clamp (which were not used during training). This discrepancy can be attributed to degeneracy 
between intrinsic and synaptic data-driven currents. Rightmost panel: Adding biophysical priors to the data-driven architecture improves the shape 
of synaptic current predictions. Using TF, we trained an RMM (Burghi et al., 2025a) where synaptic conductances (rather than currents) are learned by 
artificial neural networks (see Methods). Biophysical priors given by the reversal potential and ANN constraints improves synaptic current predictions. 

to poorer validation performance. This performance deterioration 
can be explained by the way we validate the models: in validation, 
models are not allowed to use the recorded voltages, and hence to 
obtain the validation curves of Figure 4A we have used predictions 
based on simulation of Equation 2, which does not contain the 
update step (Equation 8d) used to train a model with GTF. In other 
words, we have trained such models with γ > 0, but validated them 
with γ = 0; a loss in performance is hence expected. This empirical 
observation seemingly questions the usefulness of GTF, at least in 
the context where it is used in conjunction with multiple shooting 
for speeding up training times. 

In fact, GTF should not be contrasted with MS, but rather be 
viewed as method for training a discrete-time nonlinear filter of 
the membrane dynamics, which can be used to obtain improved 
measurements of the membrane potential, as well as improved 
estimates of its internal states. The filter is simply the Luenberger 
observer given by Equations 8b–8d. Figures 4C, D illustrate this 
point: we can see that the predictions v̂t of a simulation model 

(γ = 0.0) obtained with GTF can be drastically improved by 
generating predictions v̌t from the trained filter (γ = 0.05). The 
fact that very small values of γ result in good filter predictions 
suggests that predictive discrepancies in models trained with TF or 
multiple shooting (where γ = 0) can be at least in part attributed 
to unmeasured input disturbances that have not been taken into 
account when training those models; in fact, one interpretation of 
the correction term in an observer is that it provides an estimate 
of such disturbances (Sontag, 1998). Combining GTF with rapidly 
trainable data-driven models hence provides a means to filter out 
such disturbances, in real-time, if necessary. 

2.2.4 Training methods and model priors affect 
synaptic current predictions 

If intracellular voltage predictions of a neural circuit are all 
one cares about, then the takeaway from Figures 2–4 is that MS 
improves on TF, and GTF yields a nonlinear filter of the neuronal 
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FIGURE 6 

Frequency-dependent conductances of Îint + ̂Ileak for each of the two data-driven neuron models in the HCO of Figure 1C, trained with teacher 
forcing; synaptic currents are implemented with biophysical priors according to Methods (see also Figure 5). Frequency-dependent conductances 
generalize the steady-state input conductance by taking into account the frequency dependence of the linearized dynamics of Îint + ̂Ileak as a 
function of voltage. They allow interpreting a data-driven neuron in terms of regions of excitability, where G(v, ω) < 0. The frequency dependent 
conductances above are consistent with a burst-excitable model: both models possess negative conductances at low voltages and low frequencies, 
with a peak of positive conductances at higher voltages and low frequencies. Slow negative conductances are consistent with the Ih currents in each 
neuron, which were included in the preparation via dynamic clamp. Negative conductances at higher frequencies account for the existence of 
biological sodium channels in both neurons. 

membrane, which can be used in real-time. However, how good 
are the predictions of the synaptic currents, which are not used 
during training? In the leftmost two panels of Figure 5, we show  
both voltage and synaptic current predictions of the best model 
trained with TF from Figure 2 (modified angular separation 0.73), 
and the best model trained with MS from Figure 3 (modified 
angular separation 0.8). While the model trained with MS predicts 
voltage better, it can be seen that synaptic current predictions 
of the TF and MS models suffer from the same problem: while 
those predictions are accurate in terms of magnitude and timing, 
the shape of the first synaptic current in both cases is inaccurate. 
This shows that the fully data-driven RMM from Equation 3.1 in 
Methods has a degenerate dynamics: some share of the ground 
truth synaptic current of the HCO is, in the RMM, supplied by 
the intrinsic currents. Given that the synaptic current is not used 
during training, this is a consequence of the fact that the RMM 
has very few priors—in fact, both its intrinsic and synaptic currents 
have the very same model structure. 

We investigate whether synaptic current predictions can be 
improved by introducing biophysical priors in the data-driven 
model. This can be accomplished by employing data-driven 
conductances of RMMs (Burghi et al., 2025a). We replace the 
fully data-driven synaptic current (Equation 3.1 in Methods) 
by a biophysically informed version containing data-driven 
conductances (Equation 19 in Methods). After training the 
resulting RMM with teacher forcing, we obtain the predictions 
shown on the rightmost panel of Figure 5 (modified angular 

separation of around 0.75). It can be seen that including a 
biophysical prior on the data-driven model’s synapse is enough 
to recover the shape of the first synapse to a high degree of 
accuracy, while the second synapse is predicted with a small 
error. This result shows that when it comes to predicting 
the internal currents of a neural circuit, one cannot be 
guided by the predictive accuracy of external (measured) signals 
alone. 

2.3 Interpreting data-driven models of 
intracellular dynamics 

A downside of using fully data-driven models of the form 
(Equation 1) is the fact that it is not trivial to interpret the model’s 
dynamics in biophysical terms. We show that data-driven models 
can still be interpreted in quasi-biophysical terms by means of a 
frequency-dependent conductance. This is a generalization of the 
familiar input conductance used by eletrophysiologists to study 
neuronal excitability (Mauro et al., 1970; Franci et al., 2019). 
Frequency-dependent conductances uncover excitable properties 
of the membrane at different timescales, serving a purpose similar 
to that of the early and late IV curves originally introduced 
by Hodgkin and Huxley (1952). This section discusses such 
conductances by assuming that Equation 1 is the model of a single 
neuron (n = 1). 
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2.3.1 Frequency-dependent conductances 
We derive frequency-dependent conductances of a data-driven 

model satisfying the contraction assumption (Methods). This 
assumption ensures that the system (Equation 1) has a (steady-
state) IV curve given by 

u∞(v) = h(v, x∞(v)) (9a) 

where x∞(v) is the unique equilibrium state of Equation 1b as a 
function of v, that is, it satisfies 

x∞(v) = f (v, x∞(v)) (9b) 

for any v. The fact that this unique equilibrium exists is a 
consequence of the contraction of the internal dynamics (Equation 
1b), which for constant v becomes an autonomous system 
(Lohmiller and Slotine, 1998, Section 3). The derivative of the IV 
curve (Equation 9a) is the (steady-state) condutance-voltage (GV) 
curve. It is given by 

G∞(v) = 

 
∂h 

∂v 
+ 

∂h 

∂x 

∂x∞ 

∂v 

 

v=v,x=x∞(v) 
(10) 

which follows from the chain rule. The admittance-voltage (YV) 
curve is an extension of the GV curve into the frequency domain. 
For discrete-time circuits, it is given by 

Y(v, ω) = 

 
∂h 

∂v 
+ 

∂h 

∂x 

 

ejωδI − 
∂f 
∂x 

−1 
∂f 
∂v 

v=v,x=x∞(v) 

(11) 

where I is the identity matrix. For an explanation of Equation 
11, see admittance-voltage curve in Methods. The YV curve is 
complex-valued, and hence can be decomposed into 

G(v, ω) = Re[Y(v, ω)], B(v, ω) = Im[Y(v, ω)] (12) 

which are the frequency-dependent conductance and susceptance, 
respectively. In Methods, we show that 

G(v, 0)  = G∞(v) (13) 

which formally demonstrates that G(v, ω) extends the GV curve 
into the frequency domain. 

2.3.2 Voltage-frequency regions of excitability 
Electrophysiologists have long inferred neuronal excitability 

from experimentally recorded steady-state IV curves exhibiting 
regions of negative slope—negative conductances. These are 
regions where, locally, ionic currents tend to collectively destabilize 
the membrane dynamics. In a data-driven model, this occurs 
at voltages where G∞(v) < 0. It is however well-known that 
negative steady-state conductances are by no means necessary for 
excitable behavior. Frequency-dependent conductances generalize 
the previous statements by taking membrane dynamics into 
account. Formally, we can infer that a model is (locally) excitable 
on a voltage range V if we can find a range of frequencies 
where 

G(v, ω) < 0 (14) 

for all (v, ω) ∈ V × . If 0  ∈ , then Equation 14 
includes the steady-state case G∞(v) < 0. If contains 
positive frequencies, then we can say that the model presents 
frequency preference: the neuron responds excitably to frequencies 
where Equation 14 holds (see Izhikevich, 2007, p. 232 for a 
dynamical systems theory point of view). Control theory provides 
an interesting interpretation of the local excitability condition 
(Equation 14). A stable linear system is said to be passive if 
their complex-valued frequency response is confined to the 
closed right half of the complex plane (Goodwin and Sin, 
1984). Since the admittance Y(v, ω) represents the frequency 
response of the (linearized) total membrane current, we can 
interpret Equation 14 as a passivity-breaking condition on the 
total membrane current dynamics. In other words, Equation 14 
indicates the presence of active currents acting at timescales given 
by 2π/ω. 

To illustrate the above points, Figure 6 shows the frequency-
dependent conductance of the total intrinsic current of each of 
the neurons in the HCO model constructed with data-driven 
conductance-based synapses (see Equations 3.1 and 19 in Methods; 
the trained model corresponds to the rightmost pane of Figure 5). 
Intrinsic admittances of each neuron are computed with Equations 
11–12 using h = Îi int + Îi leak for i = 1, 2. The frequency-dependent
conductances in Figure 6 are in accordance to the excitability 
features of the biological neurons in the HCO. Both neuron 
models are locally excitable (red regions) at low voltages and low 
frequencies, a feature we can attribute to the Ih (hyperpolarization-
induced) present in the preparation. Furthermore, the conductance 
of Neuron 2 near −40 mV is considerably more negative than 
that of Neuron 1; this agrees with Neuron 1’s sharp decrease in 
intra-burst excitability around that voltage (cf. Figure 4). 

2.3.3 Ultrasensitivity and bifurcations 
In neurons with non-monotonic IV curves, containing negative 

steady-state conductances, one finds that the onset of spiking 
or bursting occurs at the boundary of the voltage interval 
where G∞(v) < 0. Frequency-dependent conductances enable a 
generalization of this statement. Formally, any voltage ¯ v where 

G∞(v̄) = 0 and G ∞(v̄) = 0 (15) 

lies at a saddle-node (also called fold) bifurcation point (Izhikevich, 
2007). In such cases, increasing the applied current of an initially 
quiescent model past u∞(v̄) pushes the voltage past the threshold ¯ v
toward spiking or bursting. For excitable models with a monotonic 
steady-state IV curve, Equation 15 cannot be satisfied, and a 
more general condition is required. In Methods, we show that the 
condition 

C 
 
cos( ̄ωδ) − 1 

 + δG(v̄, ω̄) = 0 (16) 

is a necessary condition for a saddle-node or Neimark-Sacker (the 
discrete-time version of the Hopf) bifurcation when ¯ ω = 0 or  ̄ω >

0, respectively, generalizing the condition (Equation 15) by means 
of the relation (Equation 13). The candidate bifurcation point 
(v̄, ¯ ω) can be found by solving Equation 30 in Methods. Critically, 
for small sampling time δ, Equation 16 occurs near the boundary 
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of the regions of negative conductance given by Equation 14.1 

Borrowing terminology from Franci et al. (2019), in this region of 
the frequency-voltage space, the model can be ultra-sensitive. 

