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Introduction: Predictive processing posits that the brain minimizes discrepancies
between internal predictions and sensory inputs, offering a unifying account of
perception, cognition, and action. In voluntary actions, it is thought to suppress
self-generated sensory outcomes. Although sensory mismatch signals have
been extensively investigated and modeled, mechanistic insights into the neural
computation of predictive processing in voluntary actions remain limited.
Methods: We developed a computational model comprising two-compartment
excitatory pyramidal cells (PCs) and three major types of inhibitory interneurons
with biologically realistic connectivity. The model incorporates experience-
dependent inhibitory plasticity and feature selectivity to shape excitation-
inhibition (E/I) balance. We then extended it to a two-dimensional prediction-
error (PE) circuit in which each PC has two segregated, top-down modulated
dendrites-each bell-tuned to a distinct feature-enabling combination selectivity.
Results: The model reveals that top-down predictions can selectively suppress
PCs with matching feature selectivity via experience-dependent inhibitory
plasticity. This suppression depends on the response selectivity of inhibitory
interneurons and on balanced excitation and inhibition across multiple pathways.
The framework also accommodates predictions involving two independent
features.
Discussion: By combining biological connectivity data with computational
modeling, this study provides insights into the neural circuits and computations
underlying the active suppression of sensory responses in voluntary actions.
These findings contribute to understanding how the brain generates and
processes predictions to guide behavior.

KEYWORDS

prediction error, prediction, actual stimuli, feature selectivity, voluntary actions,
experience-dependent plasticity, multi-dimensional sensory features, neural circuits

1 Introduction

Predictive processing theory provides a foundational framework for understanding
cognitive and behavioral brain functions by proposing that the brain is more like an
active agent than a passive information receiver (Bubic et al., 2010; Clark, 2013). This
theory posits that the brain continuously generates predictions about incoming sensory
information and compares these predictions with actual sensory inputs (Friston, 2005;
Rao and Ballard, 1999). Central to this process is the “prediction error” (PE), which
represents the mismatch between predicted and actual input (Bastos et al., 2012; Keller
and Mrsic-Flogel, 2018). PE is thought to drive learning and neural plasticity, refining
the brain’s predictive models and improving its ability to process realworld information
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(Friston, 2010; Spratling, 2017). While numerous studies have
identified neural signatures of prediction errors across various
sensory modalities (Den Ouden et al., 2012; Auksztulewicz and
Friston, 2016), our understanding of how these processes underpin
voluntary actions in the brain remains incomplete.

In voluntary actions, predictive processing is critical for
suppressing selfgenerated sensory outcomes (Blakemore et al.,
1998; Wolpert et al., 2011). This active suppression is essential
for enabling the brain to anticipate and diminish the impact of
sensations resulting from its own actions, thereby distinguishing
them from external stimuli (Wolpert et al., 1995). In some brain
regions, it involves generating predictions based on efference
copies of motor commands to anticipate the sensory feedback
(Blakemore et al., 2000). Unlike PE computation in sensory
systems, however, active suppression in voluntary actions generates
sensory predictions that precede action execution, suggesting the
involvement of distinct neural processing mechanisms (Adams
et al., 2013).

Studies in somatosensory systems, for example, have illustrated
that selfgenerated touch is perceived as less intense than externally
generated touch of the same intensity, a phenomenon linked
to reduced activity in the somatosensory cortex and cerebellum
during self-generated touch (Blakemore et al., 1998; Kilteni and
Ehrsson, 2020). In the auditory domain, self-generated sounds
also elicit smaller neural responses compared to externally
generated sounds, as demonstrated by both EEG and fMRI
studies (Martikainen et al., 2005; Rummell et al., 2016). In
visual systems, predictive processing has been extensively studied
during eye movements, where the brain predicts and compensates
for the visual displacement to maintain perceptual stability
(Wurtz, 2008). This involves corollary discharge signals from
the superior colliculus to the frontal eye fields and other
cortical areas (Sommer and Wurtz, 2008). Recent research has
extended these findings to the vestibular system and found
that self-generated head movements lead to attenuated vestibular
responses compared to passive movements, suggesting a predictive
mechanism in vestibular processing (Cullen, 2019). Neuroimaging
and electrophysiological studies have identified key brain regions
involved in predictive processing during voluntary actions,
including the cerebellum, parietal cortex, and prefrontal areas
(Wolpert et al., 2011; Schwartze et al., 2012; Kilteni and Engeler,
2020). However, further research is still needed to fully characterize
the underlying neural circuits, as well as the temporal dynamics
and hierarchical organization of these predictive mechanisms in
voluntary actions (Pezzulo et al., 2015; Heilbron and Chait, 2018).

In the present study, we investigated the circuit-level
mechanisms underlying the computation of prediction error
(PE) for both one- and two-dimensional stimulus features using
a computational model with biologically realistic connectivity
motifs. Our goal was to elucidate how inhibitory plasticity and
interneuron selectivity jointly facilitate the emergence of PE
neurons and support predictive processing during voluntary
behavior. The model incorporates feature-selective pyramidal cells
(PCs) along with three major classes of inhibitory interneurons-
parvalbumin-positive (PV), somatostatin-positive (SOM), and
vasoactive intestinal peptide-positive (VIP) neurons and employs
experience-dependent inhibitory plasticity to dynamically establish
excitation-inhibition (E/I) balance across neuronal compartments.

Crucially, we extended feature selectivity to inhibitory populations
and revealed that selective inhibition is essential for prediction-
dirven suppression. Our results demonstrate that the model gives
rise to PE neurons exhibiting hallmark computational properties
of predictive coding: (1) mismatch responses scale with the degree
of prediction violation; (2) top-down and bottom-up signals
are integrated in a subtractive manner; and (3) feature-specific
mismatch responses are selectively amplified with experience.
Furthermore, the compartmentalized dendritic architecture
naturally supports the extension to multidimensional features,
enabling scalable and functionally specific PE computation. Our
results suggest that the relationship between voluntary behavior
and prediction error neurons for multidimensional features is
intricately linked to the brain’s ability to adapt and respond to
complex environments.

More broadly, voluntary behavior involves the self-initiated
execution of actions based on internal goals and motivations, often
requiring anticipation and prediction of future events. Prediction
error neurons for multidimensional features play a crucial role
in this process by constantly comparing expected outcomes
with actual sensory inputs. These neurons detect discrepancies
between predicted and observed stimuli, signaling the need for
adjustments in the brain’s internal model of the environment. By
encoding not only the magnitude but also various dimensions
of sensory features such as direction, color, and location, these
neurons provide nuanced feedback to guide behavior. In summary,
multidimensional prediction error neurons offer a functional
framework linking predictive processing to the generation of
voluntary behavior in complex environments.

2 Results

We employed a four-population firing rate model to simulate
microcircuit activity and explored the development of prediction
error (PE) neurons in the context of voluntary behavior.
The network model comprises excitatory pyramidal cells (PCs)
alongside inhibitory cells categorized into three major types based
on their protein expression: parvalbumin (PV), somatostatin
(SOM), and vasoactive intestinal peptide (VIP) neurons (Rudy
et al., 2011). To enhance the biological realism and account for
SOM interneuron heterogeneity, we included two subclasses of
SOM neurons: Martinotti (M) cells and non-Martinotti (nM)
cells (Ma et al., 2006). These subclasses exhibit distinct synaptic
targeting patterns, with Martinotti cells targeting pyramidal neuron
dendrites (Rudy et al., 2011; Jiang et al., 2015; Kawaguchi
and Kubota, 1997) and non-Martinotti cells targeting the soma
(McGarry et al., 2010). Inhibitory neurons were implemented
as point neurons based on the model proposed by Wilson
and Cowan (1972). For PC neurons, we employed a reduced
multi-compartmental neuron model consisting of one somatic
compartment and multiple dendritic compartments. To model
one-dimensional feature PE neurons, we initially considered
a single dendritic branch and later extended the model to
accommodate two-dimensional features by including two dendritic
branches. In this configuration, each pyramidal neuron receives
converging inputs from both dendritic branches, each carrying
distinct stimulus features, resulting in selectivity for a preferred
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stimulus along each feature dimension. This dendritic morphology
is motivated by prior studies showing that distinct dendritic
branches can independently integrate localized inputs (Poirazi
et al., 2003).

