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Spinal health forms the cornerstone of the overall human body functionality

with the lumbar spine playing a critical role and prone to various types of

injuries due to inflammation and diseases, including lumbar vertebral fractures.

This paper proposes automated method for segmentation of lumbar vertebral

body (VB) using image processing techniques such as shape features and

morphological operations. This entails an initial phase of image preprocessing,

followed by detection and localizing of vertebral regions. Subsequently, vertebral

are segmented and labeled, with each classified into normal or fractured

using classification techniques, k-nearest neighbors (KNN) and support vector

machines (SVM). Themethodology leverages unique vertebral characteristics like

gray scales, shape features, and textural elements through a range of machine

learning methods. The approach is assessed and validated on a clinical spine

dataset dice score used for segmentation, achieving an average accuracy rate of

95%, and for classification, achieving average accuracy of 97.01%.

KEYWORDS

classification, MRI, segmentation, vertebral body compression fractures, feature based

classification

1 Introduction

Medical imaging offers an opportunity to observe the internal structure of human
anatomy .Integrating artificial intelligence (AI) techniques into healthcare has driven
significant innovations, offering considerable promise in advancing medical practices and
improving diagnostic accuracy (Galić et al., 2023). The merging of AI with medical image
analysis marks a pivotal achievement, offering deep insights into human anatomy and
physiology by enabling advanced visual data interpretation (Mohammed et al., 2022). The
combination of computational intelligence with medical imaging has driven the evolution
of advanced techniques crucial for disease detection, prognosis, and treatment planning.
It can be effectively used in clinical settings to identify and choose appropriate treatments
for abnormalities, in research to gain insights and develop novel medications for various
conditions, and in surgical planning for guidance.
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Vertebral fractures occur when the vertebral body, which is
front part of the spinal bone, cannot support the load of the spine
from above.Vertebral fractures affect many patients worldwide and
are most common in elderly population, these affects their daily life
due to severe physical limitations (Akeda et al., 2024). In clinical
routine, it is identified as partial collapse of affected vertebral
body. Vertebral fracture causes changes in shape of vertebrae which
may also occur with deformation of vertebral plateaus. When a
patient develops a vertebral collapse without apparent trauma it
needs to be investigated (Parizel et al., 2010). Vertebral fractures
(VF) most frequently occur in the vertebral body, often resulting
from osteoporosis in adults or trauma in children, as well as from
infections or tumors, all of which can lead to compression fractures
(Frighetto-Pereira et al., 2015) . These fractures are prevalent in
the thoracolumbar spine (middle-lower spine) and can cause a
reduction in height if multiple fractures occur. In adults, these
fractures typically indicate osteoporosis, whereas, in children, they
are usually caused by trauma. Spinal fractures elevate the risk of
future spinal fractures and other low-impact fractures elsewhere
in the body (Eastell et al., 2001). Although all fractures cause
deformities, not all deformities arise from fractures. Clinically,
a vertebral compression fracture due to osteoporosis is often
considered benign, while one caused by bone metastasis is typically
regarded as malignant (Cicala et al., 2013).

Medical institutions and hospitals generate and process a large
volume of medical images every day. The manual analysis of these
images demands considerable expertise and is time-intensive and
expensive. Consequently, the demand for automatedmedical image
processing in the medical field is increasing. MRI offer significant
advantage over other imaging techniques like CT and X-ray due
to absence of radiation exposure during scans (Lee et al., 2012)
and the ability to effectively address certain pathologies such as
bone tumors and metastases. These advantages makes MRI a
frequently utilized imaging modality in diagnosis of spinal diseases
and abnormalities such as vertebral fractures, slipped vertebrae,
herniated or degenerated discs, vertebral deformities and bone
marrow deformities (Bot et al., 2004).

Computer-Aided Diagnosis (CAD) systems have become
essential tools for evaluating anatomical structures in medical
images, facilitating the diagnosis of pathologies, vertebral fractures,
tumors, and abnormalities. They also support treatment planning,
surgical interventions, and post-surgical assessments (Song et al.,
2016). Despite their advantages, the application of CAD systems to
spinal MRI faces significant challenges. MRI scans inherently differ
from modalities like computed tomography (CT) because they do
not use standardized quantitative units equivalent to Hounsfield
Units (HU), which measure tissue density in CT scans (Pinto et al.,
2022). This absence of standardized measurement units makes
MRI interpretation more subjective and challenging. Furthermore,
spinal MRIs are complicated by issues such as arbitrary fields
of view, variable image resolutions, and susceptibility to image
artifacts (Chang et al., 2020). Accurate vertebral localization,
labeling, and segmentation in MRI is particularly challenging
due to the complex vertebral anatomy and anatomical variability
among patients, exacerbated by conditions such as scoliosis and
vertebral compression fractures (Alomari et al., 2015). Vertebral
fractures, a common indicator of osteoporosis and metastatic
diseases, demands precise imaging for diagnosis and treatment

planning. While conventional radiography (X-ray), including
advanced low dose EOS imaging, is frequently employed as an
initial evaluationmethod due to its accessibility, rapid imaging, and
reduced radiation exposure however, its sensitivity in identifying
subtle or early-stage vertebral abnormalities remains limited (Garg
et al., 2020) . Conversely, MRI remains the preferred modality
for detailed evaluation of vertebral fractures because of its
superior capability to visualize marrow changes, edema, soft tissue
involvement, and differentiate benign from malignant vertebral
fractures, highlighting the critical need for an effective CAD system.

This paper is organized into six sections. II. Literature Review
reviews the relevant literature, summarizing previous research and
foundational studies. III. Methodology details the materials and
techniques used in this study. IV. Experimental Setup outlines
the experimental setup and presents the results, providing a
thorough evaluation of the findings. V. Discussion discusses the
results, interpreting the data and considering its implications.
Finally, VI. Conclusion concludes the paper, summarizing the main
findings and suggesting directions for future research and potential
applications.

2 Literature review

Vertebral compression fractures (VCFs) may arise either from
traumatic events, such as falls or vehicular accidents, or due to
underlying pathological conditions compromising bone integrity.
Osteoporosis, characterized by a significant decline in bone density,
makes vertebrae particularly susceptible to fractures. Resultant
VCFs often lead to chronic pain, spinal deformities, and noticeable
height loss, severely impairing daily functioning and quality of
life, and increasing dependence on assisted care (Haffner et al.,
2021; Pisani et al., 2016). The diagnosis process of VCFs involves
segmentation and classification. Segmentation methods can be
categorized as manual, semi-automatic, or automatic. Manual
segmentation, while accurate, is labor-intensive and prone to
operator variability. Azevedo-Marques et al. (2015) proposed a
manual segmentation using Adobe Photoshop CS5TM software for
precise delineation of vertebral boundaries but required significant
operator input. To mitigate manual method limitations, semi-
automatic segmentation techniques have emerged. Kim et al.
(2018) suggested semi-automatic algorithm for the segmentation
of vertebral bodies in magnetic resonance (MR) the placement
of Region of Interest (ROI) limited to a single area containing a
vertebral body. The correlation algorithm subsequently identified
the other vertebral bodies, facilitating the segmentation process via
graph-based and line-based segmentation algorithms.When tested
on sagittal MR images of the lumbar spine, this method achieved a
Dice Similarity Coefficient (DSC) of 90%.

Automatic segmentation techniques have seen rapid
advancements using deep learning approaches. Lessmann
et al. (2019) proposed a vertebra segmentation and identification
method using a single fully convolutional neural network (FCN)
for multiple tasks. The method employs a patch-based approach,
where each patch contains at least one vertebra. After segmenting
a vertebra, anatomical knowledge about typical vertebral positions
is used to reposition the patch for segmenting the next vertebra,
ensuring spatial continuity. This approach resulted in an average

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2025.1536441
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Nyange et al. 10.3389/fncom.2025.1536441

(DSC) of 94.9 ± 2.1%, and an anatomical identification accuracy
of 93%, corresponding to just one mislabeled vertebra. Vertebrae
visibility classification reached an accuracy of 97%. Song et al.
(2024) highlight the importance of effectively utilizing AI-
generated annotations, on combating annotation errors in existing
methods for medical image segmentation, opening the opportunity
to use AI-generated annotations to train segmentation model for
medical image segmentation.

Following segmentation, classification techniques distinguish
between normal, benign or malignant vertebral fractures based on
extracted image features. Azevedo-Marques et al. (2015) proposed
classification of malignant vs. benign VCFs in magnetic resonance
imaging (MRI) using contrast and texture features and a k-nearest
neighbor (KNN) classifier results demonstrated that by combining
features derived from Fourier and wavelet transforms with the
fractal dimension, a classification accuracy of 94.7% was achieved.
Frighetto-Pereira et al. (2016) extended this by integrating texture
and shape features, achieving an area under the receiver operating
characteristic curve (AUC) of 0.97 for differentiating normal from
fractured vertebral bodies, and 0.92 between benign and malignant
fractures. These results were achieved using the k-nearest neighbor
method, a neural network with radial basis functions, and a naïve
Bayes classifier, all applied with feature selection. Similarly, Arpitha
and Rangarajan (2021) proposed an approach utilizing texture
and shape features with data augmentation techniques, reporting
classification accuracies ranging from 92.3% to 96.07% for various
fracture categories.

Further advancements leverage deep learning and neural
networks. Tomita et al. (2018) combining deep residual networks
(ResNet) and recurrent neural networks (RNN) is used for
feature extraction and aggregation. ResNet processed and extracted
features from two-dimensional (2D) CT slices. These features
were then input into a long short-term memory (LSTM) network,
part of the RNN module, which aggregated information from
multiple slices to make the final diagnosis.This method achieved
an accuracy of 89.2% and an F1 score of 90.8% in evaluation,
conducted on a held-out test set comprising 129 CT scans.
Germann et al. (2023) proposed a deep convolutional neural
network (DCNN) for automated vertebral measurements and
insufficiency fracture detection on lumbar spine MRI. Using a U-
Net-based architecture, the model achieved excellent agreement
with radiologists (ICC > 0.94) and high diagnostic accuracy (94%
sensitivity, 97% specificity). Its performance was consistent across
scanners and field strengths, highlighting its potential for clinical
application. Yeh et al. (2022) developed a deep learning decision
support model based on the ResNet50 architecture to differentiate
benign from malignant spinal fractures on MRI. Using T1- and
T2-weighted slices from 190 patients, the model achieved 92%
accuracy and significantly improved the diagnostic performance of
a first-year resident sensitivity from 78% to 94%, specificity from
61% to 91%. The study demonstrates the potential in of support
less experienced clinicians. Another line of work explores fuzzy-
image-fusion classifiers to handle uncertainty and noise in medical
imaging. Versaci et al. (2025) organize similar eddy-current defect
maps into coherent, class-specific sets by treating similarity as the
complement of a fuzzy distance measure in feature space. Because
MRI segmentation often suffers from noise and subtle pathological

variations, adopting fuzzy-similarity-based classifiers–such as the
image-fusion approach yield robustness to artifacts and improve
classification.

