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Introduction:The seizure episodes result from abnormal and excessive electrical

discharges by a group of brain cells. EEG framework-based signal acquisition

is the real-time module that records the electrical discharges produced by the

brain cells. The electrical discharges are amplified and appear as a graph on

electroencephalogram systems. Di�erent neurological disorders are represented

as di�erent waves on EEG records.

Method: This paper involves the detection of Epilepsy which appears as rapid

spiking on electroencephalogram signals, using feature extraction and machine

learning techniques. Various models, such as the Support Vector Machine, K

Nearest Neighbor, and random forest, have been trained, and accuracy has been

analyzed to predict the seizure.

Result: An average accuracy of 95% has been claimed using the optimizedmodel

for epileptic seizure detection during training and validation. During the analysis

of multiple models, the 97% accuracy is claimed after testing. Some statistical

parameters are calculated to justify the optimized framework.

Discussion: The proposed approach represents a satisfactory contribution in

precise detection for smart healthcare.
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1 Introduction

Epilepsy is a neurological disorder that affects the human brain. It is characterized by

recurrent seizure episodes, which may include brief involvements of parts of the human or

entire body. It is generally examined by abnormal and excessive brain cell activity, causing

brief involuntary movements or shaking of the parts of the entire human body. These

sudden involuntary movements can occur recurrently and are known as recurrent Seizures

or Seizure episodes (Zheng et al., 2019). A person is said to be an Epilepsy patient if he

experiences two or more unprovoked seizure episodes. Seizures can be life-threatening as a

patient can experience physical trauma, like severemuscle jerks and prolonged convulsions

as well as mental trauma like anxiety and depression (Park et al., 2019). They can affect a

person’s everyday life if not detected and treated immediately. The abnormal symptoms

are visualized in Figure 1. About 50 million people worldwide have epilepsy, marking it as

one of the most common neurological diseases. It also has been estimated that nearly 70%

of epilepsy patients can live a seizure-free life if the disease is diagnosed and treated well in

time. There are various traditional methods and advanced setups are available for proper

diagnosis and better treatment. The traditional methods have been a lifeline for patients
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FIGURE 1

An overview of seizure symptoms, diagnosis and treatment for smart healthcare.

with neurological disorders for decades. With a global perspective

of smart healthcare, the technologies are being advanced in terms

of rapid diagnosis and better treatment (Olmi et al., 2021).

2 iSeizdiag is important for healthcare
perspective

The traditional EEG systems are complex and require medical

personnel to understand and identify the readings generated by

the system to conclude whether the condition experienced by the

patient qualifies as Epilepsy or any other neurological disorder (Yan

et al., 2022). The medical representatives are required to analyze

the problem and provide the proper treatment. This process is

time-consuming and is not an affordable solution for everyone.

Hence, it is required to conclude a precise and affordable setup for

epileptic seizure detection (Olokodana et al., 2021). In this way,

for rapid diagnosis and treatments; various advanced techniques

and frameworks are required to be introduced to the patients in

urban and remote areas. The data can be visualized and accessible

at remote locations from the user and medical consultant end (Jain

et al., 2019). The data can be stored as per the documentation for

future access perspective (Joshi et al., 2020). This is reported in

Figure 1.

Therefore, It will be easier to use interpreTablebio-medical

technologies and applications that are able to detect Epileptic

Seizure episodes so that the patient can be brought to immediate

medical attention. With the availability of sustainable and accurate

methods that could stand along with the medical standards,

there would be a relatively higher rate of success dealing with

the critical cases of diseases such as Epilepsy (Yan et al., 2022).

By deploying an advanced framework, the iSeizdiag would be

an affordable solution in the consumer electronics paradigm

(Olokodana et al., 2021). The proposed system would be a

wearable system with higher accuracy and low power consumption

(Sayeed et al., 2019a). The collected data will be accessible to the

cloud server from authorized users (patients and doctors). The

data can be stored for documentation and analysis perspective.

The overview of the proposed framework is represented in

Figure 2.

3 Related work

3.1 Signal processing paradigm for seizure
detection

Signal processing techniques play a major role in the analysis of

EEG signals before they can be used along with machine learning

techniques to extract results from the EEG data. A thorough study

of previous research involving EEG signals and the extensive use

of signal processing techniques further solidifies their importance

while working with EEG data (Pattnaik et al., 2022). A vast

variety of studies have been done for the analysis and usage of

physiological signals such as EEG etc. for the detailed study of

neurological disorders like Epilepsy, Schizophrenia, Chronic Stress,

Depression, Parkinson’s disease, and Alzheimer’s disease. Apart

from that, many studies have analyzed EEG data with respect to

the various types of human emotions and the associated brain

cell activity.

3.2 Available dataset and prior proposed
model on epileptic patients

The study was focused on detecting seizure episodes in epileptic

patients (Gupta et al., 2020). The database acquired from Bonn

University was used with 100 single-channel recordings sampled

at a frequency of 173.6 Hz (Andrzejak et al., 2001). The accuracy is

claimed to be 92% for seizure detection using smart headbands (Lin
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FIGURE 2

An overview of the proposed framework of iSeizdiag.

et al., 2018). Automatic epileptic seizure detection is introduced

using EEG signals (Li et al., 2017). They proposed classification

from time-frequency analysis using the radial basis function. Wang

et al. (2018) represented accurate automatic seizure detection

using wavelet decomposition and the directed transfer function

(DTF) algorithm. The average sensitivity and detection are claimed

as 92.1% and 95%, respectively. Gupta et al. (2018) explored

the signal modeling technique for the classification of seizure

and normal EEG signals. They claimed 95% average accuracy

during analysis. An automated epileptic EEG detection system is

proposed using iterative filtering (Sharma et al., 2018). 96% average

accuracy is claimed using multiple classifier models. Yuan et al.

explained EEG seizure detection using a multi-view deep learning

framework with 94% classification accuracy (Yuan et al., 2018).

Sayeed et al. (2019b) enlighten Neuro-Detect, which represents a

fast and accurate seizure detection system for smart healthcare. Li

et al. (2020) represented an intelligent recognition of epileptic EEG

signals using a unified temporal-spectral squeeze and excitation

block. The proposed framework indicated its powerful capability

for automatic seizure detection. Sharma and Joshi (2021) proposed

a novel approach to the detection of schizophrenia by using

EEG data from two publicly available databases. The system

is claimed to have resultant accuracy over 99%. EEG signals

are analyzed for seizure detection using a multi-feature fusion

approach (Radman et al., 2020). An optimized neural network

is reported as a computing model for seizure detection. The

proposed model is explained satisfactorily as a model for low-

power wearable and implanTabledevices (Zhao et al., 2021). Other

studies on epilepsy detection used databases that are publicly

available on the internet. One such study was conducted by Shoeb

(2009), and the data was collected from Children’s Hospital Boston

(Goldberger et al., 2000).

3.3 Problem addressed and possible
solution discussed as per the prior work

There have also been a number of studies conducted on the

use of EEG data for the analysis and detection of neurological

disorders other than epilepsy and associated seizures. Support

Vector Machine (SVM) was used as the classifier on the given

data. Minimum negative valence and maximum arousal (NVHA)

vs. Relax (R) and maximum valence and maximum arousal

(HVHA) vs. relax (R) were the two trials in the focus in this

study. A clear-cut study of emotion and its relationship with the

hemispheres of the brain is prepared which helped us in analyzing

the region of signal emittance for a particular thought generated.

This diverse amount of work done on EEG signals, their ability to

efficiently and effectively point out numerous neurological diseases,

and the growing usage of electroencephalograms in the field of

smart healthcare provide the major motivation for this work.

The readily accessible and huge data repositories also provide

the large amounts of data that are required for applications

involving EEG signals. The need for a better understanding of

the EEG activity of the human brain provides further motivation

to implement visualization methods like channel-wise data plots

and topographical maps to provide necessary insights into EEG

data and the human brain. The prior works reported good results

with different methodologies, which motivated the advancement

of technologies for rapid diagnosis and treatment. The paper has

been organized in the following manner: Section 4 is representing

the highlights of the proposed work. Sections 5, 6 represent

the problems and challenges of current objectives and the novel

contribution of the proposed work respectively. Section 7 explained

the proposed work for an epileptic seizure. Section 8 represents the

conclusion and future direction of the proposed work.
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4 Highlights of the current work

• Precise seizure detection has been confirmed using temporal-

spatial mapping analysis.

• Classifier analysis has been done to justify an optimized

computing model.

• DWT signals have been conditioned and visualized with

data segmentation.

• Different statistical parameters are determined for DWT

signals during the processing of the EEG signals.

• Accuracy analysis has been done to validate the

diagnosis framework.

5 Merits and recent problems of
epileptic seizure detection framework

Artifacts are very common physical constraints for creative

false-positive seizure detection. To overcome this issue, a lots of

framework has been proposed for precision points of view. As

per the technical specification, it is to improve or enhance the

signal quality, and durability without interference of the experts

or medical representatives. Various techniques are proposed to

optimize the framework to overcome these issues. These techniques

helped diagnose the problems on time (Ahmad et al., 2024).

Many researchers have explored wearable solutions with optimized

computing models. However, it is required to design a system

with a low-cost solution, that approaches minimum resources for

manufacturing and diagnosis. Due to different motivational works

on the EEG framework for smart healthcare, the current work

is enlightened with a distinct optimized framework with novel

features that represent statistical parameters and classification

accuracy at the desired level (Anita and Kowshalya, 2024). The data

can be accessed and manipulated by users and medical experts for

rapid diagnosis and treatment.

