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Engineered biological neuronal
networks as basic logic operators

Joël Küchler†, Katarina Vulić†, Haotian Yao, Christian Valmaggia,
Stephan J. Ihle, Sean Weaver and János Vörös*

Laboratory of Biosensors and Bioelectronics (LBB), Institute for Biomedical Engineering, ETH Zurich,
Zurich, Switzerland

We present an in vitro neuronal network with controlled topology capable
of performing basic Boolean computations, such as NAND and OR.
Neurons cultured within polydimethylsiloxane (PDMS) microstructures on
high-density microelectrode arrays (HD-MEAs) enable precise interaction
through extracellular voltage stimulation and spiking activity recording. The
architecture of our system allows for creating non-linear functions with two
inputs and one output. Additionally, we analyze various encoding schemes,
comparing the limitations of rate coding with the potential advantages of spike-
timing-based coding strategies. This work contributes to the advancement
of hybrid intelligence and biocomputing by o�ering insights into neural
information encoding and decoding with the potential to create fully biological
computational systems.
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1 Introduction

Information processing and learning in artificial intelligence (AI) systems, while

diverse, is well-known and understood. At its core, AI learning involves training algorithms

that iteratively adjust internal parameters by minimizing the difference between predicted

and actual outputs through techniques like backpropagation and gradient descent. Among

other aspects, the learning process in AI systems typically involves the use of various

activation functions, such as sigmoid, ReLU, or softmax, which determine the output

of each neuron based on its inputs (Fahimirad and Kotamjani, 2018). These activation

functions are crucial in enabling the system to learn complex patterns and relationships

within the data (Adu et al., 2021; Yu et al., 2020; Lee and Kwon, 2010). One of the key

aspects of information processing in AI systems is the use of artificial neural networks

(ANNs), which are inspired by the structure and function of the human brain (Fahimirad

and Kotamjani, 2018).

On the contrary, the mechanisms by which the human brain encodes, processes, and

propagates information are complex and not well understood. It appears that different

regions of the brain are specialized for various functions, each exhibiting unique properties

in terms of information encoding, processing precision, and memory duration (Lavi et al.,

2021; Roy et al., 2017; Headley and Paré, 2017). Humans learn quickly and efficiently.

They are able to generalize and thus still outperform AI systems (Seo et al., 2021). To

accomplish efficient information transmission (and its storage), neurons in the brain

communicate through synapses, which transmit signals from one neuron to another.

The process involves the release of neurotransmitters, which cross the synaptic cleft and

bind to receptors on the receiving neuron. This can initiate an action potential that
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propagates along the neuron and triggers the release of

neurotransmitters at the next synapse. The biological processes

that result in the creation of an action potential (output) upon

receiving an input can be described as biological activation

functions (Hodgkin and Huxley, 1952). This chain of events allows

for the transmission of information across different parts of the

brain.

In recent years, there has been an emphasis on leveraging

biological mechanisms to improve artificial learning, mainly in

efficiency and generalizability. These include the development of

neuromorphic hardware (Mead, 1990; Indiveri et al., 2011; Chicca

et al., 2014) and the implementation of spiking neural networks

(SNNs) (Maass, 1997), which are inspired by biological neural

networks (De Venuto et al., 2024). Neuromorphic computing

replicates the structure of the human brain and may enable

highly efficient computing through parallel computation and

adaptive learning (Kim and Lee, 2019). SNNs offer an energy-

efficient alternative to traditional ANNs due to their spike-

based communication and computation mechanisms (Lee et al.,

2020; Rathi and Roy, 2023). Reservoir computing provides

another biologically-inspired approach that mimics how neural

microcircuits process temporal information, utilizing fixed random

connections within a recurrent network to reduce training

complexity while maintaining powerful computational capabilities

(Jaeger and Haas, 2004; Appeltant et al., 2011; Tanaka et al.,

2019). This paradigm can be implemented with neuromorphic

hardware (Karki et al., 2024). The main limitation of SNNs

and neuromorphic hardware is that, as mentioned before, the

biological mechanisms of learning and information processing are

not fully understood, which complicates accurate implementation

(Kwisthout and Donselaar, 2020; Burr et al., 2016). Important

questions relate to identifying the aforementioned biological

activation functions and finding proper input/output (I/O)

encoding mechanisms.

One perspective on biological behavior in terms of information

encoding, transmission, