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Human-machine interaction and computational neuroscience have brought 
unprecedented application prospects to the field of medical rehabilitation, 
especially for the elderly population, where the decline and recovery of hand 
function have become a significant concern. Responding to the special needs 
under the context of normalized epidemic prevention and control and the aging 
trend of the population, this research proposes a method based on a 3D deep 
learning model to process laser sensor point cloud data, aiming to achieve non-
contact gesture surface feature analysis for application in the field of intelligent 
rehabilitation of human-machine interaction hand functions. By integrating key 
technologies such as the collection of hand surface point clouds, local feature 
extraction, and abstraction and enhancement of dimensional information, this 
research has constructed an accurate gesture surface feature analysis system. In 
terms of experimental results, this research validated the superior performance of 
the proposed model in recognizing hand surface point clouds, with an average 
accuracy of 88.72%. The research findings are of significant importance for promoting 
the development of non-contact intelligent rehabilitation technology for hand 
functions and enhancing the safe and comfortable interaction methods for the 
elderly and rehabilitation patients.
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1 Introduction

In the context of the ongoing normalization of global epidemic 
prevention and control measures and the accelerating aging of the 
population, the dual challenge of safeguarding public health and 
enhancing the well-being of the elderly and rehabilitation patients has 
emerged as a pressing issue in contemporary society (Huang et al., 
2023; Baraković et al., 2024; Lopes et al., 2023; Harada et al., 2021; Li 
L. et al., 2023). Especially in the field of intelligent rehabilitation of 
hand functions in human-machine interaction, traditional 
rehabilitation methods are limited by contact based operations and 
infection risks, making it difficult to meet current needs (An et al., 
2022; Gao et al., 2023; Jiang et al., 2021; Zhang et al., 2023; Samhan 
et al., 2020; Tang et al., 2025). Therefore, developing a non-contact, 
efficient, and accurate gesture recognition system is of great 
significance for promoting the development of intelligent 
rehabilitation technology for human-machine interaction 
hand function.

There are many limitations in the field of hand function 
rehabilitation (Gu et al., 2022; Edger-Lacoursière et al., 2023; Zestas 
and Tselikas, 2023; Ergen et al., 2024; Bates and Sunderam, 2023). 
Traditional hand function rehabilitation methods are mostly contact 
based, such as therapists manually assisting patients with hand 
movement training. This approach relies on the manpower input of 
professional therapists, and in the face of the growing population of 
elderly rehabilitation patients, treatment resources are often difficult 
to meet the demand. In addition, existing rehabilitation assessment 
methods largely rely on the subjective judgment of therapists and lack 
objective and accurate data support. When evaluating the accuracy 
and flexibility of hand function, there may be  differences in the 
evaluation criteria of different therapists, resulting in lower reliability 
of the evaluation results. The non-contact gesture recognition method 
proposed in this research avoids direct contact between patients and 
treatment equipment or therapists. At the same time, it can achieve 
intelligent gesture analysis and recognition, reduce reliance on 
professional therapists’ manpower, improve the efficiency of 
rehabilitation treatment, and better meet the needs of elderly 
rehabilitation patients. By analyzing the hand surface point cloud, our 
proposed method can extract rich hand features and provide accurate 
data support for rehabilitation assessment.

Different sensors can be used to obtain hand surface information. 
LEAP device plays an important role in fields such as human-
machine interaction and hand motion capture (Vaitkevičius et al., 
2019; Ameur et al., 2020; Najafinejad and Korayem, 2023; Li et al., 
2019; Galván-Ruiz et al., 2020). The LEAP device mainly utilizes 
optical imaging principles to obtain 3D coordinate information of the 
hand, with performance advantages of high frame rate and high 
accuracy, and can track subtle hand movements in real time. In the 
application of virtual reality, game development, and scientific 
research, LEAP equipment played a crucial role. LEAP device 
performs well in indoor environments with stable lighting and close 
range operations. What’ more, MediaPipe, as a powerful and widely 
used open-source framework, has achieved remarkable results in the 
field of pose detection (Suwabe et al., 2024; Cao et al., 2024; Samaan 
et al., 2022; Mariappan et al., 2024). With excellent performance, it 
can accurately recognize hand movements and postures, and has 
outstanding application performance in many scenarios. MediaPipe 
combines various advanced algorithms, greatly promoting the 

development of computer vision and human-machine interaction 
fields, and providing important support for related research and 
applications. In addition, laser sensors, as a high-precision, 
non-contact measurement tool, have been widely used in the fields 
of material surface morphology analysis, defect detection, and so on 
(Zheng et al., 2023; Ye et al., 2023; Rufei et al., 2022; Sadaoui et al., 
2022; Theodose et al., 2021). The point cloud data collected by laser 
sensors can obtain 3D structural information of material surfaces, 
providing important basis for material performance analysis and 
interface engineering. Meanwhile, laser sensor point clouds, as a 
non-contact gesture acquisition technology, can obtain 3D 
information of the hand with high precision and high spatiotemporal 
resolution, providing a rich data source for gesture analysis. However, 
in the field of human-machine interaction and intelligent 
rehabilitation of hand functions, the application of laser sensor point 
cloud data is still relatively limited. Therefore, this research aims to 
apply laser sensor point cloud data to gesture recognition, process 
point cloud data through a 3D deep learning model, and achieve 
non-contact gesture surface feature analysis.

There are various methods in the field of point cloud processing, 
among which the point cloud processing method based on multi view 
method is widely used (Zhang et al., 2018; Tong et al., 2020). This 
method projects three-dimensional point cloud data onto multiple 
two-dimensional views, and then uses traditional two-dimensional 
image processing techniques for analysis and processing. Its 
advantage is that it can use mature two-dimensional image processing 
algorithms to reduce processing difficulty. However, this method 
inevitably loses some three-dimensional spatial information during 
the projection process, resulting in damage to the integrity of point 
cloud data and limiting subsequent analysis. The point cloud 
processing based on voxel method divides the three-dimensional 
space into regular voxel grids (Li J. et al., 2021; Li Y. et al., 2021; 
Aljumaily et  al., 2023), which fills the point cloud data into 
corresponding voxels, and then uses a three-dimensional 
convolutional neural network for processing. This method can 
effectively preserve the spatial structure information of point cloud 
data. However, high-resolution voxels can lead to an exponential 
increase in computational complexity, while low resolution voxels 
cannot accurately express the detailed features of point clouds. 
PointNet and PointNet++ break through the limitations of point 
cloud processing methods (Qi et al., 2017a; Qi et al., 2017b). As deep 
learning models capable of directly processing point cloud data, they 
break the traditional convolutional neural network’s dependence on 
structured data. PointNet and PointNet++ can effectively extract 
global features of point clouds by introducing symmetric functions, 
demonstrating good performance in tasks such as point cloud 
classification and object detection.

The continuous emergence of efficient solutions for upper limb 
motor performance evaluation, hand rehabilitation, human-computer 
interaction, and other excellent achievements (Guo et  al., 2023; 
Yozevitch et  al., 2023; Zhu et  al., 2025; Lu et  al., 2024). We  have 
achieved a lot of research results based on graph neural network in the 
early stage (Xing et al., 2023; Xing et al., 2025; Xing et al., 2022), but 
non-contact gesture surface feature analysis for intelligent 
rehabilitation of hand function in human-machine interaction is still 
blank. Moreover, due to the complexity and diversity of gesture surface 
features, how to effectively extract and analyze gesture surface features 
from point cloud data has become a challenging problem.
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In summary, this research combines laser sensor point cloud data 
with 3D deep learning model to construct an efficient and accurate 
gesture recognition system in the context of normalized epidemic 
prevention and control and aging population trends. Through this 
system, we  can achieve precise analysis of the surface features of 
gestures, providing new solutions for intelligent rehabilitation of hand 
functions in human-machine interaction. This research achievement 
can provide a non-contact gesture analysis tool for rehabilitation 
medical institutions and elderly care institutions, reduce the risk of 
infection transmission, improve the efficiency and accuracy of 
rehabilitation treatment, and promote the cross integration of interface 
science and deep learning technology, opening up new paths for 
research in related fields. In addition, this method can also be applied 
in fields such as augmented reality and gesture control interfaces, 
providing users with a more natural and intuitive way of human-
machine interaction.

2 Materials and methods

Gesture recognition is a crucial step in achieving natural human-
machine interaction in hand function virtual rehabilitation systems 
(Li W. et al., 2023; Liu et al., 2022; Wang et al., 2023; Zhu et al., 2021). 
Due to the high degree of freedom of human hand joints, achieving 
precise and robust breakthroughs in gesture recognition technology 
is currently a challenging task. A point cloud refers to a collection of 
points on the surface characteristics of a target object, which have 3D 
coordinates and simple expression methods (Tan et al., 2022; Xiao 
et al., 2023; Akhtar et al., 2022), making it easy to express spatial 
features of different gestures in a digital form. More importantly, point 
cloud data is generally obtained through non-contact measurement 
devices such as laser sensors. This research builds a gesture surface 
feature analysis network (GSFAN) based on DGCNN to revolutionize 
the research approach of gesture recognition in 3D space (Wang et al., 
2019), as shown in Figure 1.

2.1 Hand 3D data

The collection of hand surface point clouds is the primary step in 
this research. By collecting point cloud representations of hand surface 
data, it provides a foundation for subsequent analysis of hand surface 
features and functional rehabilitation. In order to obtain 3D 
information of the hands, we used light laser detection and ranging as 
a data acquisition device to obtain point cloud data of the hands. In 
the process of collecting point clouds on the surface of the hand, 
choose an environment with sufficient light and no obstructions, 
while ensuring that the background of the hand collection area forms 
a clear contrast with the hand, in order to better extract the features of 
the hand. In this research, we collected point clouds on the surface of 
the hands of different individuals to ensure data diversity. When 
collecting hand surface point clouds, different individuals displayed 
different postures in order according to regulations, as shown in 
Figure 2.

The total number of participants is 4. The distance between the 
sensor and the hand is not fixed, which facilitates us to quickly and 
conveniently collect hand surface point cloud. Although variable 
distances can increase noise, we can use CloudCompare to remove it. 
In the actual data collection process, the technology used by laser 
radar is Direct Time of Flight (DToF). The main reasons for choosing 
laser radar are as follows: Firstly, laser radar has the advantage of 
non-contact, which avoids the risk of cross infection that may 
be caused by contact devices. Secondly, laser radar has high-precision 
characteristics and can capture subtle structures of the hand. Finally, 
the anti-interference ability of laser radar enables stable acquisition 
of depth information even under complex lighting conditions. 
Therefore, laser radar plays a crucial role in the entire process of 
collecting hand surface point cloud. It can accurately capture hand 
surface features and generate high-quality point cloud data, which 
provides a solid data foundation for our research. This research sets 
each finger (thumb, index finger, middle finger, ring finger, little 
finger) as an independent variable, and each finger is in two states of 

FIGURE 1

Building a research framework based on 3D deep learning.
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extension and bending. A total of 32 gestures were calculated 
through combination.

After the data collection was completed, we adopted a series of steps 
to process the raw point cloud data to remove irrelevant information. 
Firstly, we will import the collected point cloud data into the professional 
point cloud processing software CloudCompare, which has powerful 
visualization and processing capabilities, allowing us to intuitively view 
the quality and distribution of point cloud data. Secondly, after importing 
the data, we checked if there is any interference from other objects 
around the hand surface point cloud. If there are non-hand surface point 
cloud, we used CloudCompare’s segmentation tool to process them. 
Specifically, we  combined the software visualization interface to 
accurately select the hand surface point cloud data to be preprocessed in 
the point cloud data list, ensuring accurate operation. Next, we used 
segmentation tools to draw a closed shape that fully includes the 
non-hand surface point cloud that needs to be  deleted. We  further 
utilized the segmentation tool sub option to separate non hand surface 
point cloud from the original point cloud data, and used the deletion 
function of the point cloud data list to completely delete the separated 
point clouds. Finally, after completing the above processing operations, 
we stored the processed hand surface point cloud data.

2.2 Hand surface point cloud edge 
convolution for human-machine 
interaction

In GSFAN, edge convolution is a key technique that can effectively 
capture local structures and geometric features in hand surface point 

cloud data. The point cloud on the surface of the hand can be viewed 
as an unordered set of N points, thus it can be  represented as an 
undirected graph, where each point is a node in the graph, and the 
edges between nodes represent their proximity (Figure 3a). In edge 
convolution, it is necessary to construct a graph structure to capture 
local proximity information of the hand surface point cloud. The 
commonly used methods for constructing graphs include different 
algorithms such as radius neighbors, which can determine the 
connection relationship based on the distance between each center 
point and its nearest neighbor point. Once the graph structure is 
constructed, edge convolution operations can be performed. The basic 
idea of edge convolution is to update the node representation by 
aggregating the features of neighboring nodes of each node. In the 
point cloud of the hand surface, each node can be represented as a 
vector containing position and other features. The edge convolution 
operation obtains a new representation of each node by aggregating 
and updating the features of its neighboring nodes (Figure  3b). 
GSFAN extracts higher-level feature representations by stacking 
multiple layers of edge convolution, gradually learning richer hand 
surface point cloud features. However, whether the more edge 
convolution layers, the better the effect, will be analyzed in detail and 
depth in this research.

The node set V  contains all the points in the hand surface point 
cloud. Each point iv  corresponds to a coordinate point in three-
dimensional space, and the set of node V  can be  expressed as 
Equation (1).

 { }= …1 2, , NV v v v  (1)

FIGURE 2

Collecting 3D data of hand surface for non-contact human-machine interaction.
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Where N  is the number of points in the point cloud on the surface 
of the hand. Each node iv  can be represented by a feature vector ix , 
which contains the coordinates and other relevant information of the 
point, and can be expressed as Equation (2).

 { }= ,coord other
i i ix x x

 
(2)

Where coord
ix  is the three-dimensional coordinates of the point 

(for example, =   , ,ix x y z ), and other
ix  is other features such as color 

and normal.

The edge set Edefines the connection relationship between nodes 
in the graph, and for hand surface point clouds, threshold distance is 
used to define edges. For any two nodes iv  and jv , if the spatial distance 
between them is less than a certain threshold threshd , it can 
be expressed as Equation (3).

 ( ){ }= <,ij threshE e dist vi vj d
 

(3)

Where ( ),dist vi vj  is a function for calculating the distance 
between nodes iv  and jv . In order to more conveniently represent the 

FIGURE 3

(a) Graph structure representation of real hand surface point clouds. (b) Each point in the hand surface point clouds is traversed as the center point.
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graph structure, this research uses the adjacency matrix A, which can 
be expressed as Equation (4).