Simple cells in the primary visual cortex (V1) exhibit selectivity
to various stimulus properties, such as color, orientation, motion
direction, and stimulus location. In our model, we replicated
the stimulus-tuning observed in pyramidal cells (PCs) in layer
2/3 of mouse V1 by providing each of the 280 excitatory
neurons and 40 SOM neurons with external input tuned using
one- or two-dimensional Gaussian functions, consistent with
experimental findings (Ma et al., 2010; Niell and Stryker, 2008).
The preferred stimuli of PCs and SOM neurons were distributed
evenly across the stimulus space. We initially focused on one-
dimensional stimuli, restricting the stimulus feature space to
the discrete values 0, 1, 2, and 3, which could also represent
features like direction and color through appropriate mapping (Li,
2023). Within this context, there are four types of PC neurons
with different preferred stimuli. In our framework, predictions
and actual sensory inputs are encoded as stimulus features,
with prediction errors quantified as the differences between the
predicted and observed features. Notably, the PCs in this network
generally exhibit specific stimulus selectivity (here, one of four
types), either in one or two dimensions, and each selective
group is considered homogeneous. Accordingly, these groups are
analyzed separately.

In the model, all neurons receive excitatory background input
to maintain reasonable baseline activity levels. This ensures that
even in the absence of visual input or motor-related internal
predictions, the neurons remain active and ready to process
incoming signals. The network is also stimulated with time-
varying external inputs representing actual and predicted visual
stimuli. Sensory stimuli are presented with intervening pauses
(background phases), analogous to gaps between stimuli in sensory
sequences (e.g., blank screens in vision). We hypothesize that
sensory consequences of voluntary movements are fully predicted
by internal motor commands (“match phase,” P = S ). Conversely,
unexpected external changes or mismatched sensory feedback
generate unpredicted signals (“mismatch phase,” P �= S ). The
circuit we studied was motivated by the widely accepted view
that PCs, PV, and SOM interneurons in V1 exhibit visually
driven activity (Ko et al., 2011; Yang et al., 2013; Harris and
Shepherd, 2015; Xue et al., 2014; Lee et al., 2016; Larkum, 2013). In
contrast, long-range (e.g., motor) predictions target VIP neurons
(Fu et al., 2014; Ibrahim et al., 2016; Attinger et al., 2017) and
the apical/dendritic compartments of PCs (Attinger et al., 2017;
Larkum, 2013) in superficial V1 layers. Within this framework,
VIP neurons act as key disinhibitory elements, suppressing SOM
and PV interneurons in response to predictive feedback (Pi et al.,
2013; Zhang et al., 2014), thereby modulating PC activity context-
dependently.

Although parvalbumin-expressing (PV) interneurons also
inhibit PCs in the network, they were modeled as receiving untuned
sensory input. This assumption is supported by experimental
evidence that PV interneurons form dense, nonspecific connections
and provide broad, unselective inhibition to nearby excitatory
neurons (Packer and Yuste, 2011). In contrast, SOM interneurons

exhibit significantly higher stimulus selectivity, particularly in
direction tuning, as demonstrated by Kerlin et al. (2010), making
them well-suited for implementing feature-specific inhibition.
Furthermore, since our model is designed to realize prediction-
driven selective suppression, the role of SOM neurons becomes
especially critical during phases when only top-down predictive
inputs are present. In such cases, dendritic compartments of PCs
become the primary source of somatic excitation. To counteract
this excitation in a stimulus-specific manner, it is essential that
SOM neurons deliver selective inhibition. Therefore, incorporating
stimulus-tuned SOM neurons that specifically target PC dendrites
is likely essential for enabling prediction-dependent, feature-
specific suppression.

In this network, PE neurons are defined as excitatory cells
that remain at baseline in the match phase and maintain a
certain amount of activity in the corresponding mismatch phase.
Specifically, we classified PCs as PE neurons when the change in
firing rate, normalized by baseline firing rate (�R/R = r−rBL/rBL),
exceeds a threshold 20% during the corresponding mismatch phase
and is less than 10% during the match phase. Allowing for minor
deviations in the match and mismatch phases aligns more closely
with experimental methods. The specific threshold values are not
crucial to the results. For instance, after training with matched
stimuli as shown in Figure 1A, PE neurons preferring stimulus ‘0’
remain at baseline activity during the 0-type match phase (‘0 −
0’, where the former represents predicted stimuli and the latter
represents actual stimuli) of the test stimulus in Figure 1B, while
those preferring stimulus ‘1’ also maintain baseline activity in this
phase (all selective neurons perceive this as a match), yet exhibit
the highest activity during the ‘0 − 1’ mismatch phase among
all neurons.

2.1 One-dimensional prediction error
neurons emerge by balancing excitation
and inhibition

Before training, somatic excitation in PCs was not balanced
by inhibition (Figure 1C), leading to elevated activity even during
matched input conditions. After training, somatic E/I balance
was achieved (Figure 1D). This balance is crucial for accurate
prediction error computation and emerges dynamically through
synaptic plasticity (Hertäg and Sprekeler, 2020).

Initially, the neural circuit had randomly initialized synaptic
connections, resulting in an imbalance between excitation and
inhibition among PCs. As a result, all PCs showed changes
in firing rates in response to matched stimuli, indicating
the absence of PE neurons (Figure 1E). During simulated
sensorimotor experience, inhibitory plasticity gradually
adjusted inhibitory synapses to minimize deviations of PC
firing rates from baseline levels (Figure 1D). After training,
all neurons showed minimal response to matched stimuli
(Figure 1F), consistent with PE neuron behavior. Thus,
inhibitory synaptic plasticity plays a critical role in generating
PE neurons by balancing excitation and inhibition in PCs
during plasticity.
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FIGURE 1

PC neuron activity in response to stimuli before and after training. (A) During plasticity, the network undergoes a series of match phases, representing
coupled sensorimotor experiences and referred to as training stimuli. (B) Test stimuli consist of mismatch phases, during which visual inputs deviate
from motor predictions. Each stimulus is presented for 1 s and alternates with baseline phases, during which both visual inputs and motor predictions
are absent. (C, D) Excitation-inhibition (E/I) balance before (C) and after (D) training. (C) Before plasticity, the somatic excitation and inhibition in PCs
are not balanced, leading to deviations in the population firing rate from baseline. (D) After plasticity, somatic excitation and inhibition are balanced,
keeping the PC population rate stable at baseline. (E, F) Prediction-error neurons emerge through E/I balance. These panels show PC neuron
responses to test stimuli before (E) and after (F) training. The panel title denotes the prediction P, while the horizontal axis represents the actual
stimulus S. The vertical axis lists NPC PC neurons, with color-coded strips indicating their preferred stimuli: red, green, blue, and purple denote
preferences for stimuli 0, 1, 2, and 3, respectively. Blue horizontal lines in the right bar indicate PC neurons exhibiting prediction-error (PE) neuron
properties: during 0-type match phases, PE neurons maintain baseline activity, while during 0 − S mismatch phases, neurons preferring stimulus S
show significant excitation. As shown in the right bar of panel (F), all PCs are classified as prediction-error neurons after training.

Our computational model demonstrates that PE
neurons encoding either one- or two-dimensional
stimulus features (Figure 2A for the one-dimensional
case) can emerge through such E/I balancing mechanisms

in cortical circuits. Additionally, our study provides
further insights into the circuit-level implementation
of prediction-error computation, as described in the
following sections.
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2.2 Inhibitory plasticity and tuned inhibitory
neurons support selective suppression by
top-down prediction

To understand how inhibitory plasticity and feature-selective
inhibition enable feature-specific suppression, we systematically
examined synaptic dynamics and PC responses in models with and
without SOM neuron selectivity.

We first assessed the effect of inhibitory plasticity with
predictive input alone. Before training (homogeneous weights),
top-down input failed to induce feature-specific PC suppression
(Figure 1E, rightmost column, γ (0) = 0). After training,
PCs exhibited differentiated suppression, with neurons tuned to
the predicted stimulus (e.g., “0”) being strongly inhibited. This
demonstrates successful prediction-driven selective suppression.
This effect was quantified using the selectivity coefficient (Equation
12, Materials and Methods), which revealed enhanced feature-
specificity after training [γ (0) = 0.65]. As Figure 2B shows,
inhibitory synaptic weights onto PCs diverged during training,
forming a feature-specific inhibitory landscape. This contrasts with
classical attractor models implementing global inhibition (Amit
and Brunel, 1997), highlighting our model’s feature-dependent
architecture.

We next compared networks with and without SOM selectivity
as shown in Figures 2C, D. Without SOM selectivity, top-
down input induced weaker, less targeted PC suppression
(Supplementary Figure 1), indicating impaired inhibitory
differentiation. This supports the notion that feature-specific
suppression relies on tuned inhibitory populations (Li, 2023).
Incorporating SOM neurons with broader tuning (σSOM > σPC),
consistent with experimental data (Sohya et al., 2007),
enhanced network performance. PCs exhibited stronger and
moreselective suppression under predictive input P = 0, S = −1
(Figures 1F, 2D). Statistical comparisons confirmed significant
differences (p << 0.05, t test/MWU test), particularly under
predictive input (Figure 2D). Thus, SOM selectivity critically
shapes feature-specific inhibition.

