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Introduction: Recent advances in computational neuroscience highlight the

significance of prefrontal cortical meta-control mechanisms in facilitating

flexible and adaptive human behavior. In addition, hippocampal function,

particularly mental simulation capacity, proves essential in this adaptive process.

Rooted from these neuroscientific insights, we present Meta-Dyna, a novel

neuroscience-inspired reinforcement learning architecture that demonstrates

rapid adaptation to environmental dynamics whilst managing variable goal states

and state-transition uncertainties.

Methods: This architectural framework implements prefrontal meta-control

mechanisms integrated with hippocampal replay function, which in turn

optimized task performance with limited experiences. We evaluated this

approach through comprehensive experimental simulations across three distinct

paradigms: the two-stage Markov decision task, which frequently serves in

human learning and decision-making research; stochastic GridWorldLoCA, an

established benchmark suite for model-based reinforcement learning; and a

stochastic Atari Pong variant incorporating multiple goals under uncertainty.

Results: Experimental results demonstrate Meta-Dyna’s superior performance

compared with baseline reinforcement learning algorithms across multiple

metrics: average reward, choice optimality, and a number of trials for success.

Discussions: These findings advance our understanding of computational

reinforcement learning whilst contributing to the development of brain-inspired

learning agents capable of flexible, goal-directed behavior within dynamic

environments.

KEYWORDS

prefrontal meta-control, mental simulation, model-free learning strategy, model-based

learning strategy, neuroscience of reinforcement learning, reinforcement learning

agents

1 Introduction

The integration of reinforcement learning (RL) with deep learning architectures, called

Deep RL, has accomplished unprecedented performance across numerous domains.Whilst

the majority of RL implementations have relied upon model-free (MF) principles, there

exists an expanding collection of model-based (MB) algorithms that aim to leverage

enhanced sample efficiency and adaptive capacity. However, recent benchmark analyses by
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Wan et al. (2022) challenge the assumption of MB supremacy over

MF approaches. Recent findings in decision neuroscience suggest

compelling evidence that the fundamental principle underlying

human RL resides in meta-control mechanisms—specifically,

the arbitration between MB and MF learning strategies, which

dynamically adjusts based on environmental complexity and cost-

benefit trade-offs (Kool et al., 2017; Kim et al., 2023), highlighting

its crucial role in learning efficiency (Daw and Dayan, 2014).

Neuroscientific research in RL indicates a dual-process system

consisting ofMF andMB learning strategies: MF learning facilitates

habitual behavior acquisition through reward prediction error

(RPE), whilst MB learning enables goal-directed behavior through

state prediction error (SPE), as established by Daw et al. (2005).

Although state-of-the-art RL implementations predominantly

adopt MF principles, MB approaches gain increasing attention

due to their enhanced sample efficiency and adaptive capacity.

Moreover, Dayan and Berridge (2014) demonstrated that MB

learning augments MF approaches through cognitive prediction

via environmental representation, thereby optimizing reward

maximization with respect to computational efficiency and

cognitive resource allocation (Dayan and Berridge, 2014).

However, despite scant research focus on MB approaches,

their purported advantages in sample efficiency and adaptive

capacity relative to MF implementations remain contentious (Wan

et al., 2022). This observation precipitates critiques that MB

RL does not consistently outperform MF RL, particularly in

tasks that humans successfully achieve with relative ease. When

environmental models fail to acquire complete state transition

probabilities, performance becomes sub-optimal due to prolonged

training requirements, as demonstrated by Bansal et al. (2017).

Additionally, in experimental paradigms prevalent in neuroscience

and cognitive psychology, such as the two-stage Markov decision

task (MDT), purely MB strategies exhibit partial alignment with

human behavior but fail to achieve complete correspondence, as

established by Daw et al. (2011). These findings suggest inherent

limitations in purely MB learning strategies, even within simple

task environments that humans readily master.

In effect, research indicates that the fundamental principle

underlying RL in the human brain centers on meta-control—

specifically, the arbitration between MB and MF RL strategies

(Lee et al., 2014; Daw et al., 2005; Abbott and Dayan, 2001).

Neural correlates of State Prediction Error and Reward Prediction

Error manifest in the dorsal prefrontal cortex (dlPFC) and ventral

striatum, respectively. The inferior lateral prefrontal cortex (ilPFC)

evaluates the relative reliability of competing learning strategies,

whilst the ventromedial prefrontal cortex (vmPFC) functions

as an arbitrator, implementing parallel control of MB and MF

valuations (Lee et al., 2014; Dolan and Dayan, 2013). This neural

architecture enables robust adaptation to environmental dynamics

whilst optimizing the trade-off between performance, efficiency,

and processing speed (Lee et al., 2019, 2022).

Complementary to meta-control mechanisms, mental

simulation processes play a pivotal role in facilitating rapid and

adaptive behavior during MB learning. Mental simulation

constitutes a core mechanism through which the brain

evaluates potential actions using internal environmental

representations (Tolman, 1948; Daw et al., 2005). This cognitive

capacity manifests even in rodent behavior, enabling novel

route discovery and flexible planning under changing goal

conditions (Dickinson, 1985; Tolman, 1948). Whilst step-wise

mental simulation incurs substantial computational demands,

it provides efficient adaptation to environmental dynamics

through comprehensive state-space evaluation for optimal policy

execution (Daw and Dayan, 2014).

The functional relationship between mental simulation

and hippocampal replay elucidates neural mechanisms for

managing these computational complexity. Hippocampal

replay serves multiple functions: (i) facilitating sequential

activation of hippocampal cells during rest periods (Karlsson and

Frank, 2009), (ii) encoding topological structures of novel

environments (Wu and Foster, 2014), and (iii) enabling

goal-directed path simulation (Pfeiffer and Foster, 2013).

These processes operate synergistically within the successor

representation (SR) framework.

The SR framework extends predictive abilities through

replay mechanisms, facilitating offline training via simulated

experiences (Russek et al., 2017; Momennejad et al., 2017).

This integration enables rapid action evaluation whilst

maintaining behavioral flexibility through offline learning

processes (Sutton, 1990; Mattar and Daw, 2018). Past research

demonstrates that replay transcends mere experiential

recapitulation, enabling novel trajectory construction (Gupta

et al., 2010). Moreover, human studies indicate that replay

events manifest abstract structural knowledge of acquired

tasks (Liu et al., 2019). Notably, replay disruption impairs

learning in contexts requiring history-dependent inference

(Jadhav et al., 2012).

Based upon these neuroscientific insights, we present

Meta-Dyna, RL architecture. Extending the Dyna-Q framework

(Sutton and Barto, 2018), Meta-Dyna implements prefrontal

meta-control mechanisms, providing an algorithmic model

of arbitration between MF and MB learning strategies (Lee

et al., 2014). We in addition enhance the MB component

through integration of deep learning-based environmental

modeling, enabling replay capacity via roll-out methodology.