6 Novel contribution in the current
work

This work extends the existing methods of EEGData and signal

processing on the database provided by Children’s Hospital Boston,

MIT. The contribution in the present work is the judiciary explored

in terms of advancement. The novel contribution is presented

as working on creating a sustainable system for the detection

of epilepsy. We have the following contributions summarizing a

successful model for disease detection:

1. The implementation of this work allows the user to fetch the

inter-ictal and ictal data of as many patients as desired.

2. Showcasing the differences between Inter-Ictal and Ictal data of

Epilepsy patients by providing visual insights using channel data

plots and topomaps for the EEG data.

3. The paper represents a unique framework for the EEG

signal-based detection of Epileptic Seizure. The framework

has incorporated unique processing methods for using EEG

data and the validation and verification of the framework

is supported by its high precision. Such a high-precision

framework can contribute to the future development of high-

precision EEG-based devices for consumers.

4. Visualizing topomaps can prove to be highly useful for

studying and analyzing the patterns of EEG signals generated

in diverse sets of neurological disorders. Topomap visualization

FIGURE 4

International 10–20 system for electrode placement.

FIGURE 3

Processing steps for epileptic seizure detection.
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is included in this study as the topomaps clearly illustrate

why frequency-based methods like Fourier or Discrete wavelet

transforms are highly effective in processing EEG data

and differentiating between the information conveyed by

EEG signals.

7 Proposed framework to detect
epileptic seizure

An electroencephalogram captures brain signals with prior

standards of data collection. The signals are processed and

Input:

1. Window size (w)

2. Number of segments (Ns)

3. Sampling Frequency (f)

4. Number of Channels (Nc)

Result: Plot for Averaged Welch’s Periodogram

foreach c ∈ N c do

foreach s ∈ N s do

Ps = Periodogram(s,fs,w,c) // Calculate

Periodogram for each segment

end

Pavg,c = average(P) // Calculate averaged

Periodogram for the Channel

plot(Pavg,c) // Plot Averaged Periodogram

end

Algorithm 1. Plotting topomops using Welch’s periodogram.

FIGURE 6

Power spectral density vs. frequency.

FIGURE 5

Block representation of pseudo-code for iSeizdiag.
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considered as raw EEG data. The raw EEG signals are a mixed form

of normal and seizure data. The collected data in the form of signals

is taken as a multi-channel EEG signal. The raw signals are filtered

using an optimized window for data segmentation. The feature

extraction is done using the wavelet transformmethod (Wang et al.,

2018). The extracted signals are applied to train the classifier. The

trained model is tested by testing data following testing standards

for model validation. The output images are extracted for analysis

and seizure detection. The processing framework is represented in

Figure 3.

7.1 Description of dataset and processing

EEG signals can be captured using invasive as well as non-

invasive methods where the latter is generally considered a safer

option. Due to the safety benefits, they bring along Non-invasive

methods, which may give irregular results, but with proper filtering

and electrode placement on the head. It can produce results similar

to the invasive method. The non-invasive method requires a 10–20

Electrode Placement System to fulfill its purpose successfully. 10–

20 electrode placement system is an international system used for

placement of EEG electrodes on the scalp of a human (Sayeed et al.,

FIGURE 7

Amplitude vs. number of samples.

FIGURE 8

Amplitude vs. data samples. (A) Channel-wise plotting of Seizure

samples. (B) Channel-wise plotting of Non-seizure samples.
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2019b). This defines the locations of the different brain areas, as

depicted in the Figure 4, which relate to the placement of electrodes,

making a close relationship that stays the same for all the research

based on EEG technology. Alphabets are assigned to mark the

different locations of the lobes and a number to determine the

hemispherical region of the brain. F, T, C, P, and O respectively

stand for frontal, temporal, central, arietal, and occipital lobes,

where the central is not a lobe but just an area to plot the other lobes

correctly. Odd numbers (1, 3, 5, 7) define the left hemisphere of the

brain while even number (2, 4, 6, 8) defines the right hemisphere

(Zhao et al., 2021).

A vast archive of EEG data on epilepsy and Epileptic Seizures is

available online. The dataset consists of invasive EEG Recordings

of 21 patients suffering from medically intracTablefocal epilepsy

(EEG Data, 2022). The recordings were taken during pre-surgical

epileptic monitoring at the Epilepsy Center of the University of

Hospital, Freiburg, Germany. The data consist of 24-h recordings

acquired through a 128-channel, EEG acquisition system sampled

at 256 Hz sampling frequency. For each patient, the data available

are classified as ictal and interictal. The proposed dataset consists

of 100 single-channel EEG recordings, sampled at 173.61 Hz

(Andrzejak et al., 2001). The duration of each recording is about

23.6 seconds acquired through a 128-channel acquisition system.

The dataset is divided into five sections: A, B, C, D, and E, where

sections A and B consist of surface EEG recording from healthy

subjects, sections C and D consist of intracranial EEG recording

data recorded during seizure-free events from within and outside

the seizure generating areas of the brain from epileptic patients.