The diagnosis of vertebral compression fractures (VCFs)
stems from the critical need for precise vertebral body (VB)
positional angles and alignment of adjacent vertebrae, surface
appearance analysis and spatial relationships between vertebrae
and other spinal structures to improve segmentation and fracture
classification. These elements are essential for enhancing the
diagnostic accuracy of clinicians. This study is motivated by
the need to develop a robust clinical decision support system
that reliably segments and classifies VCFs while addressing these
challenges. Our approach strategically integrates machine learning
(ML) techniques such as K-Nearest Neighbors (KNN) and Support
Vector Machines (SVM) with carefully selected features, thereby
capturing critical anatomical details. Deep learning methods,
while powerful, require extensive, well-annotated datasets and
significant computational resources. Given our dataset size, ML
methods reduce the risk of overfitting and ensuring computational
efficiency.

The contribution of our work is as follows, first we introduce
a resource-efficient segmentation pipeline that combines spatial
filtering, adaptive histogram equalization, median-filter smoothing,
morphological operations and convex-hull regularization to
facilitate precise segmentation of lumbar vertebral fracture in MRI.
Second, we design a compact yet discriminative feature set drawing
on shape features (eccentricity, rectangularity, convexity), grayscale
and texture descriptors, and we integrate synthetic oversampling
(SMOTE) to address class imbalance in clinical data. Third, we
conduct comparison of K-Nearest Neighbors and Support Vector
Machines demonstrating that our SVM-based classifier achieves
high accuracy. Together, these contributions yield an automated
VCF decision-support system that balances diagnostic performance
with computational efficient and deployable in resource-limited
clinical settings.

3 Methodology

This study presents a framework for segmentation and
classification aimed at distinguishing bone from soft tissue in
MR images. The process, which spans from an initial MRI T1-
weighted median sagittal slices scan to the radiological assessment
for vertebral fracture classification, comprises three sequential
steps, the detailed steps are as follows: (i)data preprocessing; (ii)
segmentation of the lumbar vertebral bodies (VBs); and (iii) feature
extraction from lumbar VBs to classify each VB as either normal or
fractured. Figure 1 illustrates the workflow of this method.

3.1 Data and preprocessing

The dataset, sourced from Frighetto-Pereira et al. (2016),
includes 63 patients (37 women, 26 men) with a mean age of 62.25
± 14.13 years, all diagnosed with at least one vertebral compression
fracture (VCF) as shown in Figure 2. The images, utilized for
segmentation and classification, are T1-weighted median sagittal
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FIGURE 1

Methodology workflow.

FIGURE 2

Instances of lumbar vertebral bodies (VBs) showing normal and fractured conditions. Source: Frighetto-Pereira et al. (2016).

slices with varying fields of view (FOV) and comprises 315
vertebral bodies. The images are enhanced by applying spatial

filtering (O’Neill, 1956) to adjust pixel intensities across images,

the operation is formulated as g(x, y) = T[f (x, y)] where g is the
output, f is the input image and T is an operation of f defined

over some neighborhood of (x, y) pixels. To increase the global

contrast of images histogram equalization is used to redistributes
the intensity values in such a way the histogram of the grayscale
image is calculated to represent the frequency of each intensity level

(Abdullah-Al-Wadud et al., 2007). The cumulative distribution
function (CDF) of the histogram is computed as: CDF(i) =
∑i

j=0 h(j) and normalized by dividing each value by the total

number of pixels N in the image: CDFnorm(i) = CDF(i)
N with this

normalized CDF, a mapping of the original intensity levels to new
intensity levels is created: Inew(i) = round

(

CDFnorm(i)× (L− 1)
)

where L is the number of possible intensity levels in digital images
typically 256, as images generally store pixel brightness using 8 bits
per pixel. This allocation allows for 256 distinct brightness levels,
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ranging from (0 to 255), ensuring smooth gradations in brightness
while optimizing storage efficiency. The image is transformed
by applying this mapping, resulting in an equalized image with
enhanced contrast this helps to overcome image inhomogeneity,
making different features more distinguishable.