Returning to Figure 6, we have plotted the candidate 
bifurcation points of Neuron 2 in the HCO model; recalling that 
the admittance is computed with h = Î2 

int + Î2 
leak, this analysis treats

the synaptic current from Neuron 1 as an external input. It can be 
seen that those points occur close to where the conductance flips 
sign. Furthermore, we can see that a bifurcation is predicted near 
−54 mV, which agrees well with the onset of the Neuron 2 bursts 
seen in Figure 5. 

3 Methods 

3.1 Modeling details 

The RMM (Equation 2) used to model the HCO circuit of 
Figure 1 is given by 

ci 
v̂i,t+1 − v̂i,t 

δ 
= −mlp 

 
v̂i,t , wi,t; θ int i 

  
Îi int,t 

−mlp 
 
v̂i,t , zi,t; θ 

syn 
i 

  
Îij syn,t 

− θ leak,1 
i v̂i,t + θ leak,2 

i  
Îi leak,t 

+ui,t 

wi,t+1 = Aint 
i wi,t + Bint i v̂i,t 

zi,t+1 = Asyn 
i zi,t + Bsyn 

i v̂j,t 

with δ = 0.1 the sampling period of the data. Here, 
mlp(v̂i,t , wi,t; θ inti ) is a multi-layer perceptron (MLP) representing 
the sum total of intrinsic currents flowing through neuron i, while 
mlp(v̂i,t , zi,t; θ syni ) represents the total synaptic current flowing 
from neuron j to neuron i. The MLPs are given by the chained 
composition of matrix multiplications and bias additions with 
sigmoidal activation functions, which are in turn composed with 
an input normalization layer. Mathematically, 

mlp(v, w ; θ) : = WL+1 
L 
=1 σL(W · +b) ◦ q(v,w) (17) 

where: the circle operator denotes function composition, W and b 

are learnable layer weights and biases, constituting the parameter 
vector θ ; σ = tanh for all  are activation functions applied 
elementwise to their inputs; and q(v, w) is an affine normalization 
function mapping the minimum and the maximum values of v 
and wi of the training dataset to −1 and +1, respectively (the 
w states of the training dataset are obtained by warming up; see 
training details). The use of an MLP (as opposed to a single-layer 
perceptron) can be justified on the basis that, since the internal 
dynamics in Equation 3.1 is linear, more complexity in the voltage 
dynamics may be desirable (empirically, few layers are required for 
satisfactory results). In this paper, the intrinsic current MLP has 
Lint = 3 layers with 20 activation functions in each layer, and 
the synaptic current MLP has Lsyn = 3 layers with 10 activation 

1 Had we opted for a passivity-preserving discretization of the capacitive 

current (instead of a forward-Euler one), condition (Equation 16) would occur 

precisely at the boundary of Equation 14. 

functions in each layer. The parameters θ leak,1 = ( ̃  θ leak,1)+ and
θ leak,2 are used to represent the leak current, with the former 
being constrained to be positive by the softplus function (·)+ 

so that it implements a positive leak conductance. MLP weights 
were initialized with the Nguyen-Widrow initialization heuristic 
(Nguyen and Widrow, 1990), with biases initialized spread over the 
interval -1 to 1. 

Following Burghi et al. (2025a), the linear systems in the 
internal dynamics of Equation 3.1 are constructed so as to have 
orthogonal impulse responses (Heuberger et al., 2005), which is 
done to produce a rich set of state trajectories following a voltage 
spike. To construct the discrete-time system matrices A and B, 
we consider prior knowledge about the continuous time constants 
relevant to neural dynamics. Starting from a set of continuous time 
constants {τk}k=1,...,n, we first discretize the τk with the stability-
preserving transformation 

λk = exp(−δ/τk) 

(recall δ is the sampling period). We then set A : = An and B : = Bn, 
with An and Bn being computed according to 

A1 = λ1, B1 = 
 
1− λ 2 

1, 1 = B1, 1 = −λ1 

Ai = 

 
Ai−1 0  

1− λ 2 
i i−1 λi 

, Bi = 

 
Bi−1 

1− λ 2 
i i−1 

i = 
 
−λii−1 

 
1− λ 2 

i 

 
, i = −λii−1 

(18) 

for i = 2, . . .  , n. The resulting state space system responds to an 
impulse function with orthogonal state trajectories, see (Heuberger 
et al., 2005, Chapter 2) for details and the SI appendix of Burghi 
et al. (2025a) for an illustration. To construct Aint and Asyn, we  
define the two time constant subsets 

τ fast+slow = {0.2k}k=1,...,8 ∪ {2.0k}k=1,...,8 ∪ {10 + 10k}k=1,...,8 

τ ultraslow = {200k − 100}k=1,...,8 

which were chosen by sampling the range of the time constant 
functions found in the gating kinetics of conductance-based models 
of neurons from the STG (Liu et al., 1998) [see the SI appendix of 
Burghi et al. (2025a) for plots of such functions]. The matrix Aint 

is constructed as in Equation 18 using τ fast+slow ∪ τ ultraslow , while
Asyn is constructed with τ fast+slow only. This results in a total of 
96 internal states in the full data-driven HCO model. In this paper 
the A and B matrices are kept fixed to illustrate how feed-forward 
teacher forcing (which precludes learning those matrices) can be 
related to MS and GTF. While it is in principle possible to learn the 
components of A and B during MS and GTF, we do not pursue this 
in this paper. 