This architecture synthesizes meta-control mechanisms with

mental simulation capabilities, thereby aiming to enhance

RL agents’ performance, environmental adaptation, and

behavioral flexibility.

2 Preliminaries

2.1 Mental simulation and Dyna

architecture

RL constitutes a framework where an agent acquires optimal

action selection through environmental interaction to maximize

future rewards. The environment, which is modeled as a Markov

Decision Process (MDP), comprises a tuple < S,A,R,T, γ , S’ >.

This tuple includes a set of states S, actions A, rewards R,

state-action-state transition probability T, discount factor γ and

transitions to the next states S’. Within an MDP, the probability

of transition to the subsequent state relies solely upon the
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current state and action, irrespective of antecedent history (by

Markov property). The agent endeavors to ascertain a policy

π that stipulates actions for each state to maximize cumulative

rewards.

Dyna-Q (Sutton, 1990), which amalgamates direct experiential

learning with simulated experience planning, employs a planning

component that enables the agent to augment its knowledge via

a learnt environmental model rather than exclusively through

actual experiences. The Dyna-Q planning process involves

training an environmental model that predicts subsequent

states and rewards, based on current states and actions. These

simulated data facilitate Q-learning implementation, expediting

optimal policy convergence. The acceleration of convergence

correlates positively with increased planning steps, thus

demonstrating the efficacy of incorporating simulation-based

planning mechanisms into RL (Sutton, 1990; Sutton and Barto,

2018).

The brain exhibits analogous mechanisms to Dyna, utilizing

both direct experience and simulated trajectories in choice

evaluation (Momennejad et al., 2017). Through this simulation

capacity, humans and animals successfully identify and circumvent

suboptimal outcome pathways (Allen et al., 2020; Miller et al.,

2017).

In this sense, mental simulation in the brain can be

computationally implemented through various approaches,

including the Dyna model architecture. Sutton (1990) introduced

Dyna as an integrated architecture for learning, planning, and

reacting, which simulates experience offline to update predictions.

This approach mirrors how the brain might use mental simulation

and replay to enhance learning. Nonetheless, whilst Dyna reflects

how the brain improves learning via replay, recent studies have

revealed its limitations, including decreased learning efficiency in

real-world environments (Barkley and Fridovich-Keil, 2024). To

that end, researchers have developed several improvements. These

include data-driven inventory management using Dyna-Q (Qu

et al., 2025) and out-of-distribution (OOD) data filtering, which

enhances model reliability (Li et al., 2024). These optimisation

efforts have expanded into various fields, such as industrial

automation (Dong et al., 2020; Liu and Wang, 2021; Budiyanto

and Matsunaga, 2023; Samaylal, 2024) and energy management

(Saeed et al., 2024; Ghode and Digalwar, 2024; Liu et al., 2024,

2025).

The relationship between mental simulation and Dyna

manifests particularly within the successor representation (SR)

framework. The SR, which accommodates various hybrid

implementations, includes “SR-Dyna” that employs either

simulation or replay for offline SR updating (Russek et al., 2017;

Momennejad et al., 2017). This offline updating process within

Dyna mirrors the brain’s adoption of hippocampal replay for

goal-directed path simulation and construction.

A fundamental characteristic that bridges mental simulation

and Dyna lies in their offline planning functionality. The brain’s

utilization of mental simulation during rest periods for enhanced

learning and decision-making parallels Dyna’s deployment of

simulated experience for offline value estimation updates. This

correspondence suggests that Dyna captures essential aspects

of the brain’s flexible planning implementation through mental

simulation (Mattar and Daw, 2018).

2.2 Dyna architecture and prefrontal
meta-control in the human brain

Nevertheless, a fundamental question persists with regards

to the harmonization of the dual systems within Dyna—namely,

MB and MF components—toward bringing about optimal policy.

Recent advances in decision neuroscience, which illuminate the

arbitration control mechanisms that govern multiple learning

strategies, inspire us. These advances proffer a resolution to this

conundrum. These mechanisms, which specifically contain MB

and MF RL paradigms, demonstrate remarkable efficacy in strategy

reconciliation (Lee et al., 2014; Daw et al., 2005; Abbott and Dayan,

2001).

The arbitration control mechanism proves integral to decision-

making optimisation, particularly in contexts where the relative

appropriateness of MB vs. MF strategies exhibits variability. Lee

et al. (2014), which presents neural evidence for an arbitration

mechanism, demonstrates that the degree of control exerted by

these dual strategies depends upon their respective prediction error

(PE) reliability.

The Reward Prediction Error (RPE), which serves to

compute the reliability of the MF strategy (RelMF), is

calculated through Temporal Difference error (TD-Error).

The mathematical formulation for this error is expressed as

RPE = rt + γQMF(s
′, a′; θMF) − QMF(s, a; θMF). Conversely, the

State Prediction Error (SPE), which determines the reliability of the

MB strategy (RelMB), is formulated as SPE = 1 − T(s, a, s′), where

T denotes the state-action-state transition probabilities defined in

Equation 1.

T(s, a, s′) =

{

Ps + γ (1− Ps) if Ps == Ps′

Ps × (1− γ ) otherwise.
(1)

The probability of MB control (PMB) is derived from RelMB and

RelMF , which are computed through Bayesian and non-Bayesian

approaches, respectively (Li et al., 2011; Le Pelley, 2004; Sutton,

1992; Krugel et al., 2009; Pearce and Hall, 1980). The pseudo-level

formulations are presented in Equation 2.

RelMF = Pearce Hall(RPE|PE),

RelMB = Bayesian(SPE|PE).
(2)

For the MB reliability (RelMB), the Dirichlet distribution

parameters—mean E(Diri) and variance V(Diri)—are employed,

where the subscript i indicates three distinct State Prediction Error

(SPE) categories: negative, positive, and zero prediction errors.

These categorical boundaries are established through a tolerance

threshold ω, such that PE < ω constitutes negative error, PE > ω

represents positive error, and values within this interval denote zero

error.

The probability of utilizing MB learning strategies (PMB) is

determined via the arbitration mechanism, which adopts reliability

(Equation 3).

α =
Aα

(1+exp(Bα∗RelMF))
,

β =
Aβ

(1+exp(Bβ∗RelMB)
,

PMB = PMB + α ∗ (1− PMB)− β ∗ PMB.

(3)
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Through this computational framework, MB and MF

values facilitate meta-control implementation. Finally they are

concurrently applied in action selection through the weighting

factor PMB.