 

 
 
 =  
 
  





   



11 12 1

21 22 2

1 2

N

N

N N NN

A A A
A A A

A

A A A  

(4)

If there is an edge between nodes iv  and jv , =1ijA , otherwise 
= 0ijA . In this research, we assume that there is a hand surface point 

cloud dataset of P , where each point ip  has a 3D coordinate ( ), ,i i ix y z . 
For point ip , its local density can be expressed as Equation (5).

 ( ) ( )
( )

∈
= ∑1 ,

j k i

i i j
k i p N p

p d p p
N p

 
(5)

Where ( )k iN p  is the set of K-nearest neighbors of point ip , and 
( ),i jd p p  is the Euclidean distance between points ip  and jp . The 

neighborhood ( )iN p  of point ip  is defined as the set of all points up 
to ip  that do not exceed ir , which can be expressed as Equation (6).

 ( ) ( ){ }= ∈ ≤,i j i j iN p p P d p p r
 

(6)

Where ir  is the neighborhood radius of each point. We use the 
weight matrix W  and the nonlinear activation function σ  to obtain 
the aggregated feature ih , which can be expressed as Equation (7).

 
( ) { }{ }( )( )σ= ⋅ ∈ ∪aggregatei j ih W x j N p i

 
(7)

In order to enable each node to consider its own characteristics, 
we add self-loops and normalize them during the aggregation process, 
which can be expressed as Equation (8).

 
( ) ( ) { }

σ
∈ ∪

 
 = ⋅
 +
 

∑1
1

i

i j
i j N p i

h W x
N p

 

(8)

Where ( )iN p  represents the number of nodes in the 
neighborhood ( )iN p .

Traditional point cloud processing methods, such as simple 
voxelization or direct feature extraction, which often struggles to 
accurately capture local geometric structure information in point 
cloud data. Taking voxelization as an example, it divides the three-
dimensional space into regular voxel grids and discretizes point cloud 
data into these grids. Although this approach reduces the complexity 
of the data to a certain extent, it also loses a large amount of local 
detail information. Edge convolution can fully consider the 
relationship between each point and its neighboring points when 
processing hand surface point cloud. Through edge convolution 
operation, the model can learn the local geometric structure in point 
cloud data based on the relative position between the center point and 
neighboring points.

In addition, traditional point cloud processing methods typically 
use fixed feature extraction methods, which may lack adaptability for 

different types of point cloud data. Edge convolution is different, it is 
a dynamic feature extraction method. In edge convolution, the 
features of each point are obtained by aggregating the features of its 
neighboring points. This feature extraction method enables edge 
convolution to learn more representative features based on the local 
structure and feature distribution of point cloud data. When 
processing hand surface point cloud, different gestures may have 
different local feature distributions. Edge convolution can adjust the 
feature extraction method based on these differences, thereby 
improving the expression ability of features and better distinguishing 
different gestures.

2.3 Enhancement of hand surface point 
cloud dimension abstraction in 
human-machine interaction

In hand surface point cloud recognition methods, improving the 
dimensional information of the point cloud helps to capture richer 
hand surface features and enhance the recognition ability of the 
model. Multilayer perceptron, as a feedforward neural network, can 
effectively handle nonlinear problems and abstract the intrinsic 
features of data (Yu et al., 2023; Lyu et al., 2022; Yang and Fang, 2024; 
Khan et al., 2022). Therefore, after edge convolution, we introduce a 
multilayer perceptron to further process hand surface point cloud 
data. After each fully connected layer, a multilayer perceptron follows 
an activation function to introduce nonlinear transformations. By 
stacking multiple such layers, multilayer perceptron can learn 
complex mappings from low to high dimensions and extract 
advanced features of hand surface point clouds.

Before inputting gesture point cloud data into a multilayer 
perceptron, we first perform preliminary processing on the gesture 
point cloud using edge convolution and graph algorithms to 
obtain local features for each point. Then, we use these local features 
as inputs to the multilayer perceptron, and gradually abstract the 
global features of the gesture point cloud through layer by layer 
transmission and transformation. An important feature of multilayer 
perceptron is its ability to enhance the dimensionality of data. By 
increasing the number of fully connected layers and neurons, we can 
map the input low dimensional features to a high dimensional space, 
thereby extracting more complex feature representations. The above 
process is shown in Figure 4. In hand surface point cloud recognition, 
this dimension enhancement helps to capture subtle changes and 
diversity in gestures, improving the recognition accuracy of GSFAN.

After edge convolution and KNN graph algorithm processing, the 
local feature representation of each hand surface point cloud can 
be obtained. Set { }= …1 2, , , NF f f f  to represent the local feature set of 
the hand surface point cloud, where ∈ 0D

if R , N  is the number of 
points, and 0D  is the initial feature dimension.

For the ioutput feature of the llayer in a multilayer perceptron, it 
can be expressed as Equation (9).

