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Venezuelan, eastern, and western equine encephalitis viruses (collectively referred 
to as equine encephalitis viruses---EEV) cause serious neurological diseases and 
pose a significant threat to the civilian population and the warfighter. Likewise, 
organophosphorus nerve agents (OPNA) are highly toxic chemicals that pose 
serious health threats of neurological deficits to both military and civilian personnel 
around the world. Consequently, only a select few approved research groups are 
permitted to study these dangerous chemical and biological warfare agents. This 
has created a significant gap in our scientific understanding of the mechanisms 
underlying neurological diseases. Valuable insights may be gleaned by drawing 
parallels to other extensively researched neuropathologies, such as traumatic brain 
injuries (TBI). By examining combined gene expression profiles, common and unique 
molecular characteristics may be discovered, providing new insights into medical 
countermeasures (MCMs) for TBI, EEV infection and OPNA neuropathologies and 
sequelae. In this study, we collected transcriptomic datasets for neurological 
disorders caused by TBI, EEV, and OPNA injury, and implemented a framework to 
normalize and integrate gene expression datasets derived from various platforms. 
Effective machine learning approaches were developed to identify critical genes 
that are either shared by or distinctive among the three neuropathologies. With the 
aid of deep neural networks, we were able to extract important association signals 
for accurate prediction of different neurological disorders by using integrated 
gene expression datasets of VEEV, OPNA, and TBI samples. Gene ontology and 
pathway analyses further identified neuropathologic features with specific gene 
product attributes and functions, shedding light on the fundamental biology of 
these neurological disorders. Collectively, we highlight a workflow to analyze 
published transcriptomic data using machine learning, which can be used for 
both identification of gene biomarkers that are unique to specific neurological 
conditions, as well as genes shared across multiple neuropathologies. These 
shared genes could serve as potential neuroprotective drug targets for conditions 
like EEV, TBI, and OPNA.
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Introduction

Neurological disorders caused by infectious diseases, chemical 
exposures, and physical trauma pose significant public health 
challenges and are critical concerns in military medicine worldwide. 
Venezuelan, eastern, and western equine encephalitis viruses 
(collectively referred to as EEV in this manuscript), organophosphorus 
nerve agents (OPNA), and traumatic brain injuries (TBI) are 
particularly significant and interrelated threats to both civilian 
populations and military personnel. Despite their distinct etiologies, 
these conditions share common features in their neurological 
manifestations and potential for severe long-term consequences 
(Ronca et al., 2017; Mouzon et al., 2012; VanderGiessen et al., 2024) 
suggesting possible overlapping molecular mechanisms that could 
be leveraged for therapeutic development.

EEVs represent a significant threat to both human and animal 
health throughout the Americas. Venezuelan equine encephalitis virus 
(VEEV), eastern equine encephalitis virus (EEEV), and western 
equine encephalitis virus (WEEV) belong to the genus Alphavirus in 
the family Togaviridae (Aguilar et al., 2011; Luethy, 2023) and are 
transmitted primarily through mosquitos, but have also been 
weaponized for use as potential bioweapons by both the US and Soviet 
Union. These viruses can cause severe neurological diseases, with 
mortality rates ranging from 1% (VEEV) to 70% (EEEV) (Ronca et al., 
2016; Guzman-Teran et al., 2020; Zacks and Paessler, 2010). Previous 
research has demonstrated that these viruses cause systemic infection 
which is either asymptomatic, or presents as a mild flu-like illness in 
the acute phase of infection (Cain et al., 2024). Neuroinvasion occurs 
around day 4 post infection through the olfactory epithelium, but can 
also increase blood–brain barrier (BBB) permeability to enter the 
brain via transcytosis, but this is less thoroughly understood for EEEV 
and WEEV (Salimi et al., 2020; Honnold et al., 2015). Recent studies 
using animal models have revealed that VEEV infection triggers a 
cascade of inflammatory responses, including the activation of 
pro-inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, which 
contribute to neuronal damage and subsequent neurological 
symptoms (Dahal et  al., 2020). Despite significant advances in 
understanding their pathogenesis, current therapeutic options are 
limited to supportive care, with no specific antiviral 
treatments available.