Section E is completely dedicated toward the EEG recording

recorded during seizure episodes in epileptic patients. The dataset

focused on in this proposed research work is the CHB-MIT

Scalp EEG Database because of the vast amount of multi-channel

data collected from the patients by using a non-invasive scalp

EEG recording technique. A different dataset was collected at the

Children’s Hospital Boston and consists of EEG recordings from

22 pediatric patients (5 Males and 17 Females) with ages ranging

from 1.5 to 19 years (EEG Data, 2022). The data includes 24 h of

EEG recordings for each of the 22 patients. The international 10–

20 System of EEG electrode positioning was used for the recordings.

The data was recorded using an EEG acquisition system consisting

of about 23 electrodes at a sampling frequency of 256 Hz. A

total of 200 seizure events were recorded and are present in the

database. The database also contains summary and annotation files,

describing the exact start and end times of the EEG recording,

including the epileptic seizure episodes.

7.2 Data preparation and filtering approach
for classification

The database was accessed using PhysioNet (EEG Data, 2022).

PhysioNet offers free access via the web to large collections of

recorded physiological signals and related open-source software.

All the file names were fetched using a package of PhysioNet

itself, named “WFDB.” The waveform database (WFDB) package

for Python is a library of tools for reading, writing, and

processing physiological signals and annotations. The file-wise

seizure windows were fetched from the summary file provided

with the database and all the common channels were taken into

a single array. Using these seizure windows, all the data from

seizure files was concatenated vertically into a single array, and the

equivalent amount (in seconds) of non-seizure data was fetched

and concatenated vertically into a different array. Further, these

data tables were categorized as seizure data and non-seizure data.

Plotting was done on both segments channel-wise, and the plots

were distinguishable. A finite impulse response filter is used to

extract the signals at specific frequency levels. The impulse response

is finite because there is no feedback in the filter. Here, the filter

is used to eliminate noise at higher frequencies than that of EEG

signals According to the Nyquist frequency theorem, a system used

for signal acquisition at a sampling frequency of “s” can accurately

record signals only up to the frequency of “s”/2, which is known

as the Nyquist frequency. The EEG data recorded in the CHB-

MIT database was sampled at 256 Hz and thus it was important

to filter off any frequency components higher than 60 Hz present

in the database, as most of the event-related potentials in the EEG

data occur below the frequency of 60 Hz. Also, any components

FIGURE 9

Topomaps for an epileptic patient for a duration of 30 ms during Inter-Ictal and Ictal Period.
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lower than 0.5 Hz also needed to be cut off so as to filter off the

frequency components generated by the subject due to breathing,

eye movements, etc.

7.3 Feature evaluation and extraction for
detection

The most important and challenging aspect of working with

EEG Data is extracting relevant features from the raw EEG

data acquired using the acquisition system. The most popular

techniques used to extract features from EEG data are the Power

Spectral Density method using the Fourier Transform and the

discrete wavelet transform. Power spectra are estimated by dividing

the time signal into successive blocks, forming the periodogram for

each block, and averaging. Denote the tth windowed frame with

zero-padding from the signal x in given Equation 1

xt(p)
1
= w(p)x(p+ tR); p = 0, 1, ..P − 1, t = 0, 1, ..T − 1 (1)

Where R is defined as the window hop size, and T represents the

number of available frames. Then the periodogram of the tth block

is given in Equations 2, 3.

Dxt ,T(wp) =
1

P

∣

∣FFTN,T(xt)
∣

∣

2
(2)

and

Dxt ,T(wp)
1
=

1

P

∣

∣

∣

∣

∣

∣

P−1
∑

p=0

xt(p)− e(
−j25pT

P
)

∣

∣

∣

∣

∣

∣

2

(3)

as before, and the Welch estimate of the power spectral density is

given in Equation 4.

SWx (WT)
1
=

1

T

T−1
∑

t=0

Pxt ,T(WT) (4)

This is the average periodogram across time when w(p) is

the rectangular window; the periodogram is formed from non-

overlapping successive blocks of signal.

The Power Spectral Density method also known as Welch’s

periodogram, uses the Fourier Transform to calculate the

power associated with the frequency components globally

associated with the signals, i.e., frequencies persisting over the

entire signal (Sayeed et al., 2019a). The periodograms were

calculated and plotted for both categories of data. Fourier

transformation provides a representation of the signal in the

frequency domain; however, it fails to provide any kind of

temporal information regarding the frequency components

existing in the signal. That is why a better approach toward

extracting features from raw EEG data is by using Discrete

Wavelet Transformation.

The key advantage of using discrete wavelet transformations

for feature extraction is their ability to provide both local

spectral and temporal information simultaneously. The objective

while performing wavelet decomposition using discrete wavelet

transformation is to decompose the signals into a set of

frequency components corresponding to bandwidth associated

with different types of brainwaves: delta (0–4 Hz), theta

(4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), and gamma

(>32 Hz).