3.1.1 Synaptic current with data-driven 
conductances 

To obtain an HCO model with biophysically informed data-
driven synapses (Burghi et al., 2025a), we replace the synaptic 
current model in Equation 3.1 by 

Îij syn,t = ḡijσ+(h+(zi,t); θ 
syn 
i )(v̂i,t − Esyn) 

zi,t+1 = diag(λ[Asyn 
i ])zi,t + (1 − λ[Asyn 

i ])v̂j,t 
(19) 
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where we have used λ[·] to represent the vector of eigenvalues 
of a matrix, and 1 to represent the all-ones vector. In Equation 
19, σ+(·; θ syni ) is a single-layer perceptron whose weight matrices 
are constrained to be elementwise positive, and h+(·) is a fixed 
min-max-type normalization layer constructed so that, at random 
parameter initialization, the output of σ+ is approximately 0 
at −60.0 mV, and approximately 1 at −40.0; this is done to 
mimic the activation range of the synapse used in the dynamic 
clamp experiment [see constructing data-driven conductances in the 
Methods section of Burghi et al. (2025a) for details]. The activation 
ranges above are not fine-tuned, so that the model can be said to be 
parsimonious one. The scalar ḡ is a learnable maximal conductance 
parameter, and Esyn is a fixed Nersnt potential with value set to that 
of the synapse implemented in the HCO with dynamic clamp. 

3.2 Contraction theory 

We identify a tractable mathematical condition on the generic 
model (Equation 1) that guarantees the well-posedness of training 
and interpretability methods: 

Exponential contraction condition: In the generic data-
driven model of Equation 1, the internal dynamics states xt 
in Equation 1b are exponentially contracting (Lohmiller and 
Slotine, 1998), uniformly in the voltage variable vt and the 
parameters η. 

Exponential contraction implies that for any given trajectory of 
vt , the distance between two trajectories of xt starting at different 
points of the state space decreases exponentially fast as t → 
∞ (Theorem 2 of Lohmiller and Slotine, 1998). A key technical 
feature of exponential contraction is that it can be guaranteed to 
hold via a sufficient condition involving a Lyapunov-type linear 
matrix inequality, which can be verified efficiently. Mathematically, 
contraction of the internal states is guaranteed if one can find a 
constant positive definite matrix2 P and a positive constant 0 < 
α <  1 such that the Jacobian of the internal dynamics vector field 
satisfies the linear matrix inequality (LMI) given by 

∂fη 

∂x 
(v, x) P 

∂fη 

∂x 
(v, x)  αP (20) 

for all x and v (Lohmiller and Slotine, 1998). Intuitively, contraction 
is a strong stability property which makes a nonlinear system 
behave in many ways similarly to a stable linear one; for a tutorial, 
see Jouffroy and Fossen (2010). For data-driven models, one can 
guarantee the that the internal states xt contract throughout the 
learning procedure and by constraining the internal dynamics 
(Equation 1b) so that the matrix inequality holds uniformly in the 
parameters η. 

When the internal dynamics of a data-driven model is linear, as 
is the case of Equation 2, then it is well known (Goodwin and Sin, 
1984) that the LMI condition (Equation 20) becomes equivalent to 
the simpler condition below: 

2 A positive definite (semi-definite) matrix is a symmetric matrix whose 

eigenvalues are all positive (non-negative). Negative definite and semi-

definite matrices are defined analogously. 

Exponential contraction condition (simple case): In the 
Recurrent Mechanistic Model of (Equation 2), we have 

|λi[A]| < 1, i = 1, . . . , dim(xt) (21) 

where λi[A] denotes the ith eigenvalue of A. In other words, the 
dynamics of xt with vt seen as an input is asymptotically stable. 

The stability condition above is simple to enforce in linear 
systems, and is guaranteed by the constructive procedure used to 
obtain A described in the previous section. 

3.2.1 Contraction and training methods 
While weaker conditions with Lyapunov exponents can also 

achieve the effect of trajectory convergence seen in contracting 
systems, what makes dealing with contraction matrix inequalities 
such as Equation 20 attractive is the fact that it can be used to show 
that training with TF, MS, and GTF is tractable. 