3.2 Segmentation of vertebral bodies

Segmentation involves partitioning an image of the lumbar
spine into distinct regions, where each region consists of pixels that
exhibit similar characteristics. This process is essential for ensuring
that each vertebral body is accurately identified and delineated. To
isolate the region of interest (ROI) and eliminate the background,
the binary image is processed using morphological operations.
Morphological filters used are based on two main operations
dilation and erosion (Maragos, 1989):

A
⊗

B = {z | (B̂)z ∩ A 6= φ} (1)

where φ is the empty set and B̂ is the reflection of the structuring
element B. Erosion is defined as:

AθB = {z | (B)z ∩ Ac 6= ∅} (2)

where Ac is a complement of A. Following morphological
operations, object holes are filled, and regions touching the image
boundaries that do not belong to the vertebra are removed, while
smaller, more irregular island areas, compared to the vertebral
bones, are eliminated. To ensure only the vertebral body (VB)
region is retained, the centroids of all components are calculated,
and only those with centroid x-coordinates within a specified
threshold are kept, enabling the precise localization of VBs. Overall
dataset includes both normal and fractured vertebral bodies,
with severely compressed and fragmented regions categorized
as background and removed during morphological operations.
This removal can result in irregular boundaries, complicating
shape-based analysis. To address this, the convex hull is applied,
producing the smallest convex boundary around the vertebral
bodies. This regularizes the shape, ensuring smoother contours
while preserving the overall structure, making the data more
suitable for segmentation. Preparata and Shamos (2012) The
convex hull of a set of points P = {p1, p2, . . . , pn} in a Euclidean
space is the smallest convex polygon that encloses all the points in
P. Mathematically, the convex hull Conv(P) is defined as the set of
all convex combinations of points in P:

Conv(P) =

{

n
∑

i=1

λipi | λi ≥ 0,
n
∑

i=1

λi = 1

}

(3)

This means that any point q in the convex hull can be expressed
as a convex combination of the points in P, where the coefficients
λi are non-negative and sum up to 1:

q =

n
∑

i=1

λipi (4)

In the context of vertebral body segmentation, the convex hull is
used to create a convex polygon that encloses the segmented region

(vertebral bodies) after morphological operations. This ensures that
the region of interest, corresponding to vertebral bodies present
in the lumbar spine, is accurately enclosed, excluding severely
compressed and fragmented regions categorized as background.

3.3 Classification

The objective of an automated medical image classification
system is to develop a model that can efficiently and accurately
categorize images as either normal or abnormal (Deepa et al., 2011).
In this study we aim to classify MRI spine images into normal
or fractured categories. Vertebral irregularities are predominantly
observed in the vertebral body (VB). Benign fractures typically alter
the shape of the VB while maintaining surface similarity to normal
VBs, whereas malignant fractures cause more significant variations
in surface textural intensities but retain structural resemblance
to normal VBs. This research focuses on VBs on lumbar spine
labeled L1–L5 for diagnostic purposes, utilizing a machine learning
framework that considers multiple VB features such as shapes, gray
level values, textures and boundaries. These features, individually
or collectively, are employed in various medical applications,
including ROI localization, abnormality detection with specific
patterns, anatomical structure segmentation, and differentiation
between healthy and pathological instances.

3.3.1 Features extraction (FE)
Feature extraction refers to the process of transforming data

into a set of meaningful attributes (features) that are informative
and non-redundant, aiding in learning and generalization. This
technique is often employed to simplify large datasets by
reducing the number of input variables while retaining critical
information. Unlike dimensionality reduction, feature extraction
focuses on selecting characteristics that enhance the performance
of subsequent algorithms. The efficacy of any algorithm is closely
tied to the quality of its feature detector, which influences the
overall performance of the system. As highlighted by Caridakis
et al. (2008) , a feature is the “interesting" portion of an image
that underpins the success of subsequent computational procedures
Complex data analysis faces significant challenges due to the high
dimension of variables, which can lead to excessive memory and
computational demands. Furthermore, a large number of variables
can cause classification algorithms to overfit to the training samples
and results generalize poorly to new data (Liu and Gillies, 2016).
Consequently, the desirable property for a feature detector is
its repeatability, i.e., the ability to detect the same feature in
multiple images of the similar scene. The primary types of features
considered in sign identification are spatial, temporal, and textural
(Choras et al., 2007). The feature extraction stage is designed to
process real images, with algorithms typically divided into three
tasks: extraction, selection, and classification. For classification
to be valid, there must be a logical connection between the
features, as the specific features available for discrimination directly
impact the classification’s effectiveness. Feature extraction refers to
various methods for combining variables to address these issues
while sufficiently describing the data. Many ML practitioners
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believe that well-optimized feature extraction is crucial for effective
model construction. The process of feature extraction results in
a collection of characteristics, often called a feature vector, which
encapsulates the essential information of an image.

3.3.2 Shape features
Shape is an important visual feature of an image that needs to

be described or represented by certain characteristics. Methods for
recognizing shapes in images can be categorized into edge-based,
region-based, or feature-based approaches. Edge-based methods
identify edge points by detecting intensity discontinuities, followed
by applying closing and filtering operations to form distinct shapes
(Wang and Yang, 2012). Effective shape features must exhibit
certain essential properties, including being identifiable, invariant
to translation, rotation, and scale, as well as affine and occlusion
invariance (Zhang and Lu, 2004). Additionally, they should resist
noise and be statistically independent. Shape-based image retrieval
involves measuring the similarity between shapes based on their
features. Simple geometric features effectively capture and describe
shapes with notable differences. These features serve as efficient
filters to exclude irrelevant matches and are often complemented by
more advanced shape descriptors to enhance precision in complex
shape discrimination. Key shape parameters include the center of
gravity, axis of least inertia, digital bending energy, eccentricity,
circularity ratio, elliptical variance, rectangularity, convexity,
solidity, Euler number and profiles (Mingqiang et al., 2008). One
dimensional function for shape representation also known as shape
signature derived from boundary coordinates.Shape signatures
usually captures the perceptual feature of shape, the centroid
distance function, area function and chord length function. In this
study, we utilize the following shape features:

Center of Gravity also called the centroid. Its position should be
fixed in relation to the shape. The shape is represented by its region
function its centroid (gx, gy) is:

{

gx =
1
N

∑N
i=1 xi

gy =
1
N

∑N
i=1 yi

(5)

where N is the number of points in the shape, (xi, yi) ∈ {(xi, yi) |

f (xi, yi) = 1}.
Axis of least inertia this is a unique line for a given shape that

acts as a reference to maintain the shape’s orientation.
Average bending energy (BE) is defined by

BE =
1

N

N−1
∑

s=0

K(s)2 (6)

where K(s) represents the curvature function, s is the arc length
parameter, and N is the number of points on the contour. In order
to compute the average bending energy more efficiently, Young
et al. (1974) performed the Fourier transform of the boundary and
used Fourier coefficients and Parseval’s relation.

Eccentricity refers to the aspect ratio, which is the ratio of the
length of the major axis to the length of the minor axis, typically
determined using the principal axes method.

Principal axes of a given shape are the two lines that intersect
orthogonally at the centroid of the shape. These axes represent

directions with zero cross-correlation, meaning they are statistically
independent in terms of distribution (Peura et al., 1997). This way,
a contour is seen as an instance from a statistical distribution. Let
us consider the covariance matrix C of a contour:

C =
1

N

N−1
∑

i=0

(

xi − gx
yi − gy

)

(

xi − gx yi − gy

)T
=

(

cxx cxy
cyx cyy

)

(7)

where

cxx =
1

N

N−1
∑

i=0

(xi − gx)
2 (8)

cxy =
1

N

N−1
∑

i=0

(xi − gx)(yi − gy) (9)

cyx =
1

N

N−1
∑

i=0

(yi − gy)(xi − gx) (10)

cyy =
1

N

N−1
∑

i=0

(yi − gy)
2 (11)

G(gx, gy) is the centroid of the shape. Clearly, here cxy = cyx.
The lengths of the two principal axes equal the eigenvalues λ1

and λ2 of the covariance matrix C of a contour, respectively. So the
eigenvalues λ1 and λ2 can be calculated by

det(C − λ1,2I) = det

(

cxx − λ1,2 cxy
cyx cyy − λ1,2

)

= (cxx − λ1,2)(cyy − λ1,2)− c2xy = 0

(12)

So

λ1 =
1

2

(

cxx + cyy +
√

(cxx + cyy)2 − 4(cxxcyy − c2xy)
)

λ2 =
1

2

(

cxx + cyy −
√

(cxx + cyy)2 − 4(cxxcyy − c2xy)
)

(13)

Then, eccentricity determined by the ratio of the eigenvalues:

E =
λ2

λ1
(14)

Rectangularity quantifies how well a shape approximates a
rectangle, specifically how much the shape fills its minimum
bounding rectangle. It is defined as:

Rectangularity =
AS

AR
(15)

where AS is the area of a shape and AR is the area of its minimum
bounding rectangle.

Convexity measures the ratio of the perimeter of the convex
hull OConvexhull to the perimeter of the original contour O:

Convexity =
OConvexhull

O
(16)

Euler number provides a measure of the topology of the shape,
specifically the relationship between the number of contiguous
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parts S and the number of holes N in the shape. It is number is
calculated as:

Eul = S− N (17)

Profiles are the projection of the shape to the x-axis and y-
axis on a Cartesian coordinate system. The two one-dimension
functions:

Prox(i) =

jmax
∑

j=jmin

f (i, j) (18)

and

Proy(j) =
imax
∑

i=imin

f (i, j) (19)

where f (i, j) represents the region of the shape.

3.3.3 Data augmentation
For classification purposes, each segmented vertebral body

(VB) is analyzed as an independent entity with its specific features
extracted. In medical imaging, class imbalance is a common
challenge where the number of images representing abnormal
conditions (such as vertebral compression fractures, VCFs) is
significantly lower than the number of images representing normal
conditions. the distribution of normal and fractured (benign
and malignant) vertebrae in the dataset are shown in Figure 3.
This imbalance can result in machine learning models that are
biased toward the majority class, leading to poor performance
in detecting and classifying the minority class. To address the
class imbalance in dataset, data augmentation technique Synthetic
Minority Over-sampling Technique (SMOTE). Chawla et al. (2002)
was employed to generate synthetic images of the minority classes
i.e. fractured, thereby increasing their representation. Additionally,
data augmentation techniques were applied, including rotations
between -15 and 15 degrees, to further diversify the dataset. This
combined approach of SMOTE and data augmentation effectively
mitigated class imbalance.

FIGURE 3

Distribution of vertebrae condition normal, benign and malignant.

4 Experimental evaluation and results

4.1 Evaluation of segmentation
performance

The segmentation performance was evaluated using a leave-
eleven-out cross-validation approach. In each iteration, 11 of the
63 cases were sequentially set aside for testing, while the remaining
cases were used for training. This method was specifically chosen
to balance the need for sufficient training data while still allowing
for a robust evaluation on a significant portion of the dataset.
The leave-eleven-out approach, compared to traditional k-fold
cross-validation, offers a compromise between bias and variance.
While k-fold cross-validation typically provides a broader view by
averaging performance over multiple folds, the leave-eleven-out
method was selected here to maintain a relatively large training set,
which is critical given the modest dataset size. This method also
ensures that each case is used multiple times across different test
sets, thereby reducing variance in the performance metrics.