FIGURE 10

Topomaps for EEG activity spread over approx 95 ms.
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The EEG signal data of both categories was broken down

into 2-second segments, or “Epochs,” containing 512 samples

each. Then a wavelet decomposition using Daubechies “db4”

Wavelet was applied to generate the corresponding set of wavelet

coefficients for each of the channels. These coefficients were then

used for calculating features like root mean square, mean, standard

deviation, and skewness, generating a total of 20× 18 features.

A signal fin has an even number r of values, then the 1-level

Db4 transform is the mapping of fin, which is f 7→ (c1 | d1) from

the signal fin to its first trend sub-signal c
1 and first fluctuation sub-

signal d1. Each value cq of c
1 = (l1, l2, , , , , , lr/2) is equal to a scalar

product, in Equation 5

lq = f .Y1
q (5)

of f with a 1-level scaling signal Y1
q . Similarly, each value dq of dq of

d1 = (d1, d2, , , , , , dr/2) is equal to a scalar product in Equation 6.

dq = f .S1q (6)

of f with a 1-level wavelet S1q. The 2nd level Daub4 scaling signals

are presented by repeating the operations that were used on the

natural basis of signals Y0
1 ,Y

0
2 ,Y

0
3 ,Y

0
4 , ...,Y

0
r to generate the first

level scaling signals. Using this natural basis, the first-level Daub4

scaling signals satisfy (Equation 7).

Y1
q = b1.Y

0
2q−1 + b2.Y

0
2q + b3.Y

0
2q+1 + b4.Y

0
2q+2 (7)

with a wrap-around defined by Y0
n+r = Y0

n . Similarly, the second-

level Daub4 scaling signals are defined by (Equation 8).

Y2
q = b1.Y

1
2q−1 + b2.Y

1
2q + b3.Y

1
2q+1 + b4.Y

1
2q+2 (8)

The wrap-around is defined by Y1
n+r/2 = Y1

n .

This wraparound, or periodicity, of the first-level scaling signals

is implied by the wrap-around invoked above for the natural

signal basis.

7.4 Parametric evaluation and result
analysis

To train, validate, and test the optimized model, statistical

parameters have been considered. The parametric evaluation

has been done using presented equation. The calculated values

are analyzed to justify the compatible computing model. The

expressions of parameters are as follows:

Mean: For some data, the arithmetic mean is the measure of

the central tendency of a finite set of numbers. It is represented in

Equation 9.

x̄ =
1

n

(

n
∑

i=1

xi

)

(9)

Standard deviation: For some given data, the standard

deviation is a measure of the amount of variation or dispersion of a

set of values. It is represented in Equation 10.

σ =

√

√

√

√

1

N

N
∑

i=1

(

xi − µ
)2

(10)

Root mean square: It is also represented in Equation 11.

xRMS =

√

√

√

√1/n(

n
∑

i=1

x2i ) (11)

Skewness: Skewness is a measure of the asymmetry of the

probability distribution of a real-valued random variable about its

mean. It is represented in Equation 12.

skewness =

∑N
1

(

xi − x̄
)3

(

N − 1
)

s3
(12)

TABLE 1 Machine learning algorithms used.

Algorithm used TP FP FN TN Accuracy

SVMmodel 237 20 21 252 92.2

KNN models 249 8 11 262 96.4

RF classifier 249 8 11 62 96.4

FIGURE 11

Confusion matrices using classifiers for iSeizdiag.
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Kurtosis: In statistics, kurtosis is used for measuring outliers in

the data. It is represented in Equation 13.

kurtosis =

∑N
1

(

xi − x̄
)4

(

N − 1
)

s4
(13)

The proposed framework is introduced with certain standard

steps, which represent the processing of raw data to diagnose

the disease. The methodology is represented in Algorithm 1. The

calculated parameters are considered to validate the framework

for seizure detection. The preparation of the data, processing and

training of themodel have been done in a synchronization way. The

processing flow with all necessary steps is represented in Figure 5.

The calculated power spectra density with respect to frequency is

visualized in Figure 6.

The plotting between the EEG Data samples collected from

multiple channels and their respective amplitude is presented in

Figure 7. It clearly indicates that the EEG signals generated during

a seizure period/Ictal period in an epileptic patient are higher in

amplitude as compared to the signals generated during a non-

seizure or Inter-ictal period. It is indicated by higher spikes in the

plottings for seizure data. Similar results are represented in the

individual plots of the channels plotted between EEG data samples

and the respective amplitude for both seizure and non-seizure data.

These are also explained in Figure 8B.

TABLE 2 Performance parameters using di�erent models.

Models Precision Recall F1-score Accuracy

RBF 0.95491 0.875 0.913 0.916

RF 0.973 0.962 0.967 0.96

KNN 0.935 0.924 0.93 0.93

ANN 0.995 0.923 0.958 0.965

CNN 0.996 0.924 0.96 0.97

TABLE 3 Statistical parametric analysis for DWT.