The theoretical framework described above exhibits strong

correspondence with the neural substrates that underlie these

computational processes. The bilateral inferior lateral prefrontal

cortex regions, which encode MB and MF signal reliability,

function in concert with the anterior cingulate cortex, which

integrates reliability differentials to mediate arbitration (Lee et al.,

2014). This reliability-driven arbitration mechanism determines

strategic dominance, thereby facilitating dynamic environmental

adaptation. Furthermore, the arbitration process receives support

from additional neural structures: the ventral and dorsal striatum,

which encode Reward Prediction Error (RPE), and the temporo-

parietal cortex, which encodes State Prediction Error (SPE).

This neurobiological evidence substantiates that the

fundamental question regarding dual-process amalgamation

can be resolved, which has precipitated the development of

neuroscience-inspired algorithmic frameworks that extend beyond

the classical Dyna architecture.

3 Meta-Dyna: a neuroscience-inspired
RL architecture

Within the context of recent RL, we propose Meta-Dyna,

which constitutes a neuroscience-inspired algorithmic framework

that extends the foundational Dyna-Q architecture (Figure 1).

This novel approach implements dual learning processes –

MB planning and MF Q-learning—whilst incorporating an

arbitration mechanism for implementing the prefrontal meta-

control. Moreover, owing to the inherent properties of the

Dyna architecture, it facilitates mental simulation through the

MB learning system. The framework, which embodies current

neuroscientific understanding of cognitive processes, demonstrates

how the brain synthesizes diverse learning strategies through

mental simulation and experiential replay.

3.1 Overview

As described, Dyna-Q integrates Q-learning with planning

mechanisms, which update Q-values through MB processes. The

architecture employs planning through an environmental model

that agents acquire via direct experiential interaction. Meta-Dyna,

which extends this foundational architecture, implements dual

Q-value systems: MB planning (QMB) and MF Q-learning (QMF).

Meta-Dyna distributes received state information to both real

and model experience buffers. During the QMF update process,

the world model incorporates training using a superset, which

comprises both simulated and real experiences. The trained model

subsequently generates simulated experiences through a recursive

process. These experiences facilitate mental simulation, which

ultimately updates QMB.

The prefrontal meta-control arbitrator computes the MB

probability (PMB) using reliability, which derive from Prediction

Errors of each learning system. This meta-control component

computes an integrated Q-value through weighted summation:

PMB for QMB and 1 − PMB for QMF (Figure 1A). The complete

processes are detailed in Algorithm 1.

3.2 Dual Q-value system for MB and MF

Meta-Dyna incorporates a dual Q-value system that

implements MB and MF learning strategies. The Meta-Dyna

architecture comprises one main inference network and three

component networks: two Q-networks for MB and MF learning

strategies, and a world model for simulating environmental

dynamics (Figure 1A).

The main inference network combines outputs from the

component networks, which guide decision-making processes. This

main network operates under the governance of the prefrontal

meta-control framework. The two Q-networks independently learn

distinct behavioral patterns: habitual behaviors (MF) and goal-

directed behaviors (MB). The MF Q-network learns habitual

behaviors through reward signals from real experience, which

utilizes standard Q-learning methods. Meanwhile, the MB Q-

network learns from the world model to perform goal-directed

planning. The world model learns to predict the environment’s

structure, which includes future states and rewards, thereby

enabling the generation of simulated data for planning.

Through the separation of Q-values into MF (QMF) and MB

(QMB) components,Meta-Dyna enables independent acquisition of

habitual and goal-directed strategies. This architectural distinction

implements a framework, which enables the agent to adaptively

favor between MB and MF strategies based on their respective

reliability, particularly in response to environmental dynamics

(Figure 1B).

We note that two distinct implementations of Meta-Dyna

were presented: a tabular version and a neural network (NN)

variant. This architectural flexibility derives from the framework’s

generalisable principles, which enable deployment across diverse

environmental contexts. We here employ MDN-RNN as the

NN variant, specifically for its ability to handle uncertainty and

model probabilistic environmental dynamics, aligning with Meta-

Dyna’s goal of generalization (Ha and Schmidhuber, 2018). MDN-

RNN combines Mixture Density Networks with recurrent neural

networks, enabling it to output probability distributions rather than

deterministic predictions. This approach is particularly valuable in

environments that are stochastic in nature, as it allows the model to

capture inherent randomness and discrete random events.

As demonstrated in Ha and Schmidhuber (2018), using MDN-

RNN helps prevent the agent from exploiting imperfections in

the world model by introducing controlled uncertainty through

temperature parameters. This makes it more difficult for agents

to find adversarial policies that might work in the model but

fail in actual environments. In addition, due to its generative

model characteristics, it serves as an excellent candidate for mental

simulation, which can foresee future states through the roll-out

functionality. It showed how their world model (using MDN-

RNN) can generate hypothetical scenarios and environments

that the agent can interact with. They specifically created

virtual environments generated by the MDN-RNN where agents
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FIGURE 1

Meta-Dyna overview. (A) Schematic architecture of Meta-Dyna. (B) An illustration of prefrontal meta-control, which arbitrates between MB and MF

learning strategies. (C) A schematic representation of the world model that enables mental simulation. (D) A demonstration of the roll-out process,

which implements mental simulation for given state-action pairs.

could train entirely inside these simulated environments before

transferring policies to actual environments. The concept of using

the model to “foresee future states” through roll-outs is central

to their approach, as they demonstrate in both the CarRacing

and VizDoom experiments where the agent learns policies by

simulating potential futures within the generated environment. The

complete architectural framework is presented in Figure 1A.

3.3 Prefrontal meta-control in Meta-Dyna

3.3.1 Prediction errors and reliability
A key ingredient of prefrontal meta-control lies in the

computation of reliability for both MB and MF strategies, which

derive from their respective Prediction Errors: SPE and RPE.

As previously established, RPE was computed as the temporal

difference (TD) error of the QMF network, aligned with its

canonical formulation (Lee et al., 2014). The computation of SPE,

however, exhibited distinct methodologies contingent upon the

state space characteristics—discrete or continuous.

In discrete state spaces, SPE computation employed the same

computational model for learning state transition probabilities as

that established in Lee et al. (2014). Within continuous state spaces,

which was known to be intractable for traditional state transition

probability methods, we implemented the Mixture Density

Network-Recurrent Neural Network (MDN-RNN). We adopted

its Gaussian Mixture Model (GMM) outputs as components for

computing the SPE. The GMM generated multiple Gaussian

distributions, which were characterized by parameters µk and σk,

representing the distribution of potential subsequent states.

The standard deviation σk quantifies the predictive uncertainty

of subsequent states. An increased magnitude of σk indicates

elevated uncertainty, which indicates diminished predictive

accuracy. For continuous state spaces, we formulate SPE using the

distributional parameters µk and σk as follows:

SPE =
µ

σ
, where µ, σ fromGMM. (4)

These Prediction Errors facilitated the computation of

reliability measures for MB and MF strategies. The arbitration

mechanism utilizes these reliability values, which modulate the

strategic balance dynamically, in accordance with the prefrontal

meta-control framework.