When the contracting internal dynamics assumption above is 
satisfied, then it is possible to guarantee that exploding gradients 
will not be observed in teacher forcing (TF) nor in generalized 
teacher forcing (GTF), regardless of the time horizon of the dataset. 
In TF, this can be shown by applying the chain rule to the loss 
gradient ∇L, and then using the LMI (Equation 20) to ensure 
that the gradient does not grow unbounded as the number of 
datapoints grows as N → ∞. For instance, when computing ∇ηL, 
one obtains a term ∇ηx̂N−1∇xhθ (v̄N−1, x̂N−1)(v̄N − v̂N ) that could 
potentially grow unbounded. This is because ∇ηx̂N−1 is given by 
the recurrence relation 

∇ηx̂t = ∇ηx̂t−1∇xfη(v̄t−1, x̂t−1)+∇ηfη(v̄t−1, x̂t−1) (22) 

which is a (potentially unstable) time-varying linear system. But the 
contraction LMI (Equation 20) ensures that this dynamical system 
has bounded states; this can be shown by taking (∇ηx̂


t )P(∇ηx̂t) as  

a Lyapunov function for Equation 22 (see Khalil, 2002, Chapter 
4 for an introduction to bounded-input-bounded-state stability 
analysis). In GTF, the situation becomes complicated by the 
interaction between v̂t and x̂t . But using contraction analysis, it can 
be claimed that under the contracting internal states assumption, 
taking γ close enough to 1 ensures that the dynamical system given 
by Equation 8b–8d is also contracting, and hence gradients cannot 
explode, similarly to the TF case. The proof of this claim is a simple 
discrete-time reformulation of Proposition 2 in Burghi et al. (2021). 

3.3 Training details 

All models in this paper were programmed in Julia using 
the Flux.jl package (Innes, 2018) for implementing MLPs as well 
as the Adam (Kingma and Ba, 2017) gradient descent routine. 
The code used to implement this model can be found on 
github.com/thiagoburghi/RMM/tree/HCO. The Adam 
moment parameters used in this paper are given by β1 = 0.9 and 
β2 = 0.999 in all cases. For models trained with TF in Figures 2, 5, 
and 6, we used a step size of η = 0.001. For models trained with MS 
in Figures 3 and 5, we used a scheduler for the step size, starting at 
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η = 0.01 and changing to η = 0.005 at 50 epochs and η = 0.0025 at 
100 epochs (this was done to rapidly decrease the large initial error 
in shot predictions). For models trained with GTF in Figure 4, we  
used a fixed step size o η = 0.01. The D-norm in Equation 7a is a 
weighted 2-norm; we have used a diagonal weight matrix D whose 
nonzero entries are given by the inverse of the DC gain (I −A)−1B. 
MS and GTF were implemented by partitioning the dataset into 48 
mini-batches, and applying the methods as described in Equations 
7 and 8 within each mini-batch before taking a gradient step. 
Each epoch in Figures 2–4 contains one gradient update for each 
mini-batch; mini-batches in MS and GTF were shuffled between 
each epoch (notice this is different from shuffling in TF, which 
also shuffles samples within mini-batches). All models were trained 
from randomly initialized MLP parameters. 

3.3.1 Warming up initial conditions 
Warming up the internal states’ initial conditions is one of 

the most important steps in training data-driven models using the 
methods described in this paper. Consider a generic model in the 
form (Equation 1) satisfying the exponential contraction condition 
(Equation 20). Given the voltage data vt and an initial parameter 
vector η0, let 

x̄0 
t+1 = f η 0 (vt , x̄0 

t ), t = −M, −(M − 1), . . . , −1, 0, 1, . . . ,N − 1 

where v−M , v−(M−1), . . . , v−1 is an initial portion of the data that is 
discarded during training, and v0 and vN−1 are the first and last data 
points used during training, respectively. Under the assumption of 
contraction, the value of x̄−M does not matter, as it is forgotten 
along with the internal dynamics’ transients. The warmed up states 
can be used as follows: in the teacher forcing problems (Equations 
3a and 5), one simply chooses ξ 0 = x̄0 

0, and in the multiple shooting 
problem (Equation 7a) (and when combining it with GTF), one 
takes ξ (n) = x̄0 

ns for n = 0, 1, . . . , Ns. 

3.4 Applied current 

To create the HCO, the two GM cells were virtually coupled 
together with dynamic clamp (Sharp et al., 1993). This was achieved 
using a custom RTXI module (Patel et al., 2017) to inject voltage-
dependent currents into each cell. The total applied current injected 
in the ith HCO neuron is given by 

Ii app,t = Ii h,t + Iij syn,t 
dynamic clamp 

+ ui,t (23) 

where (i, j) ∈ {(1, 2), (2, 1)}. In  Equation 23, the current 
components Ii h,t and Iijsyn,t are a virtual hyperpolarization-induced 
current and a synaptic current defined with conductance-based 
models, while the current ui,t is a stochastic current used to 
perturb the HCO dynamics and train the data-driven model. Each 
individual current component in Equation 23 was saved separately 
by RTXI while measuring the responses of the HCO. 

TABLE 1 Parameters used to create the HCO with dynamic clamp. 

i ḡi syn Ei syn νi syn ḡi h Ei h ν i h τ̄i 

1 105 -80 -50 mV 225 -10 -45 mV 1,000 ms 

2 150 -80 -44 mV 120 -10 -45 mV 1,500 ms 

3.4.1 Noisy injected current 
The current vector ut in Equations 1, 2, 3, 7 and 8 represents 

a measured injected current used to excite the dynamics of a 
neural circuit and facilitate the training of a data-driven model. 
In the context of our HCO experiment, ut = (u1,t , u2,t) with ui,t 
being defined as a stochastic component of the applied current in 
Equation 23. Each  ui,t is given by a discretized Ornstein-Uhlenbeck 
(OU) process with nonzero mean, 

ui,t+1 = ui,t + δa(μi − ui,t) + b 
√ 

δεi,t (24) 

where δ = 0.1 ms is the sampling period, μi is the process 
mean, a and b are process parameters determining the process rate 
and variance, respectively, and εi,t are i.i.d. normally distributed 
random variables with zero mean and unity standard deviation. 
All the models in this paper were trained and validated with the 
same dataset, which consisted in two trials of around two minutes 
each, obtained by changing the parameters a and b. We fixed the 
means μi to values where a rhythm could be observed (see also 
dynamic clamp below), and then recorded two minutes of data with 
the following combinations of OU process parameters: (a, b) = 
(0.04, 0.1), (0.02, 0.025). Training was performed using the first 
75% percent of the dataset (around 165 seconds), while validation 
was performed using the last 25% of one of the trials (around 27 
seconds). 