Organophosphorus nerve agents (OPNAs) are highly toxic 
chemicals that interfere with the normal functioning of the nervous 
system. These compounds, including G-series agents (tabun, sarin, 
soman) and V-series nerve agents (VE, VG, VM, VR, VX), 
irreversibly inhibit acetylcholinesterase, leading to excessive 
accumulation of acetylcholine at synapses (Wang et  al., 2022). 
Research over the past decades has revealed that OPNA toxicity 
extends beyond acute cholinergic crisis. Studies have shown that 
OPNA exposure initiates complex cellular cascades involving 
oxidative stress, neuroinflammation, and excitotoxicity (Aroniadou-
Anderjaska et al., 2023). Long-term studies in animal models and 
human survivors have documented persistent neurological deficits, 
including cognitive impairment, anxiety, and depression (Francois 
et al., 2022; Vasanthi et al., 2023). Current treatment protocols rely 

primarily on a combination of anticholinergic drugs (such as 
atropine), oximes for enzyme reactivation, and anticonvulsants 
(Worek et al., 2020; Newmark, 2019; Saalbach, 2023; Reddy, 2024). 
However, these treatments must be  administered rapidly after 
exposure and may not prevent long-term neurological consequences. 
Recent research has focused on understanding the molecular 
mechanisms of delayed neurotoxicity and developing more effective 
neuroprotective strategies.

Traumatic brain injury (TBI) is a major global health concern, 
affecting an estimated 69 million people worldwide each year (Dewan 
et al., 2019). The spectrum of TBI ranges from mild concussions to 
severe injuries with devastating consequences. The pathophysiology of 
TBI involves both primary injury mechanisms (direct mechanical 
damage) and secondary injury (inflammatory cascades, BBB 
breakdown, hemorrhage) that can persist for months or years after the 
initial trauma (Howlett et al., 2022). Extensive research has identified 
key molecular pathways involved in TBI pathogenesis, including 
neuroinflammation, oxidative stress, excitotoxicity, and disruption of 
the blood–brain barrier. Recent studies have revealed the complexity of 
TBI’s molecular signature, with altered expression of numerous genes 
involved in inflammation (e.g., IL-1β, TNF-α), cell death pathways (e.g., 
caspase-3, BAX), and neuroplasticity (e.g., BDNF, NGF) (Ng and Lee, 
2019; Freire et al., 2023). Advanced neuroimaging techniques combined 
with molecular studies have demonstrated that TBI triggers both acute 
and chronic changes in brain structure and function (Hu et al., 2022). 
Despite this growing understanding, therapeutic options remain 
limited, with most treatments focusing on symptom management 
rather than addressing the underlying pathological mechanisms.

Research on the pathogenesis of these conditions faces numerous 
challenges. For EEVs, the requirement for high-containment facilities 
and the complexity of virus-host interactions have limited comprehensive 
studies (Hughes et al., 2021). OPNA research faces similar chemical 
safety concerns, along with ethical considerations that restrict human 
studies. While TBI research has progressed more rapidly due to greater 
accessibility and established animal models (Bellotti et al., 2024), many 
aspects of its molecular pathology remain poorly understood. However, 
recent advances in high-throughput genomic technologies and 
bioinformatics approaches have opened new avenues for investigating 
these conditions through comparative analysis of gene expression 
profiles (Siddiqui et al., 2020; Siddiqui et al., 2020; Siddiqui et al., 2017; 
Siddiqui and Islam, 2016; Siddiqui et al., 2019). This allows us to leverage 
the extensive body of research in one area to inform the understanding 
of related conditions, potentially identifying common pathways and 
novel therapeutic targets. By implementing machine learning 
techniques, we can now integrate and analyze complex transcriptomic 
datasets from various experimental platforms, identifying both shared 
and condition-specific molecular signatures (Long et al., 2024; Martinez 
et al., 2022). Such an integrated approach not only provides insights into 
the fundamental biology of these neurological disorders but also has the 
potential to guide the development of medical countermeasures that 
could be  effective across multiple conditions. Understanding the 
commonalities and differences in gene expression patterns among these 
disorders may reveal new therapeutic targets, ultimately leading to more 
effective interventions for affected individuals.
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In this study, we  used advanced computational methods to 
systematically analyze and compare the transcriptomic profiles 
associated with TBI, EEV infection, and OPNA exposure. Our 
analytical framework is able to (1) integrate gene expression data from 
diverse experimental platforms and conditions, overcoming the 
limitations posed by data variability among these brain disorders, and 
(2) identify shared and condition-specific molecular signatures that 
are associated with the three neuropathologies. Our findings in this 
study not only highlight potential common therapeutic targets but 
also reveal unique pathways that could guide the development of 
targeted interventions, offering new insights into the treatment of 
these complex neurological disorders.

Results

Workflow implemented in this study

In this study, we aimed to extract salient association signals from 
integrated gene expression datasets derived from VEEV, OPNA, and 
TBI samples, with the objective of enabling accurate prediction of 
diverse neurological disorders. To this end, we  acquired and 
reanalyzed a collection of 6 datasets encompassing 395 samples related 
to VEEV, OPNA, and TBI, across various experimental conditions and 
organismal models. These datasets underwent a rigorous 
normalization and integration process to facilitate downstream 
analysis. Differential expression analysis was performed 
simultaneously for each condition to identify informative key genes 
exhibiting substantial expression variations relative to control samples. 
Subsequently, the expression matrix of these selected key genes was 
extracted from the integrated dataset and utilized as input for machine 
learning algorithms, enabling the identification of distinctive features 
associated with different neurological diseases (Figure 1).

Collection, normalization and integration 
of gene expression datasets for OPNA, EEV, 
and TBI derived from various platforms

To investigate the transcriptional characteristics of rodent brains 
injured by EEV, TBI or OPNA, we  systematically searched and 
downloaded multiple datasets from NCBI’s Gene Expression 

Omnibus (GEO) database, ensuring representation of each 
condition. The acquired data encompassed gene expression profiles 
for these disorders and their corresponding control samples, 
consisting of 395 samples across two mammalian species, mouse 
(Mus musculus) and rat (Rattus norvegicus) (Figure  2). As a 
prerequisite to downstream analysis, data normalization was 
conducted by identifying unique genes across all platforms used in 
the study. To create a comprehensive gene set, we compiled a list of 
all genes involved in each dataset and then obtained the intersection 
set. This process allowed us to identify orthologous genes and 
determine which ones were similar across species. To account for 
batch effects caused by diverse experimental designs across the 
different GEO datasets, we  applied the ComBat tool from the 
pycombat package (Zhang et al., 2020), which corrects for artificial 
differences in the overall expression distribution of each sample by 
using Location and Scale (L/S) adjustments (Figure 2B). We then 
integrated samples across different diseases or species into a single 
expression matrix by using the unique gene symbol as the key, with 
genes in rows and samples in columns. The standardized dataset was 
ready for downstream analysis of differentially expressed genes 
(DEGs) and for training machine learning models.

Differential expression analysis between 
OPNA/EEV/TBI and control samples in 
rodent models

To investigate the characteristics of gene expression changes 
under different conditions, we implemented differential expression 
analysis between disease and control samples for each dataset 
separately. For the comparison between EEV/TBI/OPNA and their 
corresponding normal controls, we identified 2,542, 5,211, and 766 
DEGs, respectively. Interestingly, in all three conditions, there appear 
to be  more up-regulated DEGs than down-regulated DEGs 
(Figure 3A). To further explore the intrinsic connections of the gene 
expression changes among these three brain diseases, we compared 
the three up-and down-regulated DEGs to identify the common and 
distinct gene expression changes among different diseases. We found 
that most DEGs are disease-specific, in other words, the DEGs in all 
three diseases do not overlap significantly. For up-and down-regulated 
DEGs, only 45 and 1 DEGs were found to have simultaneous changes 
in all three diseases, respectively (Figure 3B).