3.3.2 Meta-control leading to decision making
As described, Meta-Dyna enables independent acquisition

of Q-values through MB and MF Q-networks. This separation

facilitates distinct learning trajectories, which characterize
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habitual and goal-directed behaviors within each Q-network.

The integration of MB and MF Q-networks proceeds through

a weighted mechanism, which derives from their computed

reliability indices.

The reliability determines the probability (PMB) of selecting

the MB Q-network. The Q-values from QMB and QMF are

integrated through weighted summation, which employs PMB

and (1 − PMB) as their respective coefficients. In the tabular

implementation, this integration process comprises multiplicative

operations between the Q-table values of MB and MF Q-networks

with their corresponding probabilities, PMB and (1 − PMB), to

update the main Q-table for inference:

Q(s, a) = PMB × QMB(s, a)+ (1− PMB)× QMF(s, a). (5)

In the neural network implementation, this integration process

applies to the Q-network parameters. The main network, which

incorporates the integrated Q-values, guides action selection

through an ǫ-greedy policy.

Through dynamic modulation of MB and MF Q-network

integration based on their respective reliability, Meta-Dyna

implements adaptive behavior in response to environmental

dynamics, which harnesses the complementary strengths of both

Q-networks.

3.4 Mental simulation in Meta-Dyna

3.4.1 World model learning environmental
dynamics

The world model which learns environmental structure

employs a Mixture Density Network-Recurrent Neural Network

(MDN-RNN) architecture for sequential modeling (Ha and

Schmidhuber, 2018). The MDN-RNN architecture learns

sequential state-action pairs, which predict probability

distributions of subsequent states and rewards. The integrated

approach captures temporal dependencies through recurrent

neural networks, which represent future states through

probabilistic distributions via mixture density networks.

Specifically, the MDN-RNN generates distributions of potential

subsequent states, which are characterized by distributional

parameters—means (µ) and standard deviations (σ )—that

quantify expected outcomes and their associated uncertainties.

In RL, the world model serves as a simulation framework,

which enables agents to evaluate hypothetical scenarios without

direct environmental interaction. This methodology demonstrates

particular efficacy in dynamic environments, where theMDN-RNN

architecture captures latent uncertainties within the environmental

dynamics. The model’s predictive capabilities enhance planning

processes, which facilitate efficient policy optimisation through

simulated state transitions.

The world model’s predictive capacity, which are integrated

within the Meta-Dyna arbitration framework, use MDN-RNN

outputs for SPE computation. The SPE, which quantifies predictive

uncertainty, is mathematically defined as

SPE =
µ

σ
, (6)

where µ and σ derive from the Gaussian distributions that

characterize subsequent states.

3.4.2 Architecture
In short, the MDN-RNN learns sequences of state-action

pairs and predicts the probability distribution of the next state

and reward. This world model, which incorporates dynamic

uncertainties into decision-making processes, enhances the agent’s

reasoning capacity. The architecture comprises (i) recurrent

neural network layers that process input sequences to capture

temporal dependencies and (ii) mixture density network layers

that predict distributional parameters (µ and σ ) for subsequent

states and rewards. The model receives PEs as inputs, which

implements an error-based learning mechanism that emulates

neural computation. These errors, which Meta-Dyna computes

during the learning process, emerge naturally without external

augmentation.

3.4.3 Training
The training protocol involves minimizing the PEs between

predicted distributions and observed subsequent states and

rewards. The training data comprise state-action sequences

that derive from environmental interactions. An experience

replay buffer stores model-generated experiences, which enhances

learning efficiency and stability.

Once trained, the world model generates simulated scenarios

for training the MB policy (QMB), which is analogous to Q-

learning with simulated experiences. This process enables policy-

model interaction through simulated state-action pair outcomes,

thus facilitating efficient strategy implementation (Figures 1C, D).

3.5 Algorithm

The implementation ofMeta-Dyna is contingent upon the task

complexity of the environment. For tasks with manageable state-

action spaces, a tabular implementation is sufficient, where QMB

andQMF are represented as tables that contain values for all possible

state-action pairs. The world model maintains SPE and RPE for

each state-action pair.

High-dimensional tasks, which include image-based scenarios,

necessitate a neural network implementation on the other hand.

In this context, QMB and QMF are implemented as feed-forward

networks. In high-dimensional environments such as Atari Pong,

a convolutional neural network (CNN) is used as an encoder,

specifically to extract spatiotemporal features from raw pixel inputs,

enabling efficient mental simulation and policy adaptation under

uncertainty. These extracted features serve as input for both the

MB andMF components, enhancing learning efficiency in complex

visual environments. The processing of high-dimensional inputs

employs convolutional neural networks (CNNs) for preprocessing,

which subsequently interface with feed-forward networks for Q-

value representation. The world model in the neural network

variant used the MDN-RNN architecture, which processes state,

action, SPE, and RPE inputs to generate subsequent states and

rewards.
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1: Initialize QMF, QMB, World Model M, and replay

buffer RBMF, RBMB

2: for each episode do

3: for each time step do

4: Select action at based on integrated Q values

5: Execute at and observe st+1 and rt+1

6: Store (st,at,rt+1,st+1) in RBMF

7: end for

8: Train QMF using experiences from RBMF

9: Train M using experiences from RBMB

10: Compute RPE and SPE

11: for i = 1 to n do

12: Generate simulated experience using M

13: Train QMB using simulated experience

14: end for

15: Update reliability and calculate PMB

16: Integrate QMF and QMB using PMB

17: end for

Algorithm 1. Meta-Dyna learning process.

The learning protocol included several stages shown

in Algorithm 1. Initially, all components—QMB, QMF ,

and the world model—were initialized (line 1). At each

timestep, the agent acquired sequences through actions

derived from integrated Q-values (lines 4–7). These

Markov Decision Process sequences facilitated QMF and

environmental model training, whilst computing Prediction

Errors (lines 8–10).

The training of QMB used simulated experiences

generated by the environmental model. Planning proceeds

for n predefined steps, where the model generated state-

action pair sequences (lines 11–14). This parameter n

balanced planning depth with model accuracy. Empirical

testing established n = 10 as optimal, given that

larger values result in diminishing returns when model

accuracy converges.

The computed PEs update reliability, which

subsequently modulates the integration of MB and

MF learning strategies (lines 15–16). This iterative

process enables Meta-Dyna’s adaptive learning within

dynamic environments.