3.4.2 Dynamic clamp currents 
Similarly to Morozova et al. (2022), we used the synapse model 

Iij syn,t = −ḡi syn zi,t(vi,t − Ei syn) 

zi,t+1 = zi,t + 
δ 

50(1.1 − σ i syn(vj,t)) 
(−zi,t + σ i syn(vj,t)) 

(25) 

where δ is the sampling period, and σ i 
syn(vj,t) = (1 + exp(−(vj,t − 

νi syn)/2))−1 is the logistic synaptic activation function. Parameters 
of each of the two synapses can be found in Table 1. The  
hyperpolarization-induced current was given by 

Ii h,t = −ḡi h wi,t(vi,t − Ei h) 

wi,t+1 = wi,t + 
δ 

τ̄iτh(vi,t) + 0.1 

 −wi,t + σ i h(vi,t) 
 (26) 

with τh(vi,t) = (1 + exp(−(vi,t + 110)/13)−1 and σ i 
h(vi,t) = 

(1 + exp(−(vi,t − νi h)/7)) both given by logistic nonlinearities. The 
specific parameters of each hyperpolarization-induced current are 
found in Table 1. Synaptic and H-current parameters were chosen 
starting from the values indicated in Morozova et al. (2022), and 
then varying the parameters shown in Table 1 until a HCO rhythm 
was observed under dynamic clamp. 
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3.4.3 Validation 
In Figures 2–4, the  training loss corresponds to the loss function 

of the method being used to train the model, that is, Equations 6, 
7a or 8a. The  validation metric is a modified angular separation 
metric used to assess the predictive power of the models when 
they are used for predicting the voltage time series, which is done 
by simulating (Equation 2). The angular separation between two 
smoothed spike trains is a traditional metric for comparing the 
similarity between two spike trains (Gerstner et al., 2014), and is 
given by y, ŷ/(yŷ) where y and ˆ y are vector-valued spike train 
sequences, ·, · is the inner product, and · is the norm of a vector. 
In this work we modified this metric according to 

modified angular separation = 
y, ŷ 

max{y2 , ŷ2} 
so as to take magnitude (as well as shape) of the smoothed 
spike trains into account. The modified metric was empirically 
determined to work better for bursting signals. Here, y = 
{y0, . . . , yN } and ˆ y = {ŷ0, . . . , ŷN } are smoothed spike train 
time series obtained as follows: (i) both voltage time series v 
and ˆ v are bandpass-filtered forwards and backwards in time by 
a 3th order Butterworth filter with cutoff frequencies at 1/50 
and 1/2 kHz to remove the slow bursting wave (forwards-and-
backwards filtering is used to avoid phase distortion) (ii) the result 
is thresholded using a relu nonlinearity with threshold set at 5 
mV to extract the spikes from the resulting high-frequency spiking 
signal iii) the maxima of thresholded spikes is used to define a 
spike train of impulses (maxima within 5 samples counted as a 
single spike) iv) the resulting spike train is convolved with a Laplace 
kernel given by exp(−|t|/500)/ 

 
t | exp(−|t|/500)|. Notice that the 

modified angular separation always lies between 0 and 1, with 0 
corresponding to completely disjoint smoothed spike trains, and 1 
corresponding to a perfect prediction. 

3.5 Admittance-voltage curve 

The YV curve Y(v, ω) in  Equation 11 describes how a small 
sinusoidal signal of frequency ω around a constant set-point v is 
amplified by the total intrinsic current of the neuron (the sum of the 
leak and ionic currents, and, in a neuronal circuit, of the synaptic 
currents). Mathematically, this signal can be represented as 

ṽt = ε sin(ωδt) + v, t = 0, 1, 2, . . .  

with constant v and small ε >  0 (recall δ is the sampling period 
of the measurements). The total intrinsic current of a neuron (or 
circuit) is the dynamical system 

xt+1 = fη(vt , xt) 

yt = hθ (vt , xt) 
(27) 

with input given by vt and output (the current) given by yt . The  YV  
curve (Equation 11) is the  transfer function of the linearized system 
above (Aström and Murray, 2008). It can be used to determine that 
the approximate response of the system to the sinusoidal signal, 
according to 

yt = ε|Y(v, ω)| sin(ωδt+ Y(v, ω))+u∞(v), t = 0, 1, 2, . . .  (28) 

where |Y(v, ω)| is the gain and Y(v, ω) the  phase of the system’s 
transfer function. 

To derive the extension of conductances into the frequency 
domain, we prove the following statement: 

Proposition: Under the contraction assumption, we have 

Y(v, 0)  = G∞(v) (29) 

for all v. Furthermore, if there exist ¯ ω ≥ 0 and ¯ v ∈ 0 such that 

C 
 
ej ̄ωδ − 1 

 
+ δY(v̄, ω̄) = 0 (30) 

then ¯ v is a candidate fold bifurcation point ( ¯ ω = 0) or a candidate 
Neimark-Sacker bifurcation point ( ̄ω > 0). 