 

( ) ( ) ( ) ( )σ ω
− −

=

 
 = +
 
 
∑

1 1

1

iD
l l l l
i iij j

j
h h b

 
(9)

Where ( )l
ih  is the feature vector of the i row of the output matrix 

( )lH  in the l layer, ( )ω l
ij  is the element of the i row and j  column of the 
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weight matrix ( )lW , ( )−1l
jh  is the vector composed of the features of the 

j  column of the output matrix ( )−1lH  in the −1l  layer. ( )l
ib  is the i-th 

element of the bias vector ( )lb . In order to obtain the output matrix 
( )lH  of the entire l layer, we need to perform the above calculation on 

each { }∈ …1,2, , li D  and stack the results in matrix form, which can 
be expressed as Equation (10).

 
( ) ( ) ( ) ( )( )σ= + ⊗1l l l l

NH W H b
 

(10)

Where 1N  is a full 1-column vector of ×1N , ⊗ represents 
Kronecker product or outer product, used to extend the bias vector 

( )lb  to the same shape as ( )−1lH  for element wise addition. The 
complete matrix ( )0H  can be expressed as Equation (11).

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 01 1 1

0 2 2 2 01 1 1

01 1 1

1 2

1 2

1 2

N N N
j j jj j j

N N N
j j jj j j

N N N
Nj Nj Njj j j

M j M j M j D

M j M j M j D
H

M j M j M j D

ω ω ω

ω ω ω

ω ω ω

= = =

= = =

= = =

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =
 
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑





   



 

(11)

In the formula, M is the mapping function. We  introduce a 
combination of additional nonlinear functions, matrix multiplication, 
and element wise multiplication, which can be  expressed as 
Equation (12).

FIGURE 4

Abstract enhancement method for hand surface point cloud dimension in non-contact human-machine interaction.

https://doi.org/10.3389/fncom.2025.1543643
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Xing et al. 10.3389/fncom.2025.1543643

Frontiers in Computational Neuroscience 08 frontiersin.org

 
( ) ( )˜

2tanhz V z W zσ β = ⋅ ⋅ + + γ 

 (12)

Where V  and 2W  are weight matrices, β  and ã  are additional 
learnable parameters, ( )σ z  is the result of applying non-linear 
functions to z , ( )β⋅ +2tanh W z  is the result of non-linear 
transformation, ⊙ represents element wise multiplication.

3 Results and discussions

3.1 Experimental details

We divided the collected hand surface point cloud dataset into 
training and testing sets for GSFAN training and evaluation. In 
order to ensure a certain degree of randomness and 
representativeness in the training and evaluation data during the 
experimental process, and to maintain a balance between different 
gesture categories in the dataset, in order to avoid GSFAN bias 
caused by class imbalance.

In this research, we used accuracy to evaluate the model. Choosing 
accuracy for evaluation is because it has significant advantages. In the 
gesture recognition scenario of hand function rehabilitation for the 
elderly population that we  focus on, the accuracy can quickly 
demonstrate the overall reliability of the model for gesture recognition 
in practical applications, providing a strong basis for judging whether 
the model can meet basic needs. In addition, we also use tools such as 
confusion matrices to visualize and analyze the classification results 
of the model, in order to further research the performance of 
the model.

We not only conducted multiple repeated experiments, but also, 
due to different patients undergoing hand function rehabilitation at 
home, GSFAN needs to face diverse hand surface point clouds. 
Therefore, we collected the hand surface point clouds of different 
experimenters to test GSFAN and fully demonstrate its 
generalization. The configuration for conducting relevant 
experiments in this section is as follows: the processor is the 13th 
Gen Intel Core i9-13900 K, with a reference frequency of 3.00GHz 
and a maximum acceleration frequency of 5.80GHz. The graphics 
card is an NVIDIA GeForce RTX 4080 independent graphics card, 
with a core frequency of 2,205 MHz, a graphics memory frequency 
of 1,400 MHz, and a boost frequency of 2,505 MHz. The memory 
configuration consists of two 32GB DDR5 memory modules. The 
operating system is Windows 10 64 bit. In addition, different cutting-
edge deep neural networks were constructed using Python 3.7.9 and 
TensorFlow 2.3.0 deep learning frameworks. The key hyperparameter 
settings are shown in Table 1.

Although the ReLU function solves the problem of vanishing 
gradients, when x < 0, the gradient becomes 0, making the neuron 
invalid and not updated in the subsequent training process. Leaky 
ReLU does not use the method of all zeros in non-positive parts, but 
assigns a non-zero slope in non-positive parts (Wang and Liu, 2024; 

Gezawa et  al., 2023). Therefore, Leaky ReLU is selected as the 
activation function.

3.2 Multi perspective analysis of edge 
convolution results

The number of edge convolution layers plays a crucial role in 
capturing local geometric features and learning discriminative 
representations of input point cloud data. In order to research the 
effect of different edge convolution layers, we conducted a series of 
experiments, and the number of edge convolution layers gradually 
increased from one layer. In all experiments, the remaining parts of 
the network and parameter settings were kept consistent to ensure the 
fairness of the experiment.