Coe�cient Mean Deviation Skew RMS Kurtosis

1st 137.88 295.68 0.04 320.10 0.61

2nd 7.68 107.272 0.14 105.08 0.088

3rd 0.905 69.55 0.12 68.64 0.06

4th 2.76 19.51 0.05 19.56 0.23

FIGURE 12

Accuracy analysis using ANN model using multiple epochs.

FIGURE 13

Accuracy analysis using CNN model using multiple epochs.
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TABLE 4 Comparison with previous work.

Lin et al. (2018) Li et al. (2017) Sayeed et al. (2019a) Yan et al. (2022) Proposed work

Signal Spectrum Time DWT MS- DWT

Transform Power Frequency model WTC model

Proposed LDA RBF DNN CNN KNN,

Classifier model model model model RF & SVM

Claimed 92.68% >95% >95% 94% >97%

Accuracy

Pattern - - - Spectral- Temporospatial

Used Temporal Mapping

Specific Seizure Image Seizure Seizure Seizure & non

Use detection classification detection prediction -seizure detection

A more detailed analysis has also been performed by plotting

the graphs between the frequency of the collected signals and their

respective power spectral density as represented in Figure 8. The

figure clearly indicates that higher EEG activity is generated in the

lower frequency bands during a seizure and also, the general levels

of EEG activity during a seizure period are higher than the EEG

activity generated during a non-seizure period.

The topomaps generated using power spectral density also

confirm the above findings. Figure 9 represents the topomaps of an

epileptic patient-generated during the Inter-ictal and Ictal period. It

is again clearly evident that higher EEG activity is generated during

the Ictal period as compared to the EEG activity generated during

the Inter-ictal period. Figure 10 also represents topomaps generated

for an Epileptic patient during a seizure, with the topomaps being

spread over a total duration of approximately 95ms.

After processing and extracting the relevant features from

the raw EEG data from both the categories—Seizure and Non-

Seizure, the data was concatenated to form a single data Table

for applying different kinds of Machine Learning classifiers. This

work employed classifiers like Support Vector Machine, K-Nearest

Neighbor Classifier and Random Forest Classifier to achieve the

required classifications.

The data was split in the ratio of 70%-30% for generating

training and testing data for feeding into the classifier. The models

were trained and the confusion matrix and accuracy score were

obtained. The confusion matrices for seizure detection using

classifiers are represented in Figure 11.

The accuracy was obtained for each of the classifiers for

the EEG data of 5 patients. Support vector Machine performed

with an accuracy, which is claimed in the range of 92.4%–95.2%.

K-Nearest Neighbors Classifier and Random Forest Classifier

outperformed the Support Vector Machine classifier with accuracy

of 93.39% and 97.73% respectively. The detailed results involving

the numbers from the confusion matrix and the accuracy for

the respective algorithms are represented in Table 1. The ANN

and CNN-based computing models represented the accuracy,

which represents the better-performing model comparatively. The

analysis is represented in Figures 12, 13. Some statistical parameters

are also obtained to analyze the optimized model for seizure

detection, which are represented in Table 2.

During DWT signal processing, the statistical parameters are

calculated from discrete coefficients. The analytical results are

tabulated in Table 3. The proposed framework for seizure and

non-seizure detection is also compared with prior good work.

The proposed work is represented in the context of quite the

advancement of previous frameworks, which are represented in

Table 4.

8 Conclusion and future work

The proposed work demonstrated epileptic seizure detection

using signal processing techniques like DWT and an optimized

classifier as a computing model. DWT is highly effective in feature

extraction. Undoubtedly, it represents an improvement in the

accuracy of such applications by using better feature extraction

techniques and advanced machine learning techniques like Neural

Networks. The desired accuracy and statistical parameters have

been achieved to prove a reliable framework for seizure detection.

With access to data from EEG signal acquisition systems,

applications can be developed that can detect the occurrence of

seizure episodes in Epileptic patients using appropriate signal

processing and machine learning techniques. Automatic seizure

detection based on EEG data can prove to be more than 85%

successful. Such a framework will help detect other brain-related

diseases with the primary focus being on depression detection and

classification. As the disease is an infamous and known for being

notorious in detection or classification, it is required to focus on

other aspects apart frommere disease detection. The course of plan

for the projected target would be:

• Anomaly detection to find a differentiating case among the

non-depressed humans,

• Mapping disease detection with Sentiment Analysis to learn

emotional side effects of depression in the patients,

• Detection and classification of depression using only the

emotional (or sentimental) factor,

• Mapping other physiological records of the patient such as

EMG, GSR and so on, to make a better study of the effects of

depression on a human in daily life.

With the help of the above steps, it is possible to create a

framework that could be of great use in the field of healthcare.

The present work motivates us to design wearable devices for such

kinds of healthcare, which would be low cost, high speed and easy

to handle solutions.