Proof of the proposition: The contraction assumption ensures 
that, for constant v, the nonlinear system (Equation 27) has  
a unique equilibrium point x∞(v) which is asymptically stable 
(Theorem 2 of Lohmiller and Slotine, 1998). This equilibrium 
point is given implicity by Equation 9b. The Converse Lyapunov 
Theorem (Khalil, 2002) then guarantees that the eigenvalues of the 
Jacobian matrix ∂fη/∂x|x=x∞(v) are strictly inside the unit circle for 
all v. It follows that the matrix 

∂

∂x 

 
x − fη(v, x)) 

 = I − 
∂ 

∂x 
fη(v, x) 

is invertible at (v, x∞(v)) for all v. We can thus use the implicit 
function theorem (Rudin, 1976) to find that for each v, the solution 
x∞(v) of the equilibrium equation (Equation 9b) satisfies 

∂ 

∂v 
x∞(v) = 

 

I − 
∂ 

∂x 
fη 

−1 
∂ 

∂v 
fη 

with partial derivatives evaluated at (v, x∞(v)). The 
relation (Equation 29) follows from substituting this 
expression in Equation 10 and comparing the result to 
Equation 11. 

The fact that Equation 30 is a necessary condition for a 
bifurcation can be established by applying Schur’s complement to 
express the determinant of the matrix arising from the condition 
that an eigenvalue of the Jacobian of the linearized model (Equation 
1) lies on the unit circle. Finally, Equation 13 and the bifurcation 
condition (Equation 16) follow directly from taking the real parts of 
Equations 29 and 30. 

4 Materials and equipment 

4.1 Animals 

Cancer borealis were purchased from Commercial Lobster 
(Boston, MA) between May 2024 and March 2025 and maintained 
in tanks containing artificial seawater (Instant Ocean) at 11◦C-
13◦C. Animals were anesthetized on ice for 30 minutes before the 
stomatogastric nervous system was dissected and pinned in a petri 
dish coated with Sylgard (Dow Corning) as described previously 
(Gutierrez and Grashow, 2009). The stomatogastric ganglion (STG) 
was desheathed to allow intracellular recording. All preparations 
included the STG, the eosophageal ganglia, and two commissural 
ganglia. The nervous system was kept in physiological saline 
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composed of 440 mM NaCl, 11 mM KCl, 13 mM CaCl2, 26 mM  
MgCl2, 11 mM Trizma base, and 5 mM Maleic acid, pH 7.4-7.5 
at 23◦C (7.7-7.8 pH at 11◦C). All reagents were purchased from 
Sigma-Aldrich. 

4.2 Electrophysiology 

Extracellular recordings were made by placing 90% Vaseline 
10% mineral oil solution wells around the upper lateral ventricular 
nerve (lvn) and stomatogastric nerve (stn). Stainless-steel pin 
electrodes were placed within the lvn well to monitor spiking 
activity and amplified using Model 1700 Differential AC Amplifiers 
(A-M Systems). Intracellular recordings from the soma of two 
Gastric Mill (GM) cells were made using two-electrode current 
clamp with 5-20 M sharp glass microelectrodes filled with 
0.6 M K2SO4 and 20 mM KCl solution. Intracellular signals 
were amplified with an Axoclamp 900 A amplifier (Molecular 
Devices, San Jose). Cells were identified by matching intracellular 
activity with activity on the lvn. All amplified signals were 
digitized using a Digidata 1440 digitizer (Molecular Devices, 
San Jose) and recorded using pClamp data acquisition software 
(Molecular Devices, San Jose, version 10.5), sampling frequency 
of 10 kHz. 

After identification of two GM cells, the preparation was 
disconnected from the descending modulation by adding a 
solution of 750 mM sucrose and 10−7M tetrodotoxin (Sigma) 
in the stn well. Glutamatergic synapses were blocked by adding 
10−5M picrotoxin (Sigma) to the perfusion solution. For the 
purposes of real-time data processing the intracellular signals 
were acquired with NI PCIe-6259 M Series Multifunction 
DAQ (National Instruments) at 10 kHz sampling frequency, 
and used in Real-Time eXperiment Interface (RTXI) software 
version 3.0. 

4.3 Hardware 

All computational work was done in a desktop computer set up 
with an AMD Ryzen 7 7800X3D 8-Core Processor, 64 Gigabites of 
RAM, and a NVIDIA GeForce RTX 4090 graphics card with 24 GB 
of VRAM. Models were trained in the GPU using the Julia library 
CUDA.jl in conjunction with the module Flux.jl. 

5 Discussion 

What criteria should one use to determine the predictive 
quality of a data-driven model? Invariably, machine learning and 
AI approaches use a loss of some kind, and ask how well the 
model predictions generalize with respect to this loss on unseen 
data. The choice of loss can be crucial: evaluating the point-wise 
difference of values on a timeseries can emphasize quantitative 
variation in a dataset that might be an idiosyncratic feature of that 
dataset. This danger is well known, and places the burden on the 
experimentalist to measure as broad and ‘representative’ a dataset as 
is feasible. 