4 Experiments

To evaluate the behavioral flexibility and adaptation capacity

of Meta-Dyna, we conducted experimental evaluations across

three distinct paradigms. The first assessment employed

the Two-Stage Markov Decision Task (MDT), which is

widely used in human decision-making research, specifically

for choice behavior that is governed by MF and MB

learning strategies. We subsequently developed a variant

of the GridWorldLoCA environment to examine the rapid

adaptation capacity inherent in MB strategies. Finally, to

assess mental simulation coupled with prefrontal meta-

control, we designed a stochastic Atari-Pong variant that

incorporates decision-making parameters from the Two-Stage

MDT (Figure 2).

4.1 Challenges: environmental uncertainty
and goal condition dynamics

Our research addresses two fundamental challenges in

decision-making processes that arise from recent neuroscience

tasks: environmental uncertainty and goal-state dynamics.

Within a MDP framework, environmental changes manifest

through continuous modifications in reward conditions

R(s, a). This formulation establishes that the agent’s learning

objective consists of achieving specific state conditions,

which remains fundamental to strategy acquisition and

behavioral adaptation (Lee et al., 2014, 2019; Kim et al.,

2019).

Goal conditions serve as critical metrics for assessing

RL agents’ flexibility within dynamic environments. These

conditions manifest in two forms: specific criteria that require

precise reward thresholds, and flexible criteria that accommodate

varied outcomes normalized to values 0, 1
4 ,

1
2 , 1, which are

contingent upon received rewards (Lee et al., 2014; Kim et al.,

2019, 2021). This framework necessitates continuous policy re-

evaluation and adaptive response refinement through iterative

learning mechanisms.

An alternative representation of environmental dynamics

involves modifying state transition probabilities P(s′ | s, a)

within the MDP across specified ranges at predetermined

intervals. This approach provides quantitative modeling of

environmental dynamics, where state-transition probability

serves as a crucial metric for uncertainty representation.

The framework encompasses varying uncertainty levels:

from near-deterministic outcomes with 90% probability

(low uncertainty) to equiprobable outcomes of 50% (high

uncertainty). These probabilistic structures reflect diverse

environmental scenarios, which prove essential for addressing

unpredictable changes.

This stochastic framework enables optimal action selection

under dynamic conditions whilst facilitating predictive planning

of future scenarios. Thus, state transition probabilities

constitute fundamental factors in determining an agent’s

adaptive capacity within changing environments. Human

decision-making demonstrates robust adaptation to varying

goal conditions and state transition probabilities through

prefrontal meta-control. To evaluate RL agents’ adaptability,

we employ MDP tasks that embody these environmental

dynamics, particularly the Two-Stage MDT (Figure 2A),

which incorporates both goal condition and state-transition

probability variations.

These experimental paradigms comprise alternating phases

of varying goal criteria and uncertainty levels, which challenge

adaptive capabilities across environmental shifts. To extend these

stochastic frameworks into general domains, we integrated these

challenges into two distinct environments: GridWorldLoca, a
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benchmark suite for MB RL agents (Figure 2B), and a modified

Atari Pong environment (Figure 2D). These implementations

instantiate environmental uncertainty and goal-state dynamics

within standardized testing paradigms.

4.2 Two-stage Markov decision task

4.2.1 Overview
The Two-Stage MDT (Lee et al., 2014) represents a widely

accepted paradigm in human decision-making research, where

participants execute sequential actions to obtain color-coded

tokens that correspond to specific rewards. This experimental

environment consists of two distinct conditions: Specific– and

Flexible Goal conditions. The former necessitates MB strategies

for reward maximization, whilst the latter facilitates MF strategy

utilization. We adopted this paradigm for computational

evaluation of agent adaptability. Our implementation maintains

fidelity with the original experimental design, incorporating both

Goal Conditions and State-Transition Uncertainty parameters.

As illustrated in Figure 2A, the Goal Condition bifurcates into

Specific Goal and Flexible Goal variants. Under the Specific Goal

condition, the agent receives a binary reward (1.0 for required

token acquisition, 0.0 otherwise). Conversely, the Flexible Goal

condition implements a normalized reward spectrum 0, 1
4 ,

1
2 , 1

based on token acquisition, without specific token requirements.

State-Transition Uncertainty emerges in two forms: Low and

High. Low uncertainty conditions encompass deterministic action

execution with 0.9 probability, whilst High Uncertainty conditions

exhibit equiprobable action outcomes (0.5 probability for intended

and opposite actions).

4.2.2 Experimental setting
The Two-Stage MDT structure, as presented in Figure 2A,

comprises sequential binary actions (left/right), where the initial

action results in a state representation without reward, whilst

the subsequent action generates stochastic rewards based on

environmental parameters before episode termination.

The simulation protocol proceeds as follows (Figure 3A).

During the initial 500 episodes, the Goal Condition exhibits

pseudo-random alterations (uniformly distributed) at fixed 125-

episode intervals, maintaining Low State-Transition Uncertainty.

This configuration facilitates situations requiring rapid adaptation.

The subsequent 500 episodes exhibit high state-transition

uncertainty, where goal conditions become less salient, compelling

the agent to develop reward-maximizing policies focusing on

high-value tokens. This 1,000-episode sequence repeats five times,

resulting in 5,000 total episodes, thus enabling comprehensive

evaluation of adaptive capabilities across diverse environmental

conditions.

4.2.3 Evaluation metrics
The assessment of Meta-Dyna’s performance adopted

comparative analysis against baseline algorithms: Dyna-Q,

Q-learning, and FORWARD. The reward structure covers a

normalized range [0.0, 1.0]. The evaluation metrics includes:

(i) mean reward and (ii) choice optimality that quantifies the

proportion of episodes where the agent achieves maximum

possible reward under specific Goal Conditions (Kim et al., 2019).

The choice optimality is formally defined as:

Choice Optimality =
Number of episodes with maximum reward

Total number of episodes
.

(7)

4.2.4 Result
Figure 3 presents the result of the experiment. Figure 3B

demonstrates that Meta-Dyna achieved superior mean rewards

to that of baseline algorithms (Meta-Dyna: 0.61, Dyna-Q: 0.55,

Q-learning: 0.52, FORWARD: 0.54; p < 0.0001, independent

t-test). The clustered distribution of data points suggests Meta-

Dyna’s robust reward acquisition across environmental variations.

The optimality analysis (Figure 3C) showsMeta-Dyna’s statistically

significant performance on optimal decision over baseline models.

This indicates enhanced decision-making capacity under changes

in Goal Conditions and State-Transition Uncertainties. These

results establish Meta-Dyna’s superior performance across all

metrics thereby validating the efficacy of meta-control integration

within the Dyna-Q framework.