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2025.1545425
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sharma et al. 10.3389/fncom.2025.1545425

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

ASh: Conceptualization, Data curation, Formal analysis,

Methodology, Project administration, Software, Validation,

Visualization, Writing – original draft. ASa: Conceptualization,

Data curation, Formal analysis, Methodology, Writing –

original draft. MA: Conceptualization, Data curation, Formal

analysis, Methodology, Validation, Writing – original draft. KK:

Conceptualization, Data curation, Formal analysis, Methodology,

Writing – original draft. DK: Methodology, Software, Writing

– original draft. PJ: Conceptualization, Data curation, Formal

analysis, Methodology, Supervision, Writing – original draft.

AY: Conceptualization, Data curation, Software, Validation,

Writing – original draft. MJS: Funding acquisition, Investigation,

Project administration, Resources, Supervision, Writing – review

& editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

Authors acknowledge the research support provided by the

Biomedical Sensors & Systems Lab, University of Memphis,

Memphis, TN 38152, USA.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., et al. (2024). An efficient
feature selection and explainable classification method for EEG-based epileptic seizure
detection. J. Inf. Secur. Applic. 80:103654. doi: 10.1016/j.jisa.2023.103654

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E.
(2001). Indications of nonlinear deterministic and finite-dimensional structures in time
series of brain electrical activity: dependence on recording region and brain state. Phys.
Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907

Anita, M., and Kowshalya, A. M. (2024). Automatic epileptic seizure detection
using msa-dcnn and lstm techniques with EEG signals. Expert Syst. Appl. 238:121727.
doi: 10.1016/j.eswa.2023.121727

EEG Data (2022). University of Freiburg. Available online at: https://epilepsy.uni-
freiburg.de/freiburg-seizure-prediction-project/EEG-database (accessed September
04, 2024).

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals. Circulation 101, e215–e220.
doi: 10.1161/01.CIR.101.23.e215

Gupta, A., Singh, P., and Karlekar, M. (2018). A novel signal modeling approach for
classification of seizure and seizure-free EEG signals. IEEE Trans. Neural Syst. Rehabilit.
Eng. 26, 925–935. doi: 10.1109/TNSRE.2018.2818123

Gupta, S., Bagga, S., Maheshkar, V., and Bhatia, M. (2020). “Detection of epileptic
seizures using EEG signals,” in 2020 International Conference on Artificial Intelligence
and Signal Processing (AISP) (IEEE), 1–5. doi: 10.1109/AISP48273.2020.9073157

Jain, P., Joshi, A. M., and Mohanty, S. P. (2019). IGLU: an intelligent device
for accurate noninvasive blood glucose-level monitoring in smart healthcare. IEEE
Consumer Electr. Mag. 9, 35–42. doi: 10.1109/MCE.2019.2940855

Joshi, A. M., Jain, P., Mohanty, S. P., and Agrawal, N. (2020). iglu 2.0: A new
wearable for accurate non-invasive continuous serum glucose measurement in iomt
framework. IEEE Trans. Consumer Electr. 66, 327–335. doi: 10.1109/TCE.2020.3011966

Li, Y., Liu, Y., Cui, W.-G., Guo, Y.-Z., Huang, H., and Hu, Z.-Y. (2020).
Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-
and-excitation network. IEEE Trans. Neural Syst. Rehabilit. Eng. 28, 782–794.
doi: 10.1109/TNSRE.2020.2973434

Li, Y., Wang, X.-D., Luo, M.-L., Li, K., Yang, X.-F., and Guo, Q. (2017).
Epileptic seizure classification of EEGs using time-frequency analysis based
multiscale radial basis functions. IEEE J. Biomed. Health Inform. 22, 386–397.
doi: 10.1109/JBHI.2017.2654479

Lin, S.-K.,Wang, L.-C., Lin, C.-Y., and Chiueh, H. (2018). An ultra-low power smart
headband for real-time epileptic seizure detection. IEEE J. Transl. Eng. Health Med. 6,
1–10. doi: 10.1109/JTEHM.2018.2861882

Olmi, B., Frassineti, L., Lanata, A., and Manfredi, C. (2021). Automatic
detection of epileptic seizures in neonatal intensive care units through
EEG, ECG and video recordings: a survey. IEEE Access 9, 138174–138191.
doi: 10.1109/ACCESS.2021.3118227

Olokodana, I. L., Mohanty, S. P., Kougianos, E., and Sherratt, R. S. (2021).
EZCAP: a novel wearable for real-time automated seizure detection from EEG
signals. IEEE Trans. Consumer Electr. 67, 166–175. doi: 10.1109/TCE.2021.30
79399

Park, Y. S., Cosgrove, G. R., Madsen, J. R., Eskandar, E. N., Hochberg, L. R.,
Cash, S. S., et al. (2019). Early detection of human epileptic seizures based on
intracortical microelectrode array signals. IEEE Trans. Biomed. Eng. 67, 817–831.
doi: 10.1109/TBME.2019.2921448

Pattnaik, S., Rout, N., and Sabut, S. (2022). Machine learning approach for epileptic
seizure detection using the tunable-q wavelet transform based time-frequency features.
Int. J. Inf. Technol. 14, 3495–3505. doi: 10.1007/s41870-022-00877-1