5.1 Deep-learning models for intracellular 
dynamics 

In this paper, we have considered ANN-based models 
aimed at quantitative prediction of intracellular dynamics. Our 
understanding of quantitative prediction is specific, and helps 
to narrow the class of data-driven models considered in our 
work. Throughout this paper, we have implicitly equated the 
membrane dynamics of a neuron with its system behavior, 
a concept borrowed from control theory (Willems, 2007). 
Following Sepulchre et al. (2018), the system behavior of 
the membrane is the set of all applied current–membrane 
voltage trajectory pairs that are consistent with the membrane’s 
biophysics. Concretely, this implies that quantitatively accurate 
predictions of the membrane dynamics must be consistent 
with current-clamp and voltage-clamp recordings alike. 
This view is useful because it unambiguously excludes from 
consideration many types of data-driven models which 
can otherwise be said to be predictive (for instance, most 
integrate-and-fire models, whose suprathreshold behavior is not 
well-defined). 

Following this view, quantitatively predictive models have 
until recently been almost exclusively “detailed”, “biophysical”, 
or “conductance-based”, that is, consistent with the mechanistic 
modeling paradigm established by Hodgkin and Huxley in 
their seminal work (Hodgkin and Huxley, 1952). However, 
because conductance-based models are derived from a highly 
simplified low-dimensional description of neuronal dynamics, 
their quantitative predictive power is limited. Data-driven models 
forfeiting quantitative predictions of the membrane dynamics, 
such as Spike Response Models (Gerstner et al., 2014) and 
Generalized Linear Models (Pillow and Park, 2016), have repeatedly 
been shown to beat conductance-based models at predicting 
particular features of neuronal excitability, most notably spike 
timing. The ANN-based models considered in this paper can 
improve on the quantitative prediction of conductance-based 
models, while keeping the data-driven flexibility of “black-box” 
statistical models. As we have seen, ANN-based frameworks such 
as RMMs (Burghi et al., 2025a) further allow biophysical knowledge 
to inform model architecture. The HCO circuit used in this paper 
had a known connectivity, allowing us to exploit knowledge of 
synaptic dynamics to improve on synaptic current predictions. In 
circuits with unknown connectivity, we have shown that models 
with minimal biophysical priors can still be trusted to provide 
reasonable (if not perfectly accurate) predictions of internal circuit 
currents. 

The modeling paradigm studied in this paper prioritizes 
quantitative analytical predictions over fine biophysical detail, 
while avoiding the pitfalls of purely statistical models. Recent 
papers following this paradigm have focused on different aspects 
of the learning and interpretation problem, but are similar in spirit 
(Brenner et al., 2022; Durstewitz et al., 2023; Aguiar et al., 2024; 
Burghi et al., 2025a). Such approaches can in principle be pursued 
in continuous-time, under the framework of Neural (Chen et al., 
2018) and Universal (Rackauckas et al., 2021) ODEs. Interesting 
questions concerning the potential efficiency gains of continuous-
time implementations are left for future work. 
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5.2 Data-driven models can be interpreted 
using electrophysiology tools 

There is a long tradition in electrophysiology of using voltage 
clamp to study neural excitability via the spectral properties of 
the neuronal membrane and its currents; see for instance (Mauro 
et al., 1970; Juusola, 1994; Magnani and Moore, 2011). We have 
seen that frequency-dependent conductances used to study neural 
excitability can also be employed to interpret a data-driven model 
which, at first, resembles a black box. This type of analysis was 
enabled by two model properties: the separation of model states 
into voltage and internal states, and the contraction of the internal 
dynamics. 

Our results enable relevant extensions of this frequency-
domain methodology. First, one could seek to interpret data-driven 
models with timescale-separated admittances, similarly what is 
done in Franci et al. (2019) for conductance-based models. The 
linearity of the internal dynamics of RMMs can readily be exploited 
for that purpose. Second, instead of analysing admittances neuron 
by neuron, one could study a data-driven neural circuit by treating 
its ionic currents as a multiple-input-multiple-output system, in 
which case admittances become matrix-valued (Goodwin and Sin, 
1984; Khalil, 2002). Developing these extensions is left for future 
work. 

It is important to distinguish the frequency-dependent 
conductances obtained from our model from those that could be 
in principle obtained experimentally with voltage-clamp. For many 
types of neurons with complex morphology, including the STG 
neurons used in this paper, voltage-clamp recordings made at a 
single site (e.g., the soma) leads to distorted recorded currents; 
see, for instance, Bar-Yehuda and Korngreen (2008); Poleg-Polsky 
and Diamond (2011); Taylor (2012). Hence, frequency-dependent 
conductances should be regarded primarily as a tool for model 
interpretation, rather than for predicting precise experimental I-V 
relations. 

5.3 Training methods 

While we have emphasized that TF, multiple-shooting and 
GTF can be understood from a unified perspective, other 
approaches in the literature can also be associated to these 
methods. In particular, feed-forward TF as discussed here can 
be related to the idea of reservoir computing (Lukoševiˇ cius and 
Jaeger, 2009). The conceptual difference to the way reservoir 
computing is usually introduced, is that in data-driven models 
for intracellular dynamics, the reservoir is an internal dynamics, 
given by Equation 1b, which can be fixed to provide a reservoir 
of internal states. In neuronal models, learning the “readout” 
function hθ is not the goal but rather a means to learn 
the forward dynamics (Equation 1). In other words, the task 
of the reservoir network is to learn the inverse dynamics of 
the neuron or circuit: the dynamics of intrinsic and synaptic 
ionic currents. 

Our paper connects the areas of data-driven models for 
neural circuit dynamics to contraction theory (Lohmiller and 
Slotine, 1998) from control engineering. There is a growing 

literature in systems theory dealing with learning contracting 
data-driven systems such as recurrent neural networks and 
equilibrium networks; see, for instance, (Manchester, 2018; Revay 
and Manchester, 6 11; Pauli et al., 2024). 
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