FIGURE 1

Workflow implemented in this study.

https://doi.org/10.3389/fncom.2025.1529902
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yin et al. 10.3389/fncom.2025.1529902

Frontiers in Computational Neuroscience 04 frontiersin.org

FIGURE 2

Data collection and normalization in this study. (A) Publicly available datasets used in this study across species and diseases. (B) Gene expression levels 
across multiple datasets after ComBat normalization.

FIGURE 3

Differential expression analysis between disease and control samples. (A) Transformed volcano plot depicting differentially expressed genes (DEGs) 
between disease and control samples. (B) Overlap of DEGs among the three types of brain diseases studied. The top panel shows the number of up-
regulated DEGs, while the bottom panel displays the number of down-regulated DEGs. (C) GO ontology enrichment for the 45 shared up-regulated 
DEGs.
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To analyze the functional consequences of these gene expression 
changes, gene functional enrichment analysis was conducted on both 
shared and disease-specific gene sets using the DAVID website 
(Sherman et al., 2022), by which an over-representation analysis was 
performed to identify the enriched biological processes of input gene 
set. As expected, the 45 shared up-regulated DEGs are significantly 
enriched in immune-and neuron-related functions, including 
“immune system process,” “innate immune response,” “inflammatory 
response,” “synapse disassembly,” and “positive regulation of 
angiogenesis” (Figure 3C). Moreover, we  found a list of immune-
related and neuron-related processes enriched in disease-specific 
DEGs, suggesting that specific brain functions may be affected by 
different brain diseases (Supplementary Figure S1). Above all, our 
findings provide valuable insights into the molecular mechanisms 
underlying various brain pathologies and identify potential 
therapeutic targets for further investigation. The shared gene signature 
across multiple brain diseases suggests common pathways that could 
be targeted for broad-spectrum treatments, while the disease-specific 
signatures offer opportunities for developing targeted therapies for 
individual conditions.

Machine learning framework to identify key 
expression features for OPNA, EEV, and TBI

We combined the DEGs identified in each dataset, and from 
which selected orthologous genes across species to build an 
informative gene set for machine learning. A total of 2,525 genes were 
retained for downstream classifier training and prediction. Different 
machine learning models, including k-nearest neighbor (KNN), 
random forest (RF), linear discriminant analysis (LDA), support 
vector machine (SVM), and artificial neural network (ANN), were 
then employed for prediction purpose. The performance of these 
classifiers was evaluated by the misclassification rate (MCR), which is 
defined as the proportion of incorrect predictions, i.e.,

 
=

#incorrect predictionsMCR .
# total predictions

Under a training to test ratio of 4:1, we  obtained the 
misclassification rate of the five classifiers (Table 1), which shows that 
the ANN classifier achieves the best performance for both ternary 
(across the three disorders to identify distinct features for each 
disorder) and binary (between disease and control to identify common 
features of the three disorders) classification (Figures  4A,B). 
We therefore chose ANN as a suitable machine learning model in this 
study for its outperformance among others.

We next used the ANN model to select a subset of feature genes 
that are most important for classification. For ternary and binary 

classifications, 238 and 252 genes were selected, respectively, and by 
using these selected feature genes, the ANN classifier was able to 
achieve the same misclassification rate as by using all genes. To ensure 
that the selected features are representative for disease in binary 
classification and for each disorder in ternary classification, we set 
between-group standard variation over 0.15 as an additional threshold 
to filter the selected features. For binary classification and ternary 
classification, 50 and 81 features were retained as the final expression 
features, respectively. These retained features showed strong 
expression representation in both binary and ternary classifications 
(Figures 4C,D). This provides strong evidence that the selected feature 
genes play a critical role in separating the classes, either across OPNA/
EEV/TBI or between disease and control.