Finally, a study by Ma et al. (2010) demonstrated that the
orientation selectivity of SOM neurons is comparable to that of
pyramidal cells. To assess the impact of SOM neurons’ selectivity
level on our model, we conducted an additional simulation in which
SOM neurons were assigned the same tuning width as pyramidal
cells (σPC = σSOM = 0.8).

The results (see Supplementary Figure 2) indicate that the
model’s performance remained qualitatively unchanged, suggesting
that the critical factor is the presence of feature selectivity itself,
rather than the exact sharpness of the tuning.

In summary, our results demonstrate that both inhibitory
plasticity and the feature selectivity of SOM neurons are
essential for prediction-driven suppression. (1) Experience-
dependent inhibitory plasticity establishes not only a stable
excitationinhibition (E/I) balance, but also enables top-down
predictions to selectively suppress pyramidal cell (PC) activity.
(2) Feature tuning in SOM interneurons is critical for eliciting
feature-specific suppression; in its absence, inhibitory modulation
becomes less effective and less selective. These results underscore
that both inhibitory plasticity and interneuron selectivity are

indispensable for implementing prediction-based suppression and
ensuring efficient sensory processing.

2.3 One-dimensional feature enables key
properties of PE neurons

Mismatch negativity (MMN), a well-established EEG
signature of prediction error, is typically elicited using auditory
or visual oddball paradigms and shows amplitude scaling
with stimulus deviance (Näätänen et al., 2007; Tiitinen et al.,
1993). Our model replicates this fundamental property: PC
responses increase monotonically with the feature distance
between actual and predicted stimuli. To quantify this effect,
we grouped deviant stimuli based on their feature distance
from the predicted input and analyzed the corresponding
responses of feature-selective PC neurons. As shown in
Figure 3A, the response strength increases with the degree of
mismatch between predicted and actual stimuli, indicating
that PE neurons encode both the presence and magnitude of
sensory deviations.

To dissect this computation, we analyzed how actual and
predicted inputs interact to modulate neural activity. Prior
theoretical studies have proposed two primary models for
integrating these inputs. In divisive models, one input (typically
top-down prediction) scales the effect of the other (bottom-
up sensory input), effectively modulating neural gain (Spratling,
2008, 2010). In contrast, subtractive models posit that top down
predictions actively cancel or suppress bottom-up inputs, with
neural responses reflecting the residual mismatch (Rao and Ballard,
1999; Ayaz and Chance, 2009). As shown in Figure 3B, PE
neuron responses in our model were positively correlated with
the similarity between a neuron’s preferred stimulus and the
actual sensory input, but negatively correlated with similarity
to the predicted input. This pattern suggests that PE neuron
activity reflects opposing influences from sensory evidence and
predictive signals—being enhanced by actual input and suppressed
by prediction—thus supporting a subtractive computation scheme
within the modeled circuit. Such a mechanism naturally gives rise
to a graded response profile: the greater the deviation between
prediction and sensory input, the larger the mismatch signal
encoded by PE neurons.

In addition, some neurons exhibited feature-specific response
enhancement to specific types of mismatches. As illustrated
in Figure 3C, PC neurons tuned to stimuli 1, 2, and 3
showed peak responses during mismatch phases involving their
preferred features (e.g., 0-1, 0-2, 0-3), both before and after
training. These results indicate that PE neurons preferentially
encode mismatches aligned with their tuning profiles, consistent
with experimental observations in both rodent and human
studies (Fiser and Mahringer, 2016; Stefanics et al., 2019).
Notably, these feature-specific mismatch responses became more
pronounced after training, reflecting a sharpening of mismatch
tuning. This suggests that synaptic plasticity mechanisms in
the model adaptively sharpen the tuning of PE neurons to
mismatched inputs.
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FIGURE 2

Feature selectivity and network performance with and without SOM selectivity. (A) Gaussian tuning curves for one-dimensional feature selectivity.
The network comprises four types of pyramidal cells (PCs), each with a distinct stimulus preference, represented by differently colored Gaussian
profiles. PCs exhibit narrow tuning (σPC = 0.8), while SOM neurons (when selective) show broader tuning (σSOM = 1), consistent with experimental
observations. (B) Inhibitory plasticity drives synaptic weight differentiation during training, allowing PC firing rates to converge to the target and
enabling prediction-driven selective suppression. Network performance before (C) and after (D) training, comparing models with SOM selectivity
(blue) and without (red). Each panel shows two pairs of boxplots for PCs preferring “0” across two test conditions: (1) matched input (P = S = 0); (2)
predictive input only (P = 0, S = −1). Dots represent individual PCs. Statistical significance (p < 0.05, two-sample t-test and Mann-Whitney U-test)
indicates that SOM selectivity significantly enhances predictive suppression. This figure is designed to evaluate how SOM neuron selectivity
influences two critical mechanisms in the one-dimensional model: (1) excitation-inhibition (E/I) balance under matched stimuli and (2) selective
suppression in the presence of top-down prediction alone.

In summary, one-dimensional PE neurons exhibit
three hallmark properties: (1) mismatch responses scale
proportionally with the degree of deviation from prediction;
(2) bottom-up sensory input and top-down predictions
exert opposing influences on activity, consistent with
subtractive computation; and (3) feature-specific mismatch
responses are selectively enhanced through experience-
driven plasticity. Together, these properties enable PE
neurons not only to detect the presence of prediction errors,
but also to encode their magnitude and feature content
in a dynamically adaptive mannerhallmarks of predictive
coding frameworks.

2.4 Training preserves the original stimulus
tuning of PC neurons

To ensure biological plausibility, it is critical that pyramidal
(PC) neurons retain their original stimulus tuning after training
- even as they acquire the capacity to signal prediction errors. As
shown in Figure 4, the tuning curves of PC neurons remained stable
before and after training. Although the overall firing rates slightly
decreased, the peak positions of the tuning curves did not shift,
indicating that the emergence of prediction error (PE) circuitry did
not alter neurons’ inherent stimulus preferences (Li, 2023). This
finding aligns with experimental observations that locomotion can
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FIGURE 3

Computational properties of PE neurons with one-dimensional feature tuning. (A) Mismatch response magnitude scales with prediction-sensory
deviation. With prediction fixed at “0,” responses show monotonic increase as the actual stimulus deviates further from this prediction. Each data
point denotes the population-average response of feature-selective neurons for a corresponding actual stimulus, as indicated on the horizontal axis.
For example, the second point represents the population-average response of neurons preferring stimulus “1” during the mismatch phase when
P = 0 and S = 1. (B) Neural responses exhibit dual dependencies: they are positively correlated with the similarity to the actual stimulus (purple) and
negatively correlated with the similarity to the predicted stimulus (blue). The plots show population-average responses to mismatched stimuli (as
indicated in the titles) for four neurons with different selectivities. The x-axis represents the similarity between each neuron’s preferred stimulus and
either the actual or predicted stimulus. (C) Feature-specific mismatch amplification after training. Radar plots show the population-average
responses of four PC subtypes to different actual stimuli under a fixed prediction condition P = 0 (as indicated in subplot titles, which also specify
each subtype’s preferred stimulus). Radial directions represent different actual stimuli Two solid lines are shown: the purple line indicates the average
response before training, and the green line indicates the response after training. Red scatter points represent individual neuron responses under
each condition. Notably, selective responses to preferred mismatches are enhanced after training for example, PCs preferring “1” show amplified
responses in the 0–1 mismatch phase.

modulate but not change the visual selectivity of V1 neurons (Niell
and Stryker, 2010).

Furthermore, the model’s enhanced response to unexpected
stimuli (Section 2.3) arises exclusively from amplified
prediction-sensory mismatch encoding, not from increased
tuning to the stimulus itself (e.g., receptive field sharpening).
This dissociation supports the theoretical framework in
which predictions and errors utilize distinct neural codes.

Predictions are conveyed through feature-specific activity
patterns, consistent with experimental evidence that sensory
templates can be pre-activated prior to stimulus onset (Kok
et al., 2017). In contrast, prediction errors are encoded as
deviations from these expectations. This architecture enables
flexible adaptation to unexpected events while maintaining
stable sensory representations — a core requirement for
predictive processing.
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FIGURE 4

Tuning curves of PC neurons before and after training in the one-dimensional feature prediction error model. Each subplot displays the tuning curves
of a PC subgroup with a specific preferred stimulus (as indicated in the title). Scatter points represent the population-average steady-state responses
to different input stimuli (x-axis), and solid lines show their corresponding fitted Gaussian tuning curves. Notably, the preferred stimulus (tuning peak)
remains stable after training, indicating that the emergence of PE neurons does not compromise the intrinsic feature selectivity of PC neurons.