The more edge convolution layers attached within GSFAN, the 
larger the receptive field range of the hand surface point cloud, as 
shown in Figure  5a. We  analyzed the results obtained by four 
experimenters under different numbers of edge convolution layers. 
In order to ensure the comprehensiveness and objectivity of the 
experiment, the results of each experiment were the average of 
multiple repeated experiments, as shown in Figure  5b. The 
experimental results of each experimenter under different numbers 
of edge convolution layers are shown in Figure 5c.

The performance of hand surface point cloud recognition methods 
is significantly affected by different numbers of edge convolution layers. 
We can see from the experimental results that as the number of edge 
convolution layers increases, the performance of hand surface point 
cloud recognition gradually improves. Starting from the number of 
edge convolution layers being 1, the accuracy gradually increases. 
Appropriately increasing the number of edge convolution layers can 
effectively improve the model’s ability to extract hand surface point 
cloud features, thereby enhancing the accuracy of gesture recognition. 
The edge convolution operation is crucial in the model, as it aggregates 
and updates the features of each node’s neighboring nodes to obtain a 
new representation of the node. When stacking multiple edge 
convolution layers, the model can capture deeper and farther distance 
hand surface point cloud features. Each layer of edge convolution 
further refines and integrates features based on the previous layer, 
enabling the model to gradually learn richer and more complex hand 
surface point cloud features. As the number of layers increases, the 
model can more accurately describe the entire gesture.

However, the number of edge convolution layers is not the more 
the better. When there are too many edge convolution layers, the 
performance of the model will actually decrease. This is because 
excessive edge convolution layers can make the features between 
neighboring information too smooth when aggregating the 
neighborhood information of the central point. In this process, 
originally discriminative features are excessively fused, resulting in a 
weakening of the uniqueness and differences of the features, making 
the features between different gestures similar and lacking sufficient 
discriminability. In this way, it is difficult for the model to accurately 

TABLE 1 Hyperparameter settings.

Hyperparameters Learning rate Batch size Momentum Dropout rate Loss function

Select 0.001 32 0.9 0.5 Cross-entropy
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distinguish different gestures during gesture recognition, resulting in 
a decrease in recognition accuracy.

In addition, we can see that the accuracy changes obtained by 
different experimenters not only have consistent trends, but also the 
maximum accuracy values occur when the number of edge 
convolution layers is 3, achieving a relatively high level of performance. 
Furthermore, further increasing the number of edge convolution 
layers does not bring significant performance improvement. 
Increasing the number of edge convolution layers will increase the 
complexity of the model, as well as the number of parameters and 

computational complexity. Therefore, it is reasonable to choose an 
appropriate number of edge convolution layers.

3.3 Multi perspective analysis of dimensional 
abstraction enhancement processing results

Abstract enhancement of the dimension of the hand surface point 
cloud can enable the 3D deep learning model to learn the features of 
the point cloud more accurately, as shown in Figure 6a. We designed 

FIGURE 5

(a) Different receptive field ranges of hand surface point clouds. (b) Average values of experimenters in multiple experiments under different numbers 
of edge convolution layers. (c) Results of each experiment conducted by each experimenter under different numbers of edge convolution layers.
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multiple experiments to increase the dimensions of the hand surface 
point cloud to 32, 64, 128, 256, 512, 1,024, and 2,048. In each 
experiment, we used the same training and testing sets, and trained 
and evaluated them under the same network parameter configuration. 
At the same time, we  analyzed the results obtained by four 
experimenters under different dimensions of abstraction 
enhancement. In order to ensure the comprehensiveness and 
objectivity of the experiment, each experimenter conducted multiple 
repeated experiments, as shown in Figure 6b. The experimental results 
of each experimenter in different dimensions are shown in Figure 6c.

The abstract enhancement of different dimensions has a significant 
impact on the performance of hand surface point cloud recognition 
methods. As the dimensions increase, the performance of the model 
shows a trend of first improving and then decreasing. Specifically, as 
the dimension gradually increases from 32, the accuracy of hand 
surface point cloud recognition gradually improves. This is because 
when the dimensions are small, the model’s representation ability is 
limited, and it cannot fully capture and represent the advanced 
features of the hand surface point cloud. The hand surface point cloud 
contains rich information, and models in low dimensions find it 
difficult to effectively integrate and express this information, resulting 
in lower recognition accuracy. With the increase of dimensions, the 
representation ability of the model is enhanced, and it can handle 
more complex features, thereby improving the accuracy of gesture 
recognition. However, when the dimension reaches a certain 
threshold, the situation changes. Continuing to increase dimensions, 
the improvement in performance is no longer significant, and there 
may even be a decline. This is because when the dimensions are too 

large, the model becomes increasingly complex, overfitting the 
training data during the training process, ultimately leading to a 
decrease in accuracy.

Based on the experimental results, we  found that when the 
dimension is around 128, the accuracy of hand surface point clouds is 
higher, and the model can fully capture the advanced features of hand 
surface point clouds. Besides, enhancing dimensions is like adding 
more attributes to data. The original hand surface point cloud only 
had simple information such as position, but after adding features, 
more abstract descriptions were added to the hand surface point 
cloud. This enables GSFAN to more accurately recognize different 
gestures and achieve non-contact gesture surface feature analysis in 
human-machine interaction.