Lastly, we examined the function of the selected feature genes. 
Functional enrichment analysis showed that both common and 
distinct features of the three brain disorders are significantly enriched 
in immune-related terms, such as “immune system process” and 
“innate immune response” (Figures 4E,F). Among these immune-
related genes, we identified a core set of upregulated genes across all 
three disorders compared with mock samples (Figure  4G). These 
genes included B2m (beta-2-microglobulin, crucial for MHC class 
I  antigen presentation), Fosl2 (a key transcription factor in 
inflammatory responses), Map3k8 (a central regulator of inflammatory 
cytokine production), Rsad2 (an interferon-stimulated gene with 
antiviral properties), Tap1 (involved in antigen processing), Trim25 (a 
critical regulator of innate immunity), and Ube2l6 (involved in 
ISGylation). All these genes were consistently upregulated, suggesting 
a common inflammatory signature across these conditions. Among 
the features identified in ternary classification, we identified disorder-
specific immune signatures (Figure  4H). OPNA samples showed 
elevated expression of C1qb (complement cascade initiator), Bst2 
(type I  interferon-induced antiviral protein), and Irf1 (interferon 
regulatory factor). EEV showed specifically upregulated Il7r 
(lymphocyte development regulator), Rnasel (viral RNA degradation), 
and Arg1 (immunosuppressive mediator in myeloid cells). TBI 
samples distinctively expressed Morc3 (nuclear protein involved in 
immune response) and Lgals9 (immunomodulatory galectin). In 
summary, through machine learning algorithms, we have successfully 
extracted the common and distinctive expression features underlying 
EEV, TBI, and OPNA.

Conclusions and discussion

In this study, we developed and implemented a comprehensive 
framework for analyzing and comparing transcriptomic profiles 
across three distinct neurological conditions: TBI, EEV, and OPNA. By 
leveraging machine learning approaches, particularly using artificial 
neural networks, we identified both shared and condition-specific 
gene signatures that provide valuable insights into the underlying 
molecular mechanisms of these neurological disorders. Our 
comparative analysis revealed several key findings. First, the 
integration of diverse transcriptomic datasets demonstrated the 
feasibility of cross-platform data normalization and analysis. Second, 
the machine learning models enabled the identification of critical 
genes associated with each condition, suggesting potential therapeutic 
targets for medical countermeasures. Third, the pathway and gene 
ontology analyses highlighted specific biological processes and 

TABLE 1 Misclassification rates of different machine learning models.

Classification KNN RF LDA SVM ANN

Ternary (OPNA/

EEV/TBI)
0.083 0.125 0.486 0.097 0.024

Binary (Disease/

Control)
0.158 0.096 0.465 0.123 0.038
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molecular functions that may play crucial roles in the pathogenesis of 
these neurological conditions.

Several limitations exist in this study. First, OPNA and EEV studies 
are highly limited, which limits our ability to have consistent tissue types 
in the data selected. Future studies would benefit from incorporating 
additional neurological conditions with more comprehensive data from 
the same species, tissue type, and background. Next, our analysis relies 
on microarray data, which provides only tissue-level expression profiles, 
and may overlook cell type-specific responses that are crucial for 
understanding the complex pathophysiology of neurological disorders. 
Additionally, microarray technology has inherent limitations in detecting 
novel transcripts and may identify fewer transcripts compared to more 
recent sequencing approaches. Future studies could address these 
limitations by incorporating single-cell RNA sequencing (scRNA-seq) 
data to identify cell type-specific responses to TBI, EEV infection and 
OPNA exposure and reveal cellular heterogeneity within affected tissues.

