AUTHOR=Edwards Darren J. TITLE=Further N-Frame networking dynamics of conscious observer-self agents via a functional contextual interface: predictive coding, double-slit quantum mechanical experiment, and decision-making fallacy modeling as applied to the measurement problem in humans and AI JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1551960 DOI=10.3389/fncom.2025.1551960 ISSN=1662-5188 ABSTRACT=Artificial intelligence (AI) has made some remarkable advances in recent years, particularly within the area of large language models (LLMs) that produce human-like conversational abilities via utilizing transformer-based architecture. These advancements have sparked growing calls to develop tests not only for intelligence but also for consciousness. However, existing benchmarks assess reasoning abilities across various domains but fail to directly address consciousness. To bridge this gap, this paper introduces the functional contextual N-Frame model, a novel framework integrating predictive coding, quantum Bayesian (QBism), and evolutionary dynamics. This comprehensive model explicates how conscious observers, whether human or artificial, should update beliefs and interact within a quantum cognitive system. It provides a dynamic account of belief evolution through the interplay of internal observer states and external stimuli. By modeling decision-making fallacies such as the conjunction fallacy and conscious intent collapse experiments within this quantum probabilistic framework, the N-Frame model establishes structural and functional equivalence between cognitive processes identified within these experiments and traditional quantum mechanics (QM). It is hypothesized that consciousness serves as an active participant in wavefunction collapse (or actualization of the physical definite states we see), bridging quantum potentiality and classical outcomes via internal observer states and contextual interactions via a self-referential loop. This framework formalizes decision-making processes within a Hilbert space, mapping cognitive states to quantum operators and contextual dependencies, and demonstrates structural and functional equivalence between cognitive and quantum systems in order to address the measurement problem. Furthermore, the model extends to testable predictions about AI consciousness by specifying informational boundaries, contextual parameters, and a conscious-time dimension derived from Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT). This paper theorizes that human cognitive biases reflect adaptive, evolutionarily stable strategies that optimize predictive accuracy (i.e., evolved quantum heuristic strategies rather than errors relative to classical rationality) under uncertainty within a quantum framework, challenging the classical interpretation of irrationality. The N-Frame model offers a unified account of consciousness, decision-making, behavior, and quantum mechanics, incorporating the idea of finding truth without proof (thus overcoming Gödelian uncertainty), insights from quantum probability theory (such as the Linda cognitive bias findings), and the possibility that consciousness can cause waveform collapse (or perturbation) accounting for the measurement problem. It proposes a process for conscious time and branching worldlines to explain subjective experiences of time flow and conscious free will. These theoretical advancements provide a foundation for interdisciplinary exploration into consciousness, cognition, and quantum systems, offering a path toward developing tests for AI consciousness and addressing the limitations of classical computation in representing conscious agency.