2.5 Scalable prediction error computation
for multi-dimensional features

In natural environments, sensory stimuli often vary along
multiple dimensions. For instance, in the visuomotor system, head
movement (a top-down motor signal) covaries with changes in the
visual scene (a bottom-up input), and prediction errors emerge
when this correspondence is disrupted. we extended our model
to two-dimensional prediction error (PE) neurons using a two-
dimensional Gaussian surface, as shown in Figure 5A.

Each neuron comprises multiple functionally segregated
dendritic compartments that independently receive inputs from
distinct feature pathways and interact solely through the soma,
with no lateral dendritic communication (Yang et al., 2016). As
a representative case, we constructed a two-dimensional model,
illustrated in Figures 5B, C, where two dendritic compartments,
respectively encode features such as direction and color, each
modulated by top-down predictions. These inputs are modeled
with bellshaped tuning curves, and their somatic integration
enables PC neurons to selectively respond to specific feature
combinations across both dimensions.

In our two-dimensional simulation, the first feature F1
was limited to values {0, 1}, and the second feature F2 to
values {2, 3}, yielding four PC neuron subpopulations tuned
to preferred pairs: (0, 2), (0, 3), (1, 2), and (1, 3). The response
logic of these two-dimensional PE neurons closely parallels
that of one-dimensional counterparts. For instance, after
training with (0, 2) − (0, 2) stimuli, PE neurons tuned to
(0, 2) remained at baseline activity during the (0, 2) − (0, 2)
match phase, whereas those preferring (0, 3) also maintained

baseline activity during this phase but exhibited the strongest
mismatch responses among all neurons during the (0, 2) − (0, 3)
mismatch phase.

As shown in Figure 5D (before training) and Figure 5E
(after training), our model extends naturally from one- to
two-dimensional PE circuits. This extension preserves the key
computational properties identified in the one-dimensional
case, including excitation-inhibition balance, mismatch
responses that scale with the degree of prediction violation,
and subtractive integration of top-down and bottom-up signals
(see Supplementary Figures for detailed results). Notably,
this generalization is structurally straightforward, requiring
only the addition of dendritic branches to accommodate
each new feature dimension. Since features are processed
independently (no cross-dendrite communication), the
core architecture scales without functional redesign. As a
result, our framework provides a scalable and biologically
plausible approach for constructing multidimensional
PE neurons capable of encoding complex, feature–rich
sensory environments.

2.6 Attention as precision-weighted
prediction error amplification

In predictive coding theory, attention is conceptualized as a
precision-weighting mechanism that amplifies the influence of
reliable prediction errors (Friston, 2005). By assigning greater
weight to more reliable errors, the brain can adjust its internal
models more effectively. Attention plays a central role in this
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FIGURE 5

Two-dimensional PE neuron model and performance. (A) Two-dimensional Gaussian tuning surfaces for PCs with preferred stimuli: e.g., (0, 2), (0, 3),
(1, 2), (1, 3). (B, C) Pathway-specific model structure. Motion- and color-related pathways converge on segregated dendritic compartments,
modulated by dendrite-targeting interneurons. (D, E) PC responses before and after training with (0, 2) − (0, 2)stimuli. Each panel contains four
subplots, corresponding to PC subgroups with different preferred stimuli. In all subplots, the prediction input is fixed at P = (0, 2), while the actual
stimulus varies along the x-axis. Each dot represents the steady-state response of an individual PC neuron. “Mean” denotes the population average,
and “STD” indicates variability across neurons. After training, PCs exhibit key properties of two-dimensional prediction-error (PE) neurons: (1) Under
matched condition [e.g., P = S = (0, 2)]: responses remain near baseline. (2) Under mismatched conditions [e.g., P = (0, 2), S = (1,2)]: neurons tuned
to the actual stimulus [e.g., (1, 2)] show strong activation. This figure tests the model’s ability to generalize to a two-dimensional feature space and
demonstrates the emergence of PE neurons that exhibit hallmark mismatch responses along both dimensions.

process by prioritizing sensory discrepancies that are most
relevant to the task or context (Smout et al., 2019; Hohwy,
2012).

To simulate attentional effects, we applied feature-specific
gain modulation to the input pathways of pyramidal neurons
(PCs). In the unbiased condition (Figure 6A), both feature input
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were assigned equal gain values (1.0). In the attention-biased
conditions (Figures 6B, C), the gain for one feature pathway
was increased by 20%, mimicking selective attention directed
toward either the first or second dimension. Implementation
details are provided in “Stimulus Selectivity” of Materials
and methods.

As illustrated in Figure 6, simultaneous mismatches in
both features evoke the strongest responses [e.g., Figure 6A,
grid cell (1, 3)], consistent with the scaling observed in the
one-dimensional model. Furthermore, attention selectively
enhanced mismatch responses along the attended feature
axis. Specifically, when prediction violations occurred along
the attended dimension, PE neurons exhibited significantly
stronger responses compared to violations along the unattended
dimension. For example, in Figure 6B, mismatches along
Feature 1 (rows) elicited stronger responses than those along
Feature 2 (columns). This demonstrates how cortical gain
modulation implements precision-weighting, flexibly enhancing
PE signals for attended features-a core computational principle of
predictive coding.

2.7 Architectural flexibility: stable
one-dimensional computation within
multidimensional framework

Having established the modelation within multidimensional
framenal prediction errors (PEs), we next demonstrate its capacity
for flexible dimensionality reduction. Leveraging the dendritic
architecture, the network can revert to one-dimensional PE
computation by functionally silencing one feature compartment
(implemented by setting the input to −1).

As illustrated in Figures 7A, B, the model can be effectively
reduced to a onedimensional prediction error (PE) neuron model.
In this experiment, two test cases were examined. For the first test
case P = (0,−1) with sensory inputs S = (0,−1) and S = (1,−1),
PE neurons are expected to maintain baseline activity during the
(0,−1) type match phase. In contrast, during the (0,−1) − (1,−1)
mismatch phase, PE neurons preferring stimuli (1, 2) and (1, 3)
- i.e., those with the same first-dimensional feature as the actual
stimulus—exhibited relatively pronounced excitation. Similarly, for
the second test case P = (−1, 2) with sensory inputs S = (−1, 2)
and S = (−1, 3), PE neurons also maintained baseline activity
during the (−1, 2) type match phase, while neurons tuned to (0, 3)
and (1, 3) stimuli showed stronger responses during the (−1, 2) −
(−1, 3) mismatch phase. As shown in Figure 7C, dimensional
reduction does not alter the stimulus tuning of the neurons, as their
tuning curves do not shift laterally.

By transitioning from a one-dimensional to a two-dimensional
model and subsequently reverting to a one-dimensional
configuration, we establish a closed-loop validation of the
model’s robustness. The successful reproduction of the reduced
onedimensional PE responses highlights the model’s flexibility
and generalizability. This supports its applicability in studying
sensory prediction error processing across varying levels of
complexity, from simple one-dimensional inputs to naturalistic,
highdimensional stimuli.

3 Discussion

Predictive coding has emerged as a unifying framework for
understanding perception and action, positing that the brain
continuously generates top-down predictions to suppress incoming
sensory signals and updates internal models based on mismatches
(termed prediction errors, or PEs) between expected and actual
inputs (Friston, 2010; de Lange et al., 2018). A core requirement
of this hierarchical inference process is the dynamic coordination
of descending predictions and ascending sensory evidence within
cortical microcircuits. While prior computational models have
demonstrated that inhibitory plasticity can give rise to PE-like
responses, it remains unclear how such mechanisms scale to
compute feature-specific prediction errors in highdimensional and
dynamically changing environments.

In this study, we developed a biologically inspired
computational model that integrates the predictive coding
framework with experimentally established cortical circuit motifs
(Figures 8A, B). These include compartmentalized pyramidal
neurons (Yang et al., 2016), three major classes of inhibitory
interneurons (PV, SOM, and VIP), and experiencedependent
inhibitory plasticity. Our results demonstrate that prediction-
driven modulation of pyramidal cell (PC) activity emerges from
the tuning of inhibitory interneurons and inhibitory plasticity.
The model generalizes to both one- and two-dimensional feature
spaces through dendritic compartmentalization, offering a
scalable architecture for multidimensional prediction error (PE)
computation. This enables the simultaneous processing of multiple
features (e.g., orientation and spatial location) while preserving
key computational properties of PE circuits: mismatch sensitivity,
selective amplification, and content-specific representation.