Regarding the specific findings of this study, the overwhelming 
similarities between EEVs, TBIs, and OPNAs are associated with the 
upregulation of the immune response. While this is an expected finding, 
it is challenging to utilize broad immune-related markers for biomarker 
analysis or therapeutics. Binary analysis of neurological disease 
phenotypes could be broadened to include other neuropathologies to 
identify signatures of gene expression that are indicators of damage in 
cases where the injury is unknown. Especially in the context of the 
warfighter, early markers of inflammation could be  beneficial in 
distinguishing a healthy phenotype where immune-associated genes are 
lowly expressed from a recent injury or exposure to chemical or 
biological agents where these genes are upregulated. Further research is 
required to assess whether these biomarkers of disease in the brain also 
correlate with differences in the blood to make sample collection and 
testing realistic in the field. For the ternary analysis (EEV vs. TBI vs. 
OPNA), these results could be utilized to characterize types of injury. 
For example, in this analysis the gene Morc3 and Lgals9 appear to 
be  upregulated in OPNA exposure and downregulated in EEVs. 
Therefore, these genes could be a feasible biomarker in clinical setting to 
distinguish whether an individual posing general malaise-like symptoms 
could have been exposed to a viral or chemical threat. This method of 
biomarker analysis has previously been used in the clinical context to 

assess whether patient inflammation is associated with infection where 
supportive antimicrobial therapeutics are necessary, or an underlying 
disease state such as cancer, ischemia, or pulmonary embolism where 
administration of antimicrobial agents could worsen disease and in 
some cases be fatal (Alexandra Binnie and Dos Santos, 2019). As there 
are few comparable transcriptomic studies for EEVs and OPNA, further 
validations and incorporation of additional datasets are crucial for 
assessing the feasibility of transcriptional biomarker identification.

Our findings provide a prospect for future investigations into these 
neurological conditions and demonstrate the value of machine learning 
in understanding complex disease mechanisms. Looking forward, 
we expect to expand our research in the following two directions. First, 
we  would like to incorporate single-cell RNA sequencing data to 
explore cellular heterogeneity and identify specific cell-type 
contributions to the pathogenesis of TBI, EEV infection, and OPNA 
exposure. This expansion will provide a more granular understanding 
of the molecular and cellular mechanisms underlying these disorders. 
Second, we will focus more on the transparency, accountability, and 
fairness of the machine learning models used in this study. Advanced 
explainable AI methods, such as LIME, SHAP, and Saliency Maps and 
Attention Mechanisms, will be compared and incorporated to enhance 
the interpretability and precision of our machine learning framework. 
These advancements will enable us to uncover deeper insights into 
disease-specific pathways and refine the identification of potential 
therapeutic targets. Together, these efforts will contribute to the 
development of more effective medical countermeasures and advance 
our understanding of these complex neurological conditions.

Methods

Data collection, normalization, and 
integration

The publicly available gene expression data were obtained from 
the National Center for Biotechnology Information (NCBI), under the 
Gene Expression Omnibus (GEO) database. A total of 395 samples 
were used in this study for investigating the transcriptional responses 

FIGURE 4

Feature selection results for ANN-based ternary and binary classification. (A,B) Schematic diagram showing the binary (A) and ternary (B) classification. 
(C,D) Average expression of common (C) and distinct (D) expression features. (E,F) GO ontology enrichment for binary (E) and ternary (F) classification 
features. (G,H) Expression of selected examples for immune-related features for binary (G) and ternary (H) classification.

https://doi.org/10.3389/fncom.2025.1529902
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yin et al. 10.3389/fncom.2025.1529902

Frontiers in Computational Neuroscience 07 frontiersin.org

of different diseases such as EEV, TBI, and OPNA exposure. These 
datasets were obtained from various experiments across mammalian 
species, primarily rats and mice, as summarized in Table 2. Samples 
for TBI, OPNA, and EEV were selected based on data availability, and 
limited to the most consistent brain regions across different 
experimental conditions. Each dataset was filtered to remove 
knockouts, treatments, or additional treatments to ensure these data 
did not impact the results (Supplementary Table S1).

All the samples were integrated into one expression matrix with 
genes listed in rows and samples in columns, by merging genes with 
the same symbol in different samples or species. ComBat (Zhang 
et al., 2020) was adopted to normalize the data across platforms and 
experiments and adjust for batch effects. The normalized expression 
matrix, with dimension 6,289 × 395, was used for 
downstream analysis.

Differential expression analysis

The Limma package (Ritchie et al., 2015) in R was adopted to 
identify differentially expressed genes (DEGs) between the disease 
samples and control samples for EEV, OPNA, and TBI, respectively. 
An empirical-Bayes based method was used to determine expression 
difference and statistical significance, so that genes with fold-change 
over 1.5 and p-value less than 0.05 were identified as DEGs.

Gene functional enrichment analysis

Gene functional enrichment analysis was conducted using the 
DAVID website (Sherman et  al., 2022), which implemented a 
hypergeometric test to evaluate the enrichment score, and the 
significance of the input gene sets in certain gene ontology (GO) 
terms. The GO terms with p-value less than 0.05 were determined as 
the over-represented biological processes.

Machine learning on transcriptomic 
datasets

Different machine learning models, such as KNN, RF, LDA, SVM, 
and ANN, were used to predict disease classes based on the 
normalized expression matrix. These models differ in various aspects, 
including flexibility, training complexity, scalability, interpretability, 
etc. In this study, since the goal is to accurately predict samples into 
disease classes and identify key expression features associated with the 
prediction, we focus on the ANN model, particularly deep learning 
ANN, as it achieves lowest misclassification rate compared to the 
other models (Table  1). To enhance model efficiency, only DEGs 
obtained by contrasting the disease and control samples were included 
in the models, reducing the dimension from 6,289 to 2,525. Both 
ternary and binary classifications were implemented to compare 
prediction accuracy across various conditions, where the former used 
OPNA, EEV, and TBI as responses and the latter used disease (by 
combining samples from three disorders) and control (by combining 
the corresponding control samples) as responses. Specifically, for 
KNN classification, we set k = 3; for RF classification, we used 1,000 
decision tree; and for SVM classification, we chose radial basis kernel. 
In ANN classification, the entire dataset was split into training and 
testing sets, according to a ratio of 4:1. The ANN model consists of 
three hidden layers, with the number of nodes in each layer specified 
according to the geometric pyramid rule (Masters, 1993). Model 
performance was evaluated subsequently using the 
misclassification rate.

Besides prediction, ANNs were also used to identify feature genes 
that are shared or unique among different disease classes. The basic 
idea is to remove or mask specific features and observe the impact on 
model performance (i.e., MCR) (Kavzoglu and Mather, 2002). If 
removing a feature significantly degrades performance, it suggests the 
feature plays a key role in prediction and should be  selected. 
Specifically, such a feature selection was achieved by heuristically 
searching the 2,525-dimensional feature space along certain path to 

TABLE 2 Resource of datasets used in this study.

Data Data Type Disease Type Brain Location Species Title PMID

GSE91074 Microarray EEV Whole Brain Mouse Gene expression in the brains of different strains of 

laboratory mice upon intranasal infection with vaccine 

strain (TC83) of Venezuelan equine encephalitis virus

28184218

GSE96550 Microarray EEV Whole Brain Mouse Differential host gene responses from infection with 

neurovirulent and partially-neurovirulent strains of 

Venezuelan equine encephalitis virus

28446152

GSE128543 Microarray TBI Cortex Mouse Identification of Novel Targets of RBM5 in the Healthy 

and Injured Brain

32335213

GSE131435 Microarray TBI Hippocampus Rat TBI weight-drop model with variable impact heights 

differentially perturbs hippocampus-cerebellum specific 

transcriptomic profile.

33172833

GSE13428 Microarray OPNA Hippocampus Rat Gene Expression Profiling of Rat Hippocampus 

Following Exposure to the Acetylcholinesterase 

Inhibitor Soman

19281266

GSE28435 Microarray OPNA Piriform cortex Rat Transcriptomic Analysis of Rat Brain Following 

Exposure to the Organophosphonate Anticholinesterase 

Sarin

21777429
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find the most parsimonious model that attains comparable or slightly 
higher MCR to the full model. The search path was determined by 
calculating the leave-one-out model MCR and ranking the marginal 
effect of each gene.
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