AUTHOR=Lang Kehan , Fang Jianwei , Su Guangyao TITLE=NeuroFusionNet: cross-modal modeling from brain activity to visual understanding JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1545971 DOI=10.3389/fncom.2025.1545971 ISSN=1662-5188 ABSTRACT=In recent years, the integration of machine vision and neuroscience has provided a new perspective for deeply understanding visual information. This paper proposes an innovative deep learning model, NeuroFusionNet, designed to enhance the understanding of visual information by integrating fMRI signals with image features. Specifically, images are processed by a visual model to extract region-of-interest (ROI) features and contextual information, which are then encoded through fully connected layers. The fMRI signals are passed through 1D convolutional layers to extract features, effectively preserving spatial information and improving computational efficiency. Subsequently, the fMRI features are embedded into a 3D voxel representation to capture the brain's activity patterns in both spatial and temporal dimensions. To accurately model the brain's response to visual stimuli, this paper introduces a Mutli-scale fMRI Timeformer module, which processes fMRI signals at different scales to extract both fine details and global responses. To further optimize the model's performance, we introduce a novel loss function called the fMRI-guided loss. Experimental results show that NeuroFusionNet effectively integrates image and brain activity information, providing more precise and richer visual representations for machine vision systems, with broad potential applications.