Radman, M., Moradi, M., Chaibakhsh, A., Kordestani, M., and Saif,
M. (2020). Multi-feature fusion approach for epileptic seizure detection
from EEG signals. IEEE Sens. J. 21, 3533–3543. doi: 10.1109/JSEN.2020.30
26032

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2025.1545425
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1016/j.eswa.2023.121727
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/EEG-database
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/EEG-database
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1109/TNSRE.2018.2818123
https://doi.org/10.1109/AISP48273.2020.9073157
https://doi.org/10.1109/MCE.2019.2940855
https://doi.org/10.1109/TCE.2020.3011966
https://doi.org/10.1109/TNSRE.2020.2973434
https://doi.org/10.1109/JBHI.2017.2654479
https://doi.org/10.1109/JTEHM.2018.2861882
https://doi.org/10.1109/ACCESS.2021.3118227
https://doi.org/10.1109/TCE.2021.3079399
https://doi.org/10.1109/TBME.2019.2921448
https://doi.org/10.1007/s41870-022-00877-1
https://doi.org/10.1109/JSEN.2020.3026032
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sharma et al. 10.3389/fncom.2025.1545425

Sayeed, M. A., Mohanty, S. P., Kougianos, E., and Zaveri, H. P. (2019a). ESEIZ: an
edge-device for accurate seizure detection for smart healthcare. IEEE Trans. Consumer
Electr. 65, 379–387. doi: 10.1109/TCE.2019.2920068

Sayeed, M. A., Mohanty, S. P., Kougianos, E., and Zaveri, H. P. (2019b). Neuro-
detect: a machine learning-based fast and accurate seizure detection system in
the iomt. IEEE Trans. Consumer Electr. 65, 359–368. doi: 10.1109/TCE.2019.29
17895

Sharma, G., and Joshi, A. M. (2021). Novel EEG based schizophrenia detection with
iomt framework for smart healthcare. arXiv preprint arXiv:2111.11298.

Sharma, R. R., Varshney, P., Pachori, R. B., and Vishvakarma, S. K. (2018).
Automated system for epileptic EEG detection using iterative filtering. IEEE Sensors
Lett. 2, 1–4. doi: 10.1109/LSENS.2018.2882622

Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset
detection and treatment. PhD thesis, Massachusetts Institute of Technology.

Wang, D., Ren, D., Li, K., Feng, Y., Ma, D., Yan, X., et al. (2018). Epileptic
seizure detection in long-term EEG recordings by using wavelet-based directed transfer

function. IEEE Trans. Biomed. Eng. 65, 2591–2599. doi: 10.1109/TBME.2018.28
09798

Yan, X., Yang, D., Lin, Z., and Vucetic, B. (2022). Significant low-
dimensional spectral-temporal features for seizure detection. IEEE Trans.
Neural Syst. Rehabilit. Eng. 30, 668–677. doi: 10.1109/TNSRE.2022.31
56931

Yuan, Y., Xun, G., Jia, K., and Zhang, A. (2018). A multi-view deep learning
framework for EEG seizure detection. IEEE J. Biomed. Health Inform. 23, 83–94.
doi: 10.1109/JBHI.2018.2871678

Zhao, S., Yang, J., and Sawan, M. (2021). Energy-efficient neural network
for epileptic seizure prediction. IEEE Trans. Biomed. Eng. 69, 401–411.
doi: 10.1109/TBME.2021.3095848

Zheng, Y., Jiang, Z., Ping, A., Zhang, F., Zhu, J., Wang, Y., et al. (2019).
Acute seizure control efficacy of multi-site closed-loop stimulation in a temporal
lobe seizure model. IEEE Trans. Neural Syst. Rehabilit. Eng. 27, 419–428.
doi: 10.1109/TNSRE.2019.2894746

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2025.1545425
https://doi.org/10.1109/TCE.2019.2920068
https://doi.org/10.1109/TCE.2019.2917895
https://doi.org/10.1109/LSENS.2018.2882622
https://doi.org/10.1109/TBME.2018.2809798
https://doi.org/10.1109/TNSRE.2022.3156931
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1109/TBME.2021.3095848
https://doi.org/10.1109/TNSRE.2019.2894746
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	iSeizdiag: toward the framework development of epileptic seizure detection for healthcare
	1 Introduction
	2 iSeizdiag is important for healthcare perspective
	3 Related work
	3.1 Signal processing paradigm for seizure detection
	3.2 Available dataset and prior proposed model on epileptic patients
	3.3 Problem addressed and possible solution discussed as per the prior work

	4 Highlights of the current work
	5 Merits and recent problems of epileptic seizure detection framework
	6 Novel contribution in the current work
	7 Proposed framework to detect epileptic seizure
	7.1 Description of dataset and processing
	7.2 Data preparation and filtering approach for classification
	7.3 Feature evaluation and extraction for detection
	7.4 Parametric evaluation and result analysis

	8 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