3.1 Feature selectivity in PE computation

Recent computational work on prediction error (PE) neurons,
particularly by Hertäg and Sprekeler, 2020 and Hertäg and Clopath,
2022, has advanced our understanding of circuit-level mechanisms
in the mouse primary visual cortex (V1). However, these models
lack neuron-specific feature selectivity—a fundamental property
of sensory cortical circuits. Numerous experimental studies
have shown that V1 neurons exhibit strong tuning to specific
stimulus features, including orientation, spatial location, and
motion direction (Hubel and Wiesel, 1959; Niell and Stryker,
2008). This feature selectivity is not only critical for sensory
encoding, but also for generating feature-specific PE signals.
Crucially, rodent V1 PE neurons detect retinotopically localized
mismatches (Zmarz and Keller, 2016), prioritizing behaviorally
relevant deviations over broadcast errors. By leveraging feature
selectivity, PE neurons can encode discrepancies along specific
stimulus dimensions, supporting context-sensitive and goal-
directed behavioral adjustments (Stefanics et al., 2019).

To address the lack of feature selectivity in prior models,
we developed a computational framework where both actual
and predicted inputs are represented by Gaussian-tuned signals
targeting excitatory neurons. These tuning profiles enable
the network to differentiate between match and mismatch
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FIGURE 6

Feature-selective attention modulates multidimensional mismatch responses. Each grid cell represents the response amplitude of feature-selective
pyramidal neurons during the mismatch phase, with the prediction feature fixed at (0, 2). For example, the grid cell labeled (1, 2) indicates the
response of neurons preferring (1, 2) when P = (0, 2), S = (1, 2). Color intensity encodes response magnitude, with warmer colors (e.g., red) indicating
stronger activation. (A) Neural responses under unbiased attention (equal gain across both feature dimensions). (B) Attention biased toward Feature 1
(first dimension) by increasing its input gain by 20%. (C) Attention biased toward Feature 2 (second dimension), with increased gain in the second
dimension. Simultaneous mismatches across both feature dimensions elicit greater neural responses than single-feature mismatches. Moreover,
attentional bias further amplifies mismatch responses for the attended feature, underscoring the role of precision-weighting in predictive coding.

stimuli along specific dimensions, such as orientation or
spatial location. Furthermore, the incorporation of the tuning
of inhibitory interneurons (Kerlin et al., 2010), enhances
content-specific top-down modulation of cortical activity,
contrasting with uniform, non-specific inhibitory schemes.
This design aligns with experimental findings from Peelen and
Kastner (2011), who demonstrated category-specific preparatory
activation in object-selective cortex, even in the absence of
bottom-up input. By embedding feature selectivity into both
excitatory and inhibitory components of the network, our
model supports biologically realistic and computationally
efficient prediction error (PE) computation. It demonstrates
how feature-selective PE neurons can emerge from structured
inputs and plastic interactions, offering a refined understanding
of how cortical circuits encode and respond to deviations from
sensory expectations.

3.2 Model predictions and core
contributions

In this study, we developed a computational model to
investigate how prediction error (PE) neurons with feature
selectivity emerge in cortical circuits through experiencedependent
inhibitory plasticity. Our key findings and theoretical contributions
can be summarized as follows: (I) Emergence of PE neurons
via E/I balancing: our model demonstrates that PE neurons
encoding either one-dimensional or two-dimensional stimulus
features can arise through synaptic plasticity rules that dynamically
balance excitation and inhibition. This form of inhibitory plasticity
enables the transformation of initially untuned networks into
selective mismatch detectors. (II) Mechanisms of prediction-driven
suppression: we show that inhibitory plasticity allows top-down

predictions to selectively suppress pyramidal cell (PC) activity.
This suppression critically depends on the feature tuning of
somatostatin-positive (SOM) interneurons. Without such tuning,
the suppression becomes broad and non-specific, underscoring the
importance of interneuron selectivity in implementing efficient
and selective inhibition. (III) Core properties of PE neurons:
PE neurons in our framework exhibit three hallmark properties
of predictive coding: (1) Mismatch responses scale with the
degree of deviation from prediction; (2) Bottom-up sensory
inputs and top-down predictions exert opposing influences,
resembling subtractive computation; (3) Mismatch signals are
selectively amplified through learning, leading to improved
encoding of stimulus feature discrepancies. (IV) Content-specific
representation of predictions and errors: in our model, predictions
are conveyed through feature-selective input patterns, consistent
with evidence that sensory templates can be pre-activated before
stimulus onset (Kok et al., 2017). Conversely, prediction errors
are encoded as deviations from these expectations, enabling
adaptive responses to novel or unexpected events. (V) Attentional
modulation of PE responses: our simulations show that when
mismatches occur simultaneously across both stimuli dimensions,
strong two-dimensional PE responses are generated. Crucially,
attention selectively enhances mismatch signals along the attended
dimension, consistent with predictive coding accounts of precision-
weighting (Friston, 2005; Smout et al., 2019). This suggests a
plausible mechanism for flexible and goal-directed modulation
of sensory error processing. (VI) Scalable generalization to
multidimensional prediction errors: by extending the model
from one- to two-dimensional PE circuits, we demonstrate its
flexibility and scalability. This generalization only requires the
addition of functionally segregated dendritic compartments for
each stimulus dimension, while preserving the core architecture of
compartmentalized input integration.
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FIGURE 7

Dimensional reduction preserves core PE properties. (A, B) Response heatmaps for single-feature input conditions. A value of “−1” denotes the
absence of stimulus input in that dimension. (A) Feature 1 active (Feature 2 = −1); (B) Feature 2 active (Feature 1 = −1). Warmer colors indicate
stronger neural responses. (C) Stable tuning after dimensional reduction. Each subplot represents one of eight feature-selective neuron types with
distinct preferred stimuli. In this configuration, only the first dimension of the two-dimensional stimulus space is considered, as reflected in the x-axis
of each subplot. To better fit the Gaussian curve, the number of features was increased from two to four in the first dimension (F1), with values
ranging from 0 to 3, while F2 was set to 4 and 5. This yielded eight distinct neuron subpopulations, each selectively tuned to a unique stimulus pair.
Each subplot shows the population-average responses of PC neurons (scatter points), with Gaussian tuning curves fitted to the data (solid lines).
Notably, the emergence of PE neurons after training does not alter their intrinsic tuning, as tuning peaks remain laterally stable.

Together, these findings provide a comprehensive theoretical
account of how cortical circuits may implement prediction error
computation in a feature-selective, scalable, and biologically
grounded manner. They underscore the essential role of inhibitory
plasticity and interneuron tuning in enabling flexible sensory
suppression and dynamic error signaling during voluntary
behavior.

3.3 Learning rules and biological plausibility

A central methodological choice in our model is the use of
supervised gradient descent to derive synaptic plasticity rules that
enable the emergence of prediction error (PE) neurons. Although
this approach diverges from biologically implemented learning
mechanisms, it offers a tractable and analytically interpretable
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FIGURE 8

Modeling the neural circuit for one-dimensional prediction error in voluntary behavior. (A) The network model comprises excitatory pyramidal cells
(PCs) and three types of inhibitory interneurons. The network includes 400 neurons, though connections from PCs are not illustrated for clarity.
Connections indicated by an ‘*’ are subject to synaptic plasticity. Typically, the somatic regions of PC, SOM, and PV neurons are responsible for
receiving visual input (S), whereas the dendritic branches of PCs and VIP neurons are involved in receiving motor-related predictions (P). Although
two dendritic branches are illustrated for compatibility with multidimensional PE modeling, only a single dendritic branch is utilized in the
one-dimensional case. (B) The subnetwork of excitatory (E) neurons, represented by red triangles, and inhibitory (SOM) neurons, shown as green
circles, receives feature-specific tuned input. Excitatory neurons tuned to a sample stimulus “0” are marked in dark red, with their inhibitory
counterparts shown in dark green. The network contains four distinct types of selective neurons, each color-coded to reflect their unique stimulus
preferences.

framework for identifying the circuit configurations required for
accurate PE computation. The resulting rules bear resemblance
to biologically inspired homeostatic inhibitory plasticity (Vogels
et al., 2011) and error-driven learning algorithms (Rumelhart et al.,
1986), serving as a computational abstraction rather than a direct
mechanistic implementation. Since the primary objective of this
study is to demonstrate that feature-selective PE circuits can be
learned through excitation-inhibition (E/I) balancing, we employed
gradient descent to derive the plasticity rules to ensure maximal
generality.

Crucially, the derived plasticity rules align with experimentally
observed principles of inhibitory synaptic plasticity. Specifically,
our rule requires inhibitory synapses to adjust their strength based
on convergent excitatory inputs to individual pyramidal neurons
(Equations 15-17), mirroring empirical findings that inhibitory
plasticity is gated by coincident excitatory activity (Liu et al., 2007).
This input-specific modulation promotes fine-grained matching of
inhibition to excitation at the synaptic level, a mechanism essential
for maintaining local E/I balance across neuronal compartments
(Tao et al., 2014). Thus, while derived via global optimization, the
core logic of our plasticity rules - where inhibition co-varies with
excitation - is neurobiologically grounded.

Our gradient-based framework demonstrates that coordinated
inhibitory plasticity across compartments enables selective PE
responses. This approach systematically explores solution spaces
to identify candidate circuit motifs, establishing foundations
for future extensions where global optimization is replaced by
local mechanisms such as activity-dependent inhibitory plasticity
(Vogels et al., 2011; Mackwood et al., 2021) or dendritically
compartmentalized learning rules (Bono and Clopath, 2017).

Such transitions will enhance biological realism while retaining
explanatory power.

3.4 Limitations and future directions

While the current model successfully captures key aspects of
PE signaling and inhibitory plasticity, it includes several simplifying
assumptions. Notably, parvalbuminpositive (PV) interneurons are
modeled as receiving actual sensory inputs but lacking feature
selectivity. This design choice reflects experimental evidence
suggesting that PV interneurons form dense, broadly distributed
connections and serve as a source of global inhibition (Packer
and Yuste, 2011; Kerlin et al., 2010). However, other studies
have reported that PV neurons may exhibit broad but non-
uniform feature tuning (Ma et al., 2010; Hofer et al., 2011),
which was not implemented in the present model. Future work
could examine how incorporating graded PV tuning influences the
balance between global and feature-specific inhibition, potentially
revealing additional circuit mechanisms that support precision and
stability during predictive processing.

Our model focuses on V1 microcircuits but provides a
generalizable framework for predictive processing across cortical
areas. By predicting complex network behaviors that have yet to be
experimentally tested, this work opens new avenues for exploring
the context-dependent dynamics of neural networks. In addition to
offering mechanistic insights into the generation and modulation
of prediction-error signals, our framework establishes a foundation
for investigating how such computations support higher-order
cognitive functions and behaviors across diverse biological systems.
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4 Materials and methods

4.1 Network model

The neural circuit structure for prediction error is depicted in
Figure 8. In the following derivations, we used a two-dimensional
prediction error model as an example. If this model is reduced
into a one-dimensional scenario, certain terms can be ignored.
We simulated a network comprising 280 excitatory pyramidal
cells and 120 inhibitory neurons, including PV, SOM, and VIP
neurons (NPV = NSOM = NVIP = 40). In the two-
dimensional context, the excitatory pyramidal cells (PC) neurons
are modeled using a two-compartment model, with the soma,
basal dendrites, and axons combined into one compartment and
two apical dendritic branches operating independently in another
compartment. Inhibitory neurons are modeled using a single-
compartment model, referred to as point neurons. Here SOM
neurons are further categorized into two subtypes: Martinotti
neurons, which are the dominant type and typically connect to
the apical dendrites of PC neurons (Rudy et al., 2011; Jiang et al.,
2015; Kawaguchi and Kubota, 1997), and non-Martinotti neurons,
which may connect to the basal dendrites of PC neurons (McGarry
et al., 2010). In our numerical simulations, we adopted a ratio of
7:3 between Martinotti and non-Martinotti neurons to reflect their
relative abundance.

1. The pyramidal cells are represented by a two-compartment
firing rate model, where E denotes the somatic compartment,
and D1 and D2 represent the two dendritic branches of the
pyramidal neurons. The dynamics of the firing rate rE

i of the
somatic compartment of the neuron i obey

τE
dhE

i
dt

= −hE
i + [Ii − �] ,

rE
i = [

hE
i
]
+ = max

{
hE

i , 0
}

, (1)

where τE represents the excitatory rate time constant (τE =
60ms), � refers to the rheobase of the neuron (� = 14s−1)
(Hertäg and Sprekeler, 2020). Ii denotes the total somatic input,
which includes contributions from somatic and dendritic synaptic
activity, as well as potential dendritic calcium spikes.

Ii = (1 − λE) Isyn
E,i + λD

[
Isyn
D1,i

+ ci

]
+
+ λD

[
Isyn
D2,i

+ ci

]
+

. (2)

Here, the function [x]+ = max(x, 0) represents a rectifying
non-linearity that limits excessive input from the apical dendrite
from influencing the soma. Isyn

D1,i
, Isyn

D2,i
, and Isyn

E,i denote the total
synaptic inputs into two dendritic branches and soma, respectively,
and ci represents a dendritic calcium event. λD and λE indicate the
fractions of current that leak from the dendrites and soma, with
values of λD = 0.27 and, λE = 0.31, respectively. Below is a
detailed explanation of the specific meanings of each term in the
above formula.

(i) Isyn
E,i consists of excitatory inputs from outside xE, excitatory

synaptic inputs from other PC neurons (E), and inhibitory synaptic
inputs from PV neurons (P) and nonMartinotti neurons (nM):

Isyn
E,i = xE +

NPC∑
j=1,i�=j

wEE
ij · rE

j −
NPV∑
j=1

wEP
ij · rP

j −
NnM∑
j=1

wEnM
ij · rnM

j , (3)

where the weight matrices WEE =
(

wEE
ij

)
, WEP =

(
wEP

ij

)
,

and WEnM =
(

wEnM
ij

)
denote the synaptic strength from other

PC neurons, PV neurons, and non-Martinotti neurons to the PC
neuron soma, respectively.

(ii) The dendritic input Isyn
Dk,i

(k = 1, 2) consists
of excitatory inputs from outside xDk , the recurrent
connections from other PCs and Martinotti neuron-
induced inhibition:

Isyn
Dk,i

= xDk +
NPC∑
j=1

wDkE
ij · rE

j −
NM∑
j=1

wDkM
ij · rM

j , k = 1, 2 (4)

where the weight matrices WDkE =
(

wDkE
ij

)
and WDkM =(

wDkM
ij

)
denote the recurrence between PCs ( wDkE

ij ) and

Martinotti neurons ( wDkM
ij ), respectively.

(iii)The input generated by a Ca2+ spike is expressed as:

ci = c · H
(

I0
Dk,i

− �c

)
, k = 1, 2 (5)

Here c determines the scale of the current produced(
c = 7s−1) , H represents the Heaviside step function, and

�c defines the threshold required to trigger a Ca2+-spike (
�c = 28s−1). Additionally, I0

Dk ,i refers to the total synaptic input
generated within the dendrites.

I0
Dk,i

= λEIsyn
E,i + (1 − λD) Isyn

Dk,i
, k = 1, 2 (6)

2. The firing rate dynamics of each interneuron are modeled by

τI
dhY

i
dt

= − hY
i + xY +

NPC∑
j=1

wYE
ij · rE

j −
NPV∑
j=1

wYP
ij · rP

j

−
NSOM∑

j=1

wYS
ij · rS

j −
NVIP∑
j=1

wYV
ij · rV

j (7)

rI
i =

[
hI

i
]
+ = max

{
hI

i , 0
}

.

Here, hY
i denotes the firing rate of neuron i from neuron

type Y(Y ∈ {P, S, V}), and xY represents the combined external
background input and actual or prediction sensory input to Y
neurons. The weight matrices WYX =

(
wYX

ij

)
specifies the

connection strength between postsynaptic neuron population Y
and presynaptic neuron population X. The firing rate is truncated
to ensure non-negativity.
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4.2 Stimulus selectivity

Simple cells in the primary visual cortex (V1) exhibit selectivity
to various stimulus properties, such as color, orientation, motion
direction, and location. In our model, we replicated the stimulus
tuning observed in pyramidal cells in layer 2/3 of mouse V1 by
providing each of the 280 excitatory neurons and 40 SOM neurons
with external excitatory input tuned to one- or two-dimensional
Gaussian stimuli, consistent with experimental findings (Niell and
Stryker, 2008; Sohya et al., 2007). The preferred stimuli of these
PC and SOM neurons were evenly distributed across the stimulus
space. Within this framework, prediction and actual sensory inputs
are represented by stimulus features and prediction errors are
evaluated based on the disparities between predicted and observed
stimulus features. Notably, the PCs in this network generally exhibit
four types of stimulus selectivity either in one or two dimensions,
and each selective neuron was assumed to be homogeneous.
Therefore, when analyzing the properties of neurons in the
network, we considered these neuron types separately.

To develop a neural circuit model for prediction errors
from one- or two-dimensional stimuli, it is necessary to define
each neuron’s feature selectivity, which determines how neurons
respond to different stimulus values. This selectivity is typically
represented by one- or two-dimensional tuning curves that
describe how neurons encode and respond to various stimulus
features, such as direction and color in visual neurons. For
high-dimensional stimuli, these tuning curves reveal which
combinations of stimuli evoke the most robust responses. We used
Gaussian functions to approximate the tuning curve of a neuron
with feature selectivity. The response of a neuron with a preferred
stimulus smax to a stimulus s can be expressed as:

f (smax, s) = rmax exp

(
1
2

(s − smax)
T

−1∑
(s − smax)

)
(8)

Here, smax and s are n-dimensional vectors, where s =
[s1, · · · , sn] and n is the number of stimulus features. Each
component represents a value in a specific stimulus dimension
(feature) and smax denotes the n-dimensional preferred stimulus of
the neuron. Both vectors share the same range of values. � denotes
the covariance matrix, which is symmetric and positive definite.

� =

⎛
⎜⎜⎜⎜⎝

σ11 σ12 · · · σ1k
σ21 σ22 · · · σ2k

...
...

. . .
...

σk1 σk2 · · · σkk

⎞
⎟⎟⎟⎟⎠ ,

where σij represents the covariance between the i-th and j-th
fetaure. If the different features of the stimulus are uncorrelated,
this matrix becomes a diagonal matrix.

In this study, we considered the different stimulus features to
be independent, so the off-diagonal elements σij are set to zero.
Additionally, we assumed that all diagonal elements σii had the
same value. Therefore, for two-dimensional tuning curves, we have
the following formula:

f (smax, s) = rmaxe−
1

2σ2
[
(s[0]−smax[0]]2+(s[1]−smax[1)2] , (9)

for one-dimensional PE neurons, this expression reduces to a
one-dimensional Gaussian tuning function.

To simulate selective attention, we increased the sensitivity of
neurons to the attended dimension by amplifying the difference
term of the attended feature before computing the response.
Specifically, during testing, when attention was directed to feature
1 (first dimension), the difference s[0] − smax [0] was scaled by
a factor of 1.2 prior to computing the response, while feature
2 remained unchanged. Conversely, when attention was directed
to feature 2, the term s[1] − smax [1] was scaled by 1.2. This
manipulation effectively narrowed the tuning bandwidth for the
attended dimension, simulating an increase in precision without
altering the original connectivity or learning rule.

Our study considered the sensory stimulus F with a value range
denoted by F. Specifically, focusing on the orientation feature in
selective neurons, the preferred directions F of the neurons have a
range of {0◦, 30◦, 60◦, 90◦}. Initially, our analysis focused on one-
dimensional stimuli, where the range of F was typically limited
to {0, 1, 2, 3}. To compare this model with experimental results,
these values can be mapped to real-world values, and parameters
adjusted, none affecting the model’s conclusions.

For two-dimensional stimuli, the value space for the
first-dimensional feature F1 is restricted to {0, 1}, while
the second feature F2, is limited to {2, 3}. Consequently,
there are four types of stimulus selectivity in the network,
F = {(0, 2), (0, 3), (1, 2), (1, 3)}.

4.3 PE neurons

The feedforward sensory input is denoted by S, and the
feedback from the upper level cortical regions is denoted by P.
When neither P nor S is present, we refer to this state as the baseline
state (BL). In the match phase, when P = S = s0 ∈ F, it is called
the s0-type match phase. Conversely, when P = s1 �= s2 = S ∈ F,
we refer to it as the s1 − s2 type mismatch phase.

In the prediction error circuit, top-down predictions
originating from higher cortical areas are thought to inhibit
the activity of excitatory neurons in a feature-specific manner
(Fuehrer et al., 2022). This inhibitory effect is stronger for PC
neurons whose tuning matches the predicted features. Therefore,
prediction error (PE) neurons are expected to exhibit the following
properties:

(i) Neuronal activity remains at baseline during the P-type
match phase;

(ii) The neurons with preferred stimulus smax show the
strongest activity at s0 − smax type mismatch phase and maintain
baseline or slight suppression at smax − s0 type mismatch phase;

(iii) In the s1 − s2 type mismatch phase, neuron activity is
inversely proportional to the similarity between s1 and the neuron’s
preferred stimulus and directly proportional to the similarity
between s2 and the preferred stimulus.

The activity of a prediction error (PE) neuron indirectly reflects
the similarity between predicted and preferred stimulus values,
enabling effective differentiation between stimuli and providing
valuable feedback. For example, if a PE neuron prefers the value 1, it
responds most strongly to a ‘0−1’ mismatch and maintains baseline
activity for an expected stimulus.
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4.4 Selective suppression

Given a neuron with a preferred stimulus smax and an input
stimulus s0, smax , s0 ∈ F, the similarity between s0 and the
selectivity smax of the neuron for the two-dimensional feature is
defined as follows:

RS (smax, s0) = 1 − μ

(
smax − s0

‖smax‖ + ‖s0‖
)

, (10)

where μ(s) = 1
n

∑n
i=1 |si|. And for one-dimensional feature, we

define the similarity as follows:

RS (smax, s0) = f (smax, s0)

fmax
(11)

where f (·, ·) is the tuning curve of the neuron and fmax is
its maximum.

To measure the strength of selectivity, the selectivity coefficient
of P for PC neurons is defined as:

γ (P) =

〈(〈
rE

s
〉 − r̄E)3

〉
s〈(〈

rE
s
〉 − r̄E

)2
〉3/2

s

(12)

Here, 〈·〉s denotes averaging across PC neurons with different
selectivities.

〈
rE

s
〉

represents the average steady-state firing rate
(averaged over time and population) of the PC population with the
preferred stimulus s in the presence of the only stimulus P and r̄E

is the average population response. This equation is adapted, with
slight modifications, from the method proposed by Znamenskiy
et al. (2024). The greater the difference in response to stimulus
P among PC neurons with different selectivities, the stronger the
selective suppression. A large absolute value of |γ (P)| indicates
that feature-selective suppression across PC neurons is strong. We
empirically define the threshold of significance as |γ (P)| > 0.5.
Given sufficiently clear selectivity, the greater the activity reduction
of PC neurons whose preferred stimulus is P below baseline, the
stronger the selective suppression is considered to be.

4.5 Excitatory and inhibitory pathways of
PC neurons

We aggregated all learned synaptic weights after training
to construct the weight matrix W, which is organized based
on the shared stimulus preference of each homogeneous
population using the formulation provided in Equation 3
of the Supplementary material. Initially, W included only
connections to the somatic compartments of PC neurons,
excluding dendritic components. To incorporate excitatory and
inhibitory contributions from dendrites, W was expanded by
adding 2n rows and 2n columns representing dendritic elements,
including recurrent and inhibitory weights originating from SOM
neurons. Here, n denotes the number of PC neuron subpopulations
with distinct feature preferences in the network. By computing

the inverse of W, denoted as M, we could calculate the steady-
state firing rate as: r = −M · S, where S is a vector composed
of prediction input and actual sensory input delivered to the
network (including background stimuli). From M, the first n
rows were extracted to obtain Msoma and the subsequent 2n rows
to obtain Mdend1 and Mdend2 , corresponding to the excitatory
and inhibitory pathways targeting the PC soma and dendritic
compartments, respectively.

Due to the complex interactions within the network, the sign
of Mij is not solely determined by the corresponding synaptic
weight wij. Therefore, the net excitatory and inhibitory inputs to
PC neuron soma and dendrites can be computed as follows:

pathSoma E = (
Msoma ◦ 	Msoma >0

) · S[1 : n],

pathSoma I =
∣∣Msoma ◦ 	Msoma <0

∣∣ · S[1 : n],

pathDend1 E = (
Mdend1 ◦ 	Mdend1 >0

) · S[n : 2n],

pathDend1 I =
∣∣Mdend1 ◦ 	Mdend1 <0

∣∣ · S[n : 2n],

pathDend2 E = (
Mdend2 ◦ 	Mdend2 >0

) · S[2n : 3n],

pathDend2 I =
∣∣Mdend2 ◦ 	Mdend2 <0

∣∣ · S[2n : 3n],

where ◦ denotes element-wise (Hadamard) multiplication.
	A>0 is an indicator matrix of the same size as A, with entries 1
where Aij > 0 and 0 otherwise. S[1 : n], S[n : 2n], and S[2n : 3n]
represent the corresponding partitions of the input vector.

Our analysis reveals that the balance of excitatory and
inhibitory (E/I) inputs to prediction error (PE) neurons extends

FIGURE 9

The excitatory and inhibitory balance in pathways to
stimulus-selective neurons across different compartments. The
x-axis depicts various neuron compartments, including soma and
two dendritic branches, corresponding to each type of
stimulus-selective neuron. The y-axis represents the intensity of
excitatory or inhibitory projections, with solid bars indicating
excitatory inputs and hollow bars representing inhibitory inputs. The
balance of excitatory and inhibitory pathways is critical for
maintaining the baseline activity of PE neurons, regardless of
stimulus strength. The S used in the graph is the match stimulus, i.e.,
P = S = (0, 2). The plotted values are derived using the analytically
computed weight matrix W from the Supplementary material.

Frontiers in Computational Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2025.1551555
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Huang and Li 10.3389/fncom.2025.1551555

beyond just the total input received. It also involves the specific
pathways these inputs take within the circuit (see Figure 9).
To illustrate this, we calculate the cumulative effect of all
pathways originating from specific neuron types or compartments,
terminating at either the soma or dendrites of PE neurons.
These contributions, categorized as net excitatory or inhibitory,
highlight an inherent E/I balance. This equilibrium ensures that
PE neurons can maintain baseline activity regardless of changes in
stimulus strength.

4.6 Random network model

Assuming that neurons of the same type share an equal number
of afferent connections, the directed connection probabilities
between any two neuron types can be determined based on the
synaptic type (Packer and Yuste, 2011; Fino and Yuste, 2011; Jiang
et al., 2015).

P =

⎛
⎜⎜⎜⎜⎜⎝

pEE pED pEP pES pEV

pDE pDD pDP pDS pDV

pPE pPD pPP pPS pPV

pSE pSD pSP pSS pSV

pVE pVD pVP pVS pVV

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0.8 1 0.6 0.54 0
0.1 0 0 0.55 0

0.45 0 0.5 0.6 0.5
0.35 0 0 0 0.5
0.1 0 0 0.45 0

⎞
⎟⎟⎟⎟⎟⎠ , (13)

where pXY denotes the probability of a synaptic connection
between neurons of type X and type Y . Similarly, we can define the
average total connection strength of a type of neuron that receives
a specific type of synapse:

W̄ =

⎛
⎜⎜⎜⎜⎜⎝

w̄EE w̄ED w̄EP w̄ES w̄EV

w̄DE w̄DD w̄DP w̄DS w̄DV

w̄PE w̄PD w̄PP w̄PS w̄PV

w̄SE w̄SD w̄SP w̄SS w̄SV

w̄VE w̄VD w̄VP w̄VS w̄VV

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0.42 − 1.75∗ 0.35∗ −
0.42 − − 0.35∗ −
2.5 − 0.5 0.3∗ 0.6∗

1 − − − 0.6
1 − − 0.5 −

⎞
⎟⎟⎟⎟⎟⎠ , (14)

where w̄XY represents the average input from population Y
to a unit in population X. The symbol ‘∗’ indicates that the
weight of these synapses is plastic and can adapt to optimize
network behavior, whereas ‘-’ indicates the absence of a synaptic
connection between these neuron types. Specifically, each unit
in population X receives, on average, pXY NY projections from
population Y , where NY is the number of units in population
Y . The synaptic connections are initialized based on W̄, with
winitial

ij ∈ U(0.5w̄, 1.5w̄)/Nw, where U(·, ·) represents a uniform
distribution and Nw corresponds to the number of such synapses

per postsynaptic neuron. Generally, wEP, wES, wDS, wPS, and wPV

are updated by learning rules we derived (Equations 15-17), with
learning rates ηEP = 10−4, ηES = 10−7, ηDS = 10−6, ηPS = 10−6,
and ηPV = 10−6, respectively. Here, D denotes both D1 and D2.

To demonstrate the robustness of our results and show that
they are not specific to certain connectivity matrices, we apply
perturbations to these matrices by scaling each entry with a random
variable uniformly distributed within a predefined range. This
process randomly adjusts each connection by a small fraction of its
original value.

4.7 Input

To maintain a reasonable baseline firing rate when there is no
sensory input, all neurons receive a constant background input
represented by the symbol x. In networks, different types of neurons
are assigned specific values for their external background input:
xE = 28 Hz, xP = xS = xV = 2 Hz, and xD = 0 Hz. These
input values are chosen to ensure that the baseline firing rates of
PC neurons are maintained at ρE = 1.25 Hz.

The visual and motor inputs to excitatory neurons are modeled
using bell-shaped tuning curves over the stimulus space, following
the approach of Znamenskiy et al. (2024). These inputs are
implemented as Gaussian functions with a maximum firing rate of
30 Hz and a tuning width of 0.8. Similarly, the selectivity of SOM
neurons is modeled with Gaussian functions, but with a broader
tuning width of 1, based on evidence that GABAergic neurons
are generally less selective to stimulus orientation than excitatory
neurons (Sohya et al., 2007). To validate the robustness of the
model against variations in inhibitory selectivity, we conduct a
control experiment in which the tuning width of SOM neurons is
set equal to that of pyramidal cells (i.e., σPC = σSOM = 1 ) (see
Supplementary Figure 2).

The 280 excitatory cells have preferred stimuli that are evenly
distributed across the stimulus space: 0, 1, 2, 3 in one-dimensional
situations, and (0, 2), (0, 3), (1, 2), (1, 3) in two-dimensional
situations. All simulations focus only on cases where, whenever
the prediction input P is present, it is fixed at (0, 2) in the
two-dimensional case and at 0 in the one-dimensional case. During
training, when sensory input is present, S is fixed at S = (0, 2)
(S = 0 in one-dimensional case), indicating that PC neuron activity
is trained to remain the baseline firing rate during the (0, 2)-type
match phase ( 0 -type match phase in one-dimensional case). The
absence of P and S is denoted by P = (−1,−1) and S = (−1,−1),
respectively ( P = −1 and S = −1 in one-dimensional case). All
training and testing stimuli include random normal perturbations
with a mean of 0 and a variance of σnoise = 0.35.

4.8 Plasticity

In our model, prediction error (PE) neurons arise via inhibitory
plasticity mechanisms that establish excitation-inhibition (E/I)
balance in pyramidal cells (PCs). To derive the corresponding
inhibitory plasticity rules, we employ gradient descent as a
theoretical framework aimed at minimizing the prediction error.
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Following the approach proposed by Hertäg and Sprekeler (2020),
we constrain synaptic plasticity to five inhibitory connections
in the network: wEP, wES, wDS, wPS, wPV. These include inhibitory
projections from PV and SOM interneurons onto both the somatic
and apical dendritic compartments of PCs, as well as inhibitory
connections from SOM and VIP neurons onto PV interneurons. To
ensure non-negativity of all synaptic weights during the derivation
process, we reparameterize the weights as w = s+(v), and treat v
as the optimization variable in gradient descent for minimizing the
error function.

The learning rules we derive (see Supplementary material for
derivation) are given as follows:

�vEX
ij = ηEX (

rE
i − ρi

) ∂WEX

∂vEX
ij

rX
j , X ∈ {P, S}, (15)

�vDk S
ij = ηDk S

(
λD

(
rE

i − ρi
) + (

ADk
i − ε

)) ∂WDk S

∂vDk S
ij

rS
j , k = 1, 2,

(16)

where ρi denotes the target (baseline) firing rate of PCs. In
the two-dimensional case, each PC has two dendritic branches,
and thus Equation 16 is instantiated separately for each branch.
In contrast, in the one-dimensional case, each PC neuron contains
a single dendritic branch, and therefore Equation 16 reduces to a
single instance. Additionally, ADk

i represents the activity of the k-
th dendritic compartment and ε is computed as the rectified sum
of synaptic events received by that compartment. Specifically, it is
defined as:

ADk
i = Isyn

Dk,i
+ ci, k = 1, 2

As shown in Equations 15, 16, the synapses onto both the
somatic and dendritic compartments of PCs follow an inhibitory
plasticity rule similar to that proposed by Vogels et al. (2011).
These rules adjust inhibitory synaptic weights in proportion to the
presynaptic interneuron activity and the deviation of postsynaptic
PC activity from its baseline level.

Furthermore, for the connections from SOM and VIP neurons
onto PV interneurons, we derive the following plasticity rule:

�vPY
ij = −ηPY

[NPC∑
k=1

(
rE

k − ρk
)

WEP
ki

]
∂WPY

∂vPY
ij

rY
j , Y ∈ { S, V}. (17)

This rule changes the synapses onto PV neurons in proportion
to the presynaptic interneuron activity and the average deviation
of the postsynaptic PCs from their baseline rate, following an
approximated backpropagation-of-error rule akin to that proposed
by Rumelhart et al. (1986).

All synaptic weights are updated after the network reaches
a steady-state firing rate in response to each input. The
corresponding learning rates ηEP, ηES, ηDS, ηPS are provided in the
Simulations section.
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