AUTHOR=Krumm Gabriela , Arán Filippetti Vanessa , Catanzariti Magaly , Mateos Diego M. TITLE=Exploring the neural basis of creativity: EEG analysis of power spectrum and functional connectivity during creative tasks in school-aged children JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1548620 DOI=10.3389/fncom.2025.1548620 ISSN=1662-5188 ABSTRACT=Creativity is a fundamental aspect of human cognition, particularly during childhood. Exploring creativity through electroencephalography (EEG) provides valuable insights into the brain mechanisms underlying this vital cognitive process. This study analyzed the power spectrum and functional connectivity of interhemispheric and intrahemispheric brain activity during creative tasks in 15 Argentine children aged 9 to 12, using a 14-channel EEG system. The Torrance test of creative thinking (TTCT) was used, incorporating one figural and one verbal task. EEG metrics included relative power spectral density (rPSD) across Delta, Theta, Alpha, Beta, and Gamma bands. Spearman's Rho correlations were calculated between frequency bands and performance on creativity tasks, followed by functional connectivity assessment through coherence analysis across the [1–50] Hz spectrum. The results revealed significant increases in rPSD across all frequency bands during creative tasks compared to rest, with no significant differences between figural and verbal tasks. Correlational analysis revealed positive associations between the Beta band and the innovative and adaptive factors of the figural task. In contrast, for the verbal task, both the Beta and Gamma bands were positively related to flexibility, while the Alpha band showed a negative relationship with fluency and originality. Coherence analysis showed enhanced intrahemispheric synchronization, particularly in frontotemporal and temporo-occipital regions, alongside reduced interhemispheric frontal coherence. These findings suggest that creativity in children involves a dynamic reorganization of brain activity, characterized by oscillatory activation and region-specific connectivity changes. Our study contributes to a deeper understanding of the brain mechanisms supporting creativity during child development.