3.4 Multi perspective analysis of different 
cutting-edge models

In order to verify the progressiveness and superiority of the model 
we  built in this research, we  will analyze the results obtained by 
GSFAN, PointNet, PointNet++ in processing point clouds on the hand 
surface of different experimenters (Figure 7a). For fair comparison, 
we trained and tested in the same hardware and software environment, 
using the same dataset and evaluation metrics. The overall accuracy 
of different cutting-edge models on the hand surface point clouds of 
different experimenters is shown in Figure 7b. The confusion matrix 
can observe the performance of the model on various categories. 
We analyze the confusion matrix of different cutting-edge models in 

FIGURE 6

(a) Abstract enhancement of dimension of hand surface point cloud. (b) Chord diagrams of multiple repeated experiments conducted by all 
experimenters in different dimensions. (c) The experimental results of each experimenter in different dimensions.
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the second experiment and evaluate the performance of different 
cutting-edge models on different gesture categories. Figure 7c shows 
the confusion matrix of 32 hand surface point clouds obtained from 
different cutting-edge models, where the horizontal axis represents the 
predicted results, the vertical axis represents the true results, and the 
diagonal matrix represents the recognition accuracy of each hand 
surface point cloud. The reason for choosing accuracy as the 
evaluation metric is that it can intuitively reflect the performance of 
the model in the overall gesture recognition task, and in actual hand 
function rehabilitation application scenarios, users are more 
concerned about whether the model can accurately recognize gestures, 
thereby ensuring the effectiveness of rehabilitation training.

In the comparative experiment, we observed that the GSFAN 
established in this research had an overall accuracy better than 
PointNet and PointNet++for different experimenters, indicating that 
this model has higher accuracy in hand surface point cloud processing 
tasks. In addition, different cutting-edge models have certain 
sensitivity to the hand surface point clouds provided by different 
experimenters, and the results obtained may fluctuate and change. 
This is mainly because the hand surface point clouds of each 
experimenter cannot be  completely consistent, but the accuracy 
obtained by GSFAN can still reach a high level, with an average 
accuracy of 88.72%. And the above experimental results also 
demonstrate that GSFAN can still achieve good results and has good 
robustness when facing different hand surface point clouds given 
by experimenters.

In order to conduct a more in-depth analysis of the performance 
of each model, we further plotted the confusion matrix. The confusion 

matrix can clearly demonstrate the recognition ability of the model on 
various categories, especially on easily confused hand surface point 
cloud categories. It can be seen that for the 32 types of hand surface 
point clouds, GSFAN is able to distinguish each type of point cloud 
well and has good classification performance. PointNet and 
PointNet++have a high false recognition rate on certain specific hand 
surface point cloud categories. Through comparative analysis, 
we found that the GSFAN established in this research exhibits superior 
performance in hand surface point cloud processing tasks. This is 
mainly due to the following aspects: the GSFAN constructed in this 
research obtains local information of the hand surface point cloud 
through edge convolution, which can more effectively capture the 
spatial structure and local detail features of gestures. Moreover, 
GSFAN increases the dimensional information of the gesture point 
cloud, which can further extract advanced feature representations of 
the hand surface point cloud, thereby improving the model’s 
discriminative ability. In contrast, although PointNet and 
PointNet++can handle unordered point cloud data, they have certain 
limitations when dealing with hand surface point cloud data. PointNet 
is unable to capture local detail features in point clouds. As an 
improved version of PointNet, although PointNet++has improved the 
ability to extract local features to a certain extent, it still has not 
escaped the constraints of PointNet in essence, and still appears 
inadequate when dealing with complex hand surface point clouds.

Through the above experiments and result analysis, we  can 
conclude that the model established in this research has good 
performance in hand surface point cloud processing tasks. This 
provides a new approach and method for non-contact analysis of 

FIGURE 7

(a) Processing hand surface point clouds using different cutting-edge models. (b) Overall accuracy of different cutting-edge models on hand surface 
point clouds of different experimenters. (c) Confusion matrix of different cutting-edge models on second experimenter’s hand surface point clouds.
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gesture surface features in human-machine interaction in the field of 
hand function rehabilitation.

In traditional hand function rehabilitation scenarios, rehabilitation 
methods often rely on physical contact and manual guidance. Patients 
need to perform various rehabilitation actions with the assistance of 
therapists, and the rehabilitation process is usually mechanically 
repeated according to established procedures, which makes the entire 
rehabilitation process appear dull and boring. Moreover, manual 
guidance has certain limitations, such as the difficulty for therapists to 
accurately monitor the quality and subtle changes of each patient’s 
movements at all times. High accuracy gesture recognition enables 
patients to interact with rehabilitation equipment in a more natural 
and convenient way. Patients only need to make gestures, and 
rehabilitation equipment can accurately recognize and provide 
corresponding feedback without the need for tedious operations. The 
natural interaction greatly enhances the patient’s rehabilitation 
experience and makes the rehabilitation process more enjoyable. 
Positive psychological experiences can greatly stimulate patients’ 
rehabilitation enthusiasm, making them more willing to actively 
participate in rehabilitation training, thereby improving 
rehabilitation outcomes.