We note that the results presented in Figure 3 derive from

the tabular implementation of Meta-Dyna. Subsequent evaluation

using the neural network variant exhibits comparable superiority,

with Meta-Dyna demonstrating significantly higher mean rewards

(Meta-Dyna: 0.71, DQN: 0.61, Dyna-Q: 0.66; p < 0.0001,

independent sample t-test).

4.3 A stochastic GridWorldLoCA

4.3.1 Overview
The stochastic GridWorldLoCA environment, which originally

evaluates MB agents’ sample efficiency and adaptive capacity (Wan

et al., 2022), exhibits dynamic environmental conditions. This

framework comprises distinct phases that are characterized by

variations in both initial state distribution (presented as the green

region) and reward configurations (presented as black vertical bars

at both edges in Figure 2B).

We parameterised the GridWorldLoCA environment’s

complexity through modification of state-transition probabilities,

deriving from the Two-Stage MDT. The framework exhibits

binary probability distributions—(0.9, 0.1) for the deterministic-

and (0.5, 0.5) for the uncertain configuration—which introduce

stochastic elements to agent locomotion (Figure 2B). When an

agent attempts to move toward a target state, the deterministic

configuration assigns 0.9 probability to the intended direction and

0.1 probability distributed across remaining directions. Similarly,

in the uncertain configuration, both the intended direction and

remaining directions receive equal probabilities of 0.5.

4.3.2 Experimental settings
The experimental procedure consists of two blocks each of

which has three sequential phases. One block repeats twice
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FIGURE 2

Meta-Dyna tasks for experiments. (A) Two-stage Markov decision task. (B) A variant of GridWorldLoca. (C) A dimension of Atari Pong variant

(© copyright, Keramati et al., 2018). (D) A novel Atari Pong incorporating decision uncertainty and frequent goal changes.

FIGURE 3

Simulation result. (A) Experimental setting. (B) Result on average normalized reward. (C) Results on choice optimality.

(∗ :p < 0.05,∗∗ :p < 0.01,∗∗∗ :p < 0.001,∗∗∗∗ :p < 0.0001; independent t-test).
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during training with distinct state-action-state transition

probabilities (please refer to the sequence of phases at the

bottom of Figure 4). Each phase introduces novel environmental

parameters, characterized by modifications to both the initial

state distribution (shown in green) and reward structure

(shown in black vertical bars), thus challenging the agent’s

adaptive capacities.

To rigorously assess adaptive capacity within rapidly

changing environments, we implemented a significant

reduction in episodic duration per phase—to 3% of the

baseline configuration. This constraint intensifies task

complexity whilst necessitating accelerated adaptation with

limited sampling.

Our experimental evaluation entails comparative analyses

across multiple agent architectures: pure MB and MF

implementations (FORWARD, Dyna-Q, and SARSA, respectively),

the proposed Meta-Dyna, and hybrid architectures that integrate

FORWARDwith SARSA or Q-learning. The experimental protocol

consists of dual traversals through Phases 1 to 3, with ten complete

iterations that establish statistically significant reliability (p < 0.05)

of performance metrics, including cumulative rewards and policy

adaptation speeds.

4.3.3 Result
As illustrated in Figure 4, standalone agents (MB

and MF) exhibited suboptimal performance (with the

exception of Dyna-Q), indicating insufficient adaptability

to environmental dynamics. These agents demonstrated

particular difficulty in policy adjustment relative to varying

initial states and reward structures across experimental phases.

Conversely, a family of meta-control agents exhibited rapid

adaptation whilst maintaining robust performance throughout

all phases.

Meta-Dyna demonstrated superior performance, achieving

elevated average returns and accelerated optimal policy

convergence compared to those of Dyna-Q (average

return—Meta-Dyna > Dyna-Q; p < 0.05, trial for success—

Meta-Dyna < Dyna-Q; p < 0.05, independent t-test). These

results suggest that Meta-Dyna’s meta-control mechanism

effectively modulates the integration of MB and MF

strategies, thereby facilitating enhanced adaptivity compared

to that of Dyna-Q. In addition, Meta-Dyna exhibits more

stable learning behavior (variance: 0.0191) than other

models (variance: 0.0733), which allows it to maintain

consistency across varying environmental conditions without

sacrificing adaptability.

These findings demonstrate that the application of

meta-control mechanisms to RL agents brings about

significant enhancement in adaptive capabilities compared to

standalone implementations. Through effective integration

of MB and MF strategies, Meta-Dyna achieves rapid

policy adaptation in response to environmental dynamics,

even under the limited number of training episodes. This

experimental evaluation validates Meta-Dyna’s efficacy in

enhancing sample efficiency and adaptive capabilities within

dynamic environments.

4.4 Stochastic Atari Pong: a probabilistic
extension

To evaluate rapid adaptation capacity under the challenges

defined in Section 4.1, we developed a stochastic Atari Pong

environment. This novel framework, which extends the standard

Gym, implements state-transition uncertainty and goal-condition

dynamics that derive from the Two-Stage MDT.

4.4.1 Experimental setting
Our stochastic Atari Pong implementation introduces terminal

conditions (episode completion) at single-point acquisition (score

of 1), diverging from the traditional 21-point rally structure

(Figures 2C, D left). This framework implements two fundamental

modifications: state-transition uncertainty and goal condition

dynamics.

The state-transition uncertainty manifests through dual

mechanisms: paddle locomotion and ball reflection angles.

Under deterministic conditions, these parameters maintain

high predictability, enabling probabilistic trajectory anticipation

(Figure 2D, upper right). Conversely, under stochastic conditions,

the introduction of randomness to both parameters necessitates

adaptive strategies focused on real-time ball tracking rather than

trajectory prediction (Figure 2D, bottom right).

The goal condition framework entails two distinct paradigms.

The specific goal condition necessitates ball contact within one of

four predetermined paddle segments (uniformly divided quarters

of the 20-pixel paddle length, Figure 2D), which results in

immediate terminal conditions and reward allocation (+1 for target

segment, 0 for others) upon successful execution. In contrast, the

flexible goal condition implements standard victory conditions,

where reward acquisition occurs upon opponent failure to return

the ball.

These environmental parameters are subject to systematic

modification (alternating between deterministic and stochastic

configurations) at 1,000-timestep intervals throughout the

experimental protocol, thus necessitating continuous adaptation

to dynamic conditions. This framework requires the RL agent to

exhibit rapid adjustment capacity (convergence within 100–200

timesteps) in response to both state-transition uncertainty and

goal-condition variations. The experimental evaluation entails

a comparative analysis between Meta-Dyna and two baseline

architectures: DQN and Dyna-Q.

In addition, we conducted another experiments to investigate

the impact of mental simulation on Meta-Dyna’s performance.

As described in Section 3.5, Meta-Dyna employs a default of 10

mental simulations using the world model, which was maintained

across all previous experiments. In this environment, we specifically

examined how the number of mental simulations influences

performance with respect to average reward (pertaining to the

main RL objective) and trials required for success (relating to

sample efficiency). The latter metric strongly corresponds to

sample efficiency when the RL agent receives a fixed number of

real experiences. Specifically, it measures how quickly the agent

achieves maximum rewards relative to environmental interactions.

We posit that sample efficiency increases as the required number
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FIGURE 4

Simulation result on the stochastic GridWorldLoCA.

of environmental interactions decreases for achieving maximum

reward.

To evaluate this relationship, we parameterised the number of

mental simulations and conducted four experimental conditions (n

= 10, 20, 50, 100) with a fixed number of environmental interactions

(i.e., real experiences).We then analyzed the data using theNumber

of Trials for Success (NTS) metric, defined as:

NTS =
Rmax

Nenv−interaction
, (8)

where Rmax denotes the maximum reward achieved by the RL

agent, and Nenv−interaction refers to the number of environmental

interactions (equivalent to the number of real experiences).

4.4.2 Results
As illustrated in Figure 5, DQN exhibits limited adaptive

capabilities (mean reward < 0.4 across all test conditions)

within the dynamic environment. The architecture fails to

establish policy stability under environmental perturbations (state-

transition probability shifts from 0.9 to 0.5 and goal condition

alterations), showing only gradual performance improvements

after extensive training episodes. This behavior indicates DQN’s

inherent limitations in rapid adaptation without environmental

modeling capabilities.

Both Meta-Dyna and Dyna-Q exhibit enhanced performance

(average policy convergence within 150 timesteps) through

their integrated environmental models, which facilitate efficient

learning through dynamic environment simulation. Despite similar

performance trajectories in the initial training phase (first 1,000

episodes, learning rate ≈ 0.15), Meta-Dyna achieves superior

cumulative rewards compared with both Dyna-Q and DQN

(Figure 5B). Quantitative analysis reveals the following cumulative

rewards over the entire 5,000-episode evaluation period: Original

Reward—Meta-Dyna: −0.091, Dyna-Q: −0.132, DQN: −0.782;

Exponential Reward—Meta-Dyna: 0.913, Dyna-Q: 0.876, DQN:

0.457 (p < 0.001, independent samples t-test).

Meta-Dyna exhibits superior adaptive capabilities, achieving

elevated rewards across all goal conditions. Through effective

utilization of its meta-control mechanism, it consistently

surpasses both Dyna-Q and DQN performance metrics. Despite

implementing a more parsimonious parameter structure (single-

layer neural network with 128 units compared to LSTM networks

with > 500K parameters) compared with sequence-learning

architectures such as Meta-RL (Wang et al., 2016), which employ

LSTM mechanisms, Meta-Dyna achieves comparable or superior

cumulative rewards without additional memory architectures.

These findings indicate Meta-Dyna’s robust generalization

capabilities (maintaining > 85% performance across novel

environmental configurations with < 200 timesteps adaptation

period).

With regards to the impact of mental simulation, Figure 5D

illustrates that larger numbers of mental simulations contribute to

higher performance given fixed real experiences. This results in

two principal conclusions: increasing mental simulations correlates

with enhanced performance, and higher numbers of mental

simulations improve sample efficiency.

Figure 5E demonstrates Meta-Dyna’s superiority in this

domain. Whilst baseline models (DQN and Dyna) converge

to sub-optimal points, all variants of Meta-Dyna achieve

optimal convergence more rapidly. Moreover, increased mental

simulations correlate with faster convergence times and higher

reward acquisition. These results indicate that Meta-Dyna’s

mental simulation mechanism shows promise for improving both

environmental adaptivity and sample efficiency.

Figure 5F emphasizes the superiority of Meta-Dyna, which

implements prefrontal meta-control incorporating mental

simulation, compared with the vanilla Dyna architecture. As

described in Section 2, models of Dyna (e.g., Dyna-Q) are also

equipped with mental simulation capacity. Thus, one might

expect performance benefits from increasing Dyna-Q’s mental

simulations. However, the results reveal a different outcome:

even 100 mental simulations of Dyna-Q fail to converge toward

the optimal point, which Meta-Dyna achieves with merely 20
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FIGURE 5

Simulation result on the stochastic Atari Pong. (A) Two goal conditions coupled with environmental uncertainty. (B) Result on three types of RL

agents. The X-axis refers to the reward, and the Y-axis refers to the episode. (C) The internal representation of the world model. (D) Result on the

mental simulation. The X-axis refers to the number of mental simulation, and the Y-axis means the number of trials for success (NTS). (E) The NTS

plot for three types of RL agents. Here, as a baseline model, Dyna does not use the function of mental simulation i.e., n = 1. Meta-Dyna utilizes the

function of mental simulation (n = 10, 20, 50, 100). (F) The NTS plot for three types of RL agents with enabling the function of mental simulation for

both Dyna and Meta-Dyna.
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simulations. Furthermore, given equivalent numbers of mental

simulations, Meta-Dyna consistently outperforms Dyna-Q. This

discrepancy in performance suggests that prefrontal meta-control

contributes significantly to the efficiency differential, despite

identical mental simulation functionality. These findings highlight

Meta-Dyna’s superior sample efficiency and adaptivity through its

brain-inspired computational approach.

Overall, the experimental results from our stochastic Atari-

Pong environment validate Meta-Dyna’s sample efficiency

as well as adaptive capacity. Through the incorporation of

state-transition uncertainty and goal-condition variability, this

framework provided rigorous evaluation of adaptive capabilities

within complex, dynamic environments. Meta-Dyna’s sustained

performance across these conditions substantiates the efficacy of

meta-control mechanisms in enhancing RL architectures.

5 Discussions and conclusion

This research presents Meta-Dyna, a novel prefrontal

meta-control framework incorporating mental simulation for

RL agents that improves adaptivity and behavioral flexibility.

Grounded in neuroscience, it emulates prefrontal cortex-mediated

arbitration control mechanisms (Lee et al., 2014) and hippocampal

functions (Stachenfeld et al., 2017). The architecture enables

both habitual and goal-directed behaviors through integrated

Q-learning and planning processes, whilst exhibiting adaptive

capacity with sample efficiency through mental simulations under

dynamic environmental changes.

The empirical investigation of Meta-Dyna entailed three

experimental paradigms: the Two-Stage MDT, Stochastic

GridWorldLoCA, and a Stochastic Atari-Pong environment. These

frameworks examined cognitive adaptability and computational

efficiency through systematic modulation of environmental

uncertainty and goal condition dynamics, which derive from

the two-stage MDT, an established human decision-making

paradigm (Daw et al., 2005; Lee et al., 2014). Within the Two-

Stage MDT, Meta-Dyna exhibited elevated performance metrics

relative to baseline architectures in reward acquisition and choice

optimisation.

The stochastic GridWorldLoCA evaluation, which examined

rapid cognitive adaptation capacity, substantiated the

computational efficacy of Meta-Dyna. Through its prefrontal

meta-control mechanisms, the architecture manifested heightened

behavioral flexibility relative to standalone implementations

(FORWARD and SARSA). Meta-Dyna surpassed Dyna-Q in

both reward maximization and policy optimisation speed, thus

establishing its elevated adaptive capacity.

However, Meta-Dyna was not always dominant in the

stochastic GridWorldLoCA. Compared to a family of Q-learning

FORWARD, Meta-Dyna demonstrated the lower performance

across all phases. In brief, we assume that this phenomenon

was caused by differences in implementation methods—direct

computation vs. approximation of state-action-state transition

probabilities (state-transition probability hereinafter), that is,

Tabular RL vs. approximate RL in a broad sense. Although the

conceptual framework between these approaches is identical, this

implementation difference brings about a discrepancy due to

the approximation error which in the end affects the results

of the average reward across the stages (for more details, see

Supplementary Section 1.1).

The stochastic Atari-Pong environment incorporated

multidimensional complexity to examine behavioral flexibility

and computational efficiency. Meta-Dyna manifested proficient

arbitration of state-transition uncertainty and variable goal

conditions, resulting in elevated performance relative to Dyna-Q

and DQN architectures. In particular, Meta-Dyna exhibited

exceptional computational efficiency in experience utilization. The

environmental model instantiated dynamic mental simulations,

engendering heightened proficiency in both reward accumulation

and trial-success speed compared with baseline architectures.

Whilst the environmental model implemented in Meta-Dyna

enables sequence modeling through MDN-RNN architecture,

rapid environmental dynamics lead to sub-optimal sequence

predictions. Performance enhancement could be achieved through

transformer integration (Vaswani et al., 2017), facilitating more

efficient and precise predictions (Radford et al., 2019; Chen et al.,

2021). Moreover, the current LSTM-based transition probability

approximation within the MDN-RNN framework may benefit

from direct probability computation approaches (Hafner et al.,

2019). Alternative architectures, such as Recurrent State Space

Models (RSSM) (Hafner et al., 2019) or Transformer State Space

Models (TSSM) (Chen et al., 2022), could produce enhanced MDP

prediction accuracy.

Regarding decision architectures, Meta-Dyna’s Q-value

foundation could be extended to incorporate recent policy-based

achievements, including Trust Region Policy Optimization

(TRPO) (Schulman et al., 2015), Proximal Policy Optimization

(PPO) (Schulman et al., 2017), and Soft Actor-Critic (SAC)

(Haarnoja et al., 2018). Integration of meta-control mechanisms

within these frameworks could facilitate rapid optimal action

selection under environmental perturbations.

AlthoughMeta-Dyna demonstrated superior efficiency metrics

relative to baseline models, its single-step environmental model

approximation resulted in sub-optimal absolute performance.

Implementation of n-step approximation, similar to Imagination-

Augmented Agents (I2A) (Racanière et al., 2017), could potentially

enhance optimality convergence.

The computational cost of mental simulation primarily

depends on the number of simulated rollouts. Our analysis

shows that increasing the number of mental simulations

enhances performance and sample efficiency (Figure 5D).

However, increasing the number of rollouts does not guarantee

a proportional performance gain relative to the additional

computational cost. Considering that the only difference between

real experience and mental simulation in our framework is the

number of rollouts, we can optimize computational efficiency by

dynamically regulating the number of simulations based on task

urgency. This adaptive approach ensures that Meta-Dyna remains

feasible even for time-critical tasks.

Another alternative under time constraint would be the use

of an asynchronous approach in which mental simulation

is performed by concurrent multiple threads. Like A3C

architecture (Mnih et al., 2016), mental simulations in MB
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RL could be carried out through the parallel execution of

hypothetical experiences concurrently, which implements a

constant time block to do the rollout. The asynchronous approach

offers significant advantages by decorrelating the data into a

more stationary process, as parallel agents experience different

states simultaneously. This allows for more stable learning while

achieving nearly linear speedups with the number of parallel

threads employed. Thus, it would be able to achieve the maximum

rewards within the time constraint by executing MF with real

experiences and MB with simulated experiences. We note that the

computational cost in the form of Floating Point Operations Per

Second (FLOPS) was not measured in this study, which we will be

able to do in the future coupled with an asynchronous approach.

In conclusion, this research presents a neuroscience-inspired

RL agent that demonstrates not only rapid environmental

adaptation through the parallel implementation of MB and

MF strategies, but also exceptional sample efficiency achieved

via mental simulation using an RNN-based world model. The

agent’s architecture, featuring a meta-control mechanism that

parallels Acceptance and Commitment Therapy (ACT)’s emphasis

on cognitive flexibility (Banerjee et al., 2021), highlights its

potential relevance to computational psychiatry and suggests that

adaptive regulation may offer valuable insights into cognitive

impairments and therapeutic applications (Mei et al., 2025). These

findings contribute to our understanding of human RL and

the development of biomimetic learning agents. Furthermore,

exploring its application in AI-driven cognitive training and

behavioral interventions, particularly in the context of digital

therapeutics, will be an important avenue for future research

(Muyesser et al., 2018; Lee et al., 2024).

Moreover, future investigations will also examine whether

Meta-Dyna’s mental simulation mechanism can be adapted to

model and potentially mitigate maladaptive mental simulation—

such as the negative rumination and rigid thought patterns

observed in depression (Heo et al., 2021; Senta et al., 2025)—

thus providing further insights into pathological cognitive rigidity.

Recent work by Heo et al. (2021) demonstrated that depression

disrupts arbitration control between MB and MF learning whilst

undermining exploitation sensitivity. Similarly, Senta et al. (2025)

identified a dual-process impairment in physiological anxiety

affecting both reinforcement learning rates and working memory

decay. These findings suggest several potential adaptations for

Meta-Dyna: incorporating variable learning rates that account for

altered prediction error processing; modeling impaired arbitration

control between simulation strategies; representing working

memory constraints; and implementing asymmetric value updating

parameters. Suchmodifications could help simulate how depressive

rumination develops when mental simulation becomes trapped in

negative feedback loops with diminished capacity to integrate new

information or shift between cognitive strategies.

Ultimately, with such computational models of human

reinforcement learning, we could provide the means for modeling

patients’ minds from a computational psychiatry perspective. Once

we succeed in this endeavor, we might be able to simulate various

treatment regimens using Meta-Dyna, which creates opportunities

to optimally generate behavioral therapy approaches for patients

with precise medication and treatment recommendations.
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