To minimize bias in the outcomes, the cross-validation
procedure was repeated across 6 folds. The final fold comprised
three fewer cases due to the dataset’s size, ensuring that all cases
were utilized. During each fold, the segmented outputs of the
test data were compared against their corresponding ground truth
segmentations. For each test case, quantitative metrics such as
accuracy (Equation 20), sensitivity (Equation 21), Dice Similarity
Coefficient (DSC) (Equation 22), and Jaccard Coefficient (JC)
(Equation 23) were examined.

The chosen leave-eleven-out cross-validation method provides
a robust evaluation strategy that carefully balances the bias-
variance trade-off. This is especially pertinent for this dataset,
where a smaller number of cases could lead to higher variance
if a traditional k-fold approach with fewer folds was employed.
All implementations were performed using MATLAB (MATLAB,
2023; version r2023a) on a 64-bit operating system with an Intel R©
CoreTM i7-10750H CPU @ 2.60 GHz.

Accuracy of segmentation A(seg) is defined as the ratio of
correctly classified pixels (both true positives and true negatives)
to the total number of pixels, given as:

Aseg =
TP + TN

TP + FP + TN + FN
% (20)

Sensitivity (Sseg) measures the proportion of the region of
interest (ROI) that is correctly identified and is given by the
equation:

Sseg =
TP

TP + FN
% (21)

Dice Similarity Coefficient (DSCseg) measures the extent of
overlap between the automatically generated segmentation and the
manually annotated segmentation.

DSCseg =
2× TP

2× TP + FP + FN
% (22)

Jaccard Coefficient (JCseg) evaluates the similarity between the
automated segmentation and the manual segmentation:

JCseg =
TP

TP + FP + FN
% (23)
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FIGURE 4

Segmentation performance evaluated at each lumbar level (L1–L5).

where, TP refers to True Positive, indicating correctly identified
regions of interest (ROI). TN stands for True Negative, which
represents correctly identified non-ROI areas. FP denotes False
Positive, where non-ROI regions were mistakenly identified as
ROI, and FN stands for False Negative, indicating that ROI
regions were incorrectly classified as non-ROI. Figure 4 presents
the segmentation outcomes corresponding to these metrics.

4.2 Comparative analysis of KNN and SVM
for classification tasks

This study involves a classification task aimed at identifying
whether vertebral bodies (VB) are normal or fractured. There are
two classes in this classification task. To measure the goodness of
the proposed model computed classification accuracy, precision,
recall and F-measure are computed Precision which measures the
proportion of correctly predicted positive instances (true positives,
TP) out of all instances predicted as positive (true positives plus
false positives). It quantifies the model’s ability to avoid false
positives, FP (Powers, 2020).

Precision =
TP

TP + FP
(24)

Recall, also known as sensitivity or true positive rate, measures
the proportion of correctly predicted positive instances (true
positives) out of all actual positive instances (true positives plus
false negatives). It quantifies the model’s ability to identify all
positive instances (Powers, 2020).

Recall =
TP

TP + FN
(25)

Accuracy measures the overall correctness of the model’s
predictions by calculating the ratio of correctly classified instances
to the total number of instances in the dataset (Powers, 2020). It
provides a general assessment of the model’s performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(26)

The F1 score (Powers, 2020) is a widely used metric that
combines precision and recall to provide a balanced measure of the
model’s performance. It considers both the false positives and false
negatives, making it suitable for imbalanced datasets.

F1 Score =
2× Precision× Recall

Precision+ Recall
(27)

The average of classification accuracy using KNearest Neighbor
classifier and SVM are tabulated.

4.2.1 K-nearest neighbor
The k-nearest neighbor (k-NN) algorithm is a non-parametric

technique utilized for both classification and regression tasks.The
algorithm works by identifying the “k" closest data points in the
feature space to make predictions about a new, unseen data point.
For classification, the algorithm assigns a class to the new data point
based on amajority vote among its k nearest neighbors. The process
involves first calculating the distance between the input data point
and all points in the training set, typically using the Euclidean
distance, defined as

d(x, x′) =
√

(x1 − x′1)
2 + . . . + (xn − x′n)

2 (28)

where x and x′ are two data points in an n-dimensional space. The
input gets assigned to the class with the largest probability given as:

P(y = j | X = x) =
1

K

∑

i∈A

I(y(i) = j) (29)

The performance of the k-NN algorithm is highly sensitive
to the choice of k, as a smaller k may produce noisy decision
boundaries, while a larger k could overly smooth these boundaries,
potentially missing important local patterns. Thus, the k-NN
algorithm leverages the proximity of data points to make
predictions based on the most similar examples from the training
set, making it a simple yet effective method for classification and
regression (Altman, 1992). To optimize the k-Nearest Neighbors
(kNN) classifier for classifying normal and fractured vertebrae, a
grid search across different values of k given (k = 3, k = 5, k = 7, k
= 9, k = 11) was conducted. The performance metrics considered
include accuracy, precision, recall, and F-measure, with various
train-test splits (20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20).
The results for each k-value are presented in Table 1 , followed
by a comparative analysis of the models in terms of accuracy
and precision to highlight the best-performing one. The analysis
revealed that k = 3 provided the best overall performance, with the
highest average accuracy of 84.78%, precision of 87.88%, recall of
90.37%, and an F-Measure of 88.63%, underscoring the importance
of carefully selecting the value of k to ensure the algorithm’s
robustness and reliability in accurately classifying both normal and
fractured vertebrae.
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TABLE 1 Performance metrics for K-NN with di�erent k-values and

train-test splits.

Train%-
Test%

Accuracy Precision Recall F-Measure

k = 3

30–70 74.55 77.65 86.45 81.63

40–60 77.89 80.55 88.09 84.04

50–50 80.97 85.50 87.92 86.70

60–40 85.20 87.60 90.10 88.65

70–30 93.16 96.02 93.67 94.52

80–20 96.92 98.89 95.97 97.25

Average 84.78 87.88 90.37 88.63

k = 5

30–70 73.41 74.77 90.44 81.74

40–60 75.79 76.40 91.79 83.25

50–50 78.71 79.56 93.04 85.54

60–40 76.00 78.11 90.09 83.47

70–30 80.53 82.16 92.41 86.57

80–20 81.54 86.27 89.74 87.60

Average 77.66 79.55 91.25 84.69

k = 7

30–70 73.18 71.91 96.26 82.03

40–60 76.32 76.20 94.68 84.04

50–50 78.39 79.70 93.26 85.78

60–40 80.40 83.59 90.39 86.67

70–30 82.11 82.89 96.03 88.81

80–20 86.15 91.71 91.86 91.49

Average 79.42 81.00 93.75 86.47

k = 9

30–70 75.23 72.95 98.28 83.57

40–60 75.00 73.87 96.06 83.41

50–50 78.71 80.32 92.85 85.80

60–40 82.40 83.31 94.45 88.39

70–30 84.21 88.56 91.98 89.92

80–20 91.54 91.28 99.09 94.92

Average 81.18 81.71 95.45 87.67

k = 11

30–70 74.77 73.49 96.54 83.33

40–60 75.26 73.52 97.36 83.60

50–50 77.74 76.95 96.21 85.38

60–40 80.40 81.60 93.94 87.14

70–30 81.58 87.06 97.80 92.18

80–20 87.69 89.95 95.17 92.11

Average 79.57 79.38 96.17 86.65

The best performance for each metric is highlighted in bold.

4.2.2 Support vector machines (SVM)
Support Vector Machines (SVM) are a robust technique for

constructing classifiers. The primary goal is to establish a decision
boundary between two classes that facilitates the prediction of labels
from one or more feature vectors (Noble, 2006). This decision
boundary, termed the hyperplane, is optimally placed to be as far as
possible from the closest data points of each class, which are termed
support vectors. For a labeled dataset:

{(xi, yi)}
n
i=1 (30)

where xi is the feature vector and yi represents the class label for a
training sample i.

The hyperplane can be defined as:

w · x+ b = 0 (31)

where w is the weight vector, x is the input feature vector, and b is
the bias term.

The vectors w and b must satisfy the following conditions for
all training samples:

yi(w · xi + b) ≥ 1 (32)

The goal of training an SVMmodel is to find w and b such that
the hyperplane divides the data while maximizing the margin

1

‖w‖2
(33)

TABLE 2 Performance metrics for linear SVM.

Train%-
Test%

Accuracy Precision Recall F-Measure

30–70 95.72 96.36 97.10 96.54

40–60 96.19 96.24 97.60 96.89

50–50 97.42 98.10 98.04 98.02

60–40 98.00 98.16 98.86 98.46

70–30 96.58 97.27 95.53 96.69

80–20 98.15 98.89 95.53 97.11

Average 97.01 97.50 97.11 97.28

The best performance for each metric is highlighted in bold.

TABLE 3 Statistical test results comparing KNN (with various k) and SVM.

Comparison Paired t-test
(t-statistic,
p-value)

Wilcoxon
signed-rank test

(w-statistic, p-value)

KNN (k = 3) vs SVM -3.67, 0.0145 0.0, 0.03125

KNN (k = 5) vs SVM -17.74, 1.05e-05 0.0, 0.03125

KNN (k = 7) vs SVM -11.29, 9.52e-05 0.0, 0.03125

KNN (k = 9) vs SVM -6.95, 0.00095 0.0, 0.03125

KNN (k = 11) vs SVM -10.41, 0.00014 0.0, 0.03125

The p-values indicating significant differences p < 0.05 are highlighted in bold.
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Vectors xi for which |yi|(wxTi + b) = 1 will be termed support
vectors.

The optimization of Support Vector Machine (SVM)
for classification of normal and fractured vertebrae, model’s
performance was maximized, through tuning the regularization
parameter C, which controls the trade-off between margin
maximization and classification error minimization. A thorough
grid search with cross-validation was employed to identify
the optimal C value, ensuring that the model achieved strong
generalization without overfitting. Focusing on the linear kernel
allowed for the streamlining of the hyperparameter tuning process
while reducing computational complexity.

The performance metrics of a linear Support Vector Machine
(SVM) applied to the classification task are detailed in Table 2,
showcasing results across various train-test splits. The SVM
consistently performs well, with the highest accuracy 98.00%,
precision98.16%, recall 98.86%, and F-measure 98.46% observed
in the 60–40 split, indicating exceptional generalization and
detection capabilities. The 50–50 split also shows remark- able
performance, with metrics nearly matching those of the 60–40 split,
suggesting that a balanced train-test ratio may optimize the SVM’s
performance.

4.2.3 Performance comparison between KNN
and SVM

The performance of KNN and SVM classifiers was statistically
analyzed using paired t-tests and Wilcoxon signed-rank (Blair and
Higgins, 1985) tests to determine the significance of differences in
their accuracy scores across various configurations. Accuracy values
were obtained for KNNwith k = 3, 5, 7, 9, and 11. compared against
SVM accuracies.

These results show that SVM significantly outperforms KNN
for all tested values of k, as indicated by the paired t-test p-
values being < 0.05. The SVM classifier exhibits higher and more
consistent accuracy scores compared to KNN, with statistically
significant differences observed for all KNN configurations.

According to the Wilcoxon signed-rank test, the accuracy
differences between SVM and KNN configurations with k = 3, 5,
7, 9, 11, and 13 are statistically significant p < 0.05 as shown
in Table 3. However, for KNN with k = 3, while the paired t-
test shows statistical significance, the Wilcoxon signed-rank test
presents a p-value of 0.03125, which still indicates a significant
difference. Despite the statistical significance, KNN with k = 3
shows performance that is relatively close to that of SVM. This
suggests that KNN with k = 3 could be a viable alternative in
contexts where SVM might be too complex or resource-intensive,
especially considering factors such as computational efficiency or
ease of implementation.

Figure 5 illustrates the distribution of accuracy values for
different KNN k = 3, 5, 7, 9, and 11 configurations and SVM.
The SVM model demonstrates higher median accuracy and lower
variability compared to all KNN configurations, indicating more
consistent performance. In contrast, the KNNmodels show greater
variability in accuracy, with generally lower median values. As
k increases, the performance of KNN improves, but it still does
not reach the levels achieved by SVM. This visual representation
supports the statistical test results, highlighting the superior
and stable performance of the SVM classifier across different
experimental runs.

5 Discussion

The proposed framework for segmentation and classification
effectively distinguishes skeletal structures from soft tissues in
MR images, demonstrating robust accuracy and computational
efficiency. It involves three critical steps: data preprocessing,
segmentation of lumbar vertebral bodies (VBs), and feature
extraction for classification. The preprocessing step, employing
spatial filtering and histogram equalization, effectively enhances
gray level uniformity and image contrast, addressing issues of
image inhomogeneity, significantly facilitates accurate detection
and localization of vertebral bodies.

FIGURE 5

Comparison of the accuracy distribution between KNN and SVM.
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TABLE 4 Classification accuracy of di�erent methods.

Literature Classification accuracy

Azevedo-Marques et al. (2015) 95%

Frighetto-Pereira et al. (2016) 96%

Frighetto-Pereira et al. (2016) 97%

Arpitha and Rangarajan (2021) 94.17%

Arpitha and Rangarajan (2021) 96.07%

Yeh et al. (2022) 92.0%

Germann et al. (2023) 96.20%

Present method 97.01%

The segmentation approach leverages morphological
operations combined with the convex hull technique, effectively
isolating regions of interest while removing background noise. This
ensures precise localization of vertebral bodies, crucial for reliable
feature extraction and classification. Unlike manual segmentation
methods, such as described by Azevedo-Marques et al. (2015),
which can introduce operator subjectivity and variability, the
automated approach utilized here offers consistency, efficiency, and
reduced reliance on human intervention. In terms of classification,
the utilization of shape features like aspect ratio, area function,
centroid distance function effectively highlight differences in
contour or height distribution, which are key in distinguishing
normal from fractured vertebral bodies. Compared to traditional
machine learning classifiers such as the k-nearest neighbor (KNN)
and support vector machines (SVM), as demonstrated in earlier
studies (Frighetto-Pereira et al., 2016), our method achieves
superior classification performance. Support vector machines have
also shown promising results in previous literature, effectively
handling non-linear classification tasks through kernel functions
(Arpitha and Rangarajan, 2021). Neural network-based methods,
including deep learning techniques, have become prevalent
due to their powerful feature extraction capabilities. Germann
et al. (2023) demonstrated excellent classification performance
using neural network methodologies; however, these approaches
necessitate large annotated datasets and substantial computational
power, limiting their applicability in resource-constrained settings.
Conversely, our method does not rely on extensive datasets or high
computational demands, offering broader accessibility. Although
the current study is limited to lumbar spine imaging in the sagittal
plane, future work could explore the applicability of the method
across the thoracic spine and different imaging modalities. Overall,
the proposed methodology demonstrates notable advantages over
traditional KNN, SVM, and neural network approaches by offering
robust performance, reduced computational demands as shown in
Table 4.

6 Conclusions and future work

This study applies machine learning techniques to preprocess,
segment and classify lumbar vertebral fractures (VCFs) in medical
images, enhancing classification metrics and diagnostic confidence.

While focused on lumbar VBs, the methods can extend to thoracic,
cervical and sacral VB. Future work will improve segmentation
performance with semantic and instance-based techniques,
an automated feature selector, and explore deep learning
architectures, transfer learning, and 3D convolutional networks.
Extending these concepts to 3D image analysis aims to broaden
applicability and improve diagnostic and treatment outcomes for
spinal injuries.
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