In addition, during the rehabilitation process, therapists need to 
accurately determine whether patients can complete specific 
rehabilitation training and adjust the training intensity and methods 
in a timely manner. High accuracy gesture recognition can provide 
reliable reference for therapists. Therapists can gain a clear 
understanding of patients’ hand movements based on relevant 
feedback, which helps them develop more scientific and personalized 
rehabilitation plans, and improve the efficiency and quality of 
rehabilitation treatment.

In order to better adapt the model to the characteristics of each 
individual, we plan to introduce personalized training mechanisms in 
the future. In practical applications, users perform a series of simple 
gestures, and we use this data to fine tune the pre trained model. By 
fine-tuning, the model can adjust parameters based on the individual 
characteristics of new users, thereby better recognizing their gestures. 
This personalized training mechanism can improve the recognition 
accuracy of the model for each individual without affecting the overall 
performance of the model. In addition to the features of the hand 
surface point cloud itself, we  will also consider integrating other 
relevant features, such as the user’s basic information (age, gender, 
etc.) and the physiological characteristics of the hand (hand size, 
finger length, etc.). These additional features can provide the model 
with more information about individual differences, helping the 
model better understand and adapt to the characteristics of different 
individuals. Meanwhile, we will introduce an adaptive adjustment 
mechanism in the model to enable it to automatically adjust decision 
rules based on the characteristics of input data. For example, when the 
model detects that the input data is similar to an individual feature in 
the training data, it can automatically adjust the corresponding 
weights to improve recognition accuracy.

This research has limitations in some aspects. Firstly, we used laser 
sensors to collect hand surface point cloud, but this hardware has 
certain limitations. On the one hand, the accuracy of laser sensors is 
limited, which may result in inaccurate point cloud data collection and 
loss of some subtle features on the hand surface. On the other hand, 
the collection range of laser sensors is also limited. When the hand 
exceeds its effective range, some point cloud data will be missing, 

which will affect subsequent feature extraction and model training. 
Secondly, in this research, the number of samples used for model 
training and testing was relatively small. This is mainly due to the fact 
that the data collection process requires a significant amount of time 
and labor costs. A small sample size may lead to insufficient 
generalization ability of the model, making it difficult to adapt well to 
gesture changes in different individuals and environments. For 
example, there may be  differences in hand size among different 
individuals, and small sample data may not cover all of these changes, 
resulting in poor performance of the model when faced with new data. 
Finally, the current research mainly focuses on the accuracy of gesture 
recognition, but lacks validation of the real-time performance of the 
model. In practical human-machine interaction and rehabilitation 
application scenarios, real-time performance is a very important 
indicator. Patients need to receive timely feedback in order to adjust 
their actions. However, due to the high computational complexity of 
the model, it can cause delays in recognition results and fail to meet 
real-time requirements. In the future, we will research lightweight 
deep learning architectures to reduce the computational complexity 
of models.

4 Conclusion

In the current context of the interweaving trend of normalized 
epidemic prevention and control and aging population, this research 
focuses on the field of intelligent rehabilitation of hand function in 
human-machine interaction. A 3D deep learning model was 
constructed to process laser sensor point clouds and achieve 
non-contact gesture surface feature analysis. Through this innovative 
method, we are not only able to accurately recognize and analyze the 
surface features of gestures, but also have achieved significant 
breakthroughs in the security and convenience of human-machine 
interaction. Firstly, this research effectively captured the spatial 
structure and local detail features of gestures through edge 
convolution. Through experiments, it was found that the model 
performed best when the number of edge convolution layers in 
GSFAN was 3. Secondly, abstraction enhances the dimensional 
information of the hand surface point cloud, which can further extract 
advanced feature representations of the hand surface point cloud. 
Through experiments, it was found that the recognition accuracy of 
the hand surface point cloud is higher when the dimension is 128. 
Finally, this research verified the progressiveness and superiority of 
GSFAN through comparative experiments. Compared with the 
cutting-edge point cloud processing model, GSFAN showed higher 
accuracy and lower confusion rate when classifying 32 hand surface 
point clouds. The average accuracy of GSFAN is 88.72%. The results 
of this research indicate that our proposed model has stronger 
application potential and practical value in the field of intelligent 
rehabilitation of hand function in human-machine interaction.

In addition, in the subsequent research work, we will conduct 
extensive research on cutting-edge research achievements in the field 
of point cloud processing, select representative and influential 
advanced models, and carry out systematic comparative experiments. 
During the experiment, we  will strictly control the experimental 
conditions to ensure the scientificity and reliability of the comparative 
results. By comparing the key indicators of different models in hand 
surface point cloud segmentation tasks, comprehensively evaluate the 
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performance and advantages of GSPAN. At the same time, we will 
conduct in-depth analysis and discussion of the experimental results, 
exploring the advantages and disadvantages of different models in 
processing hand surface point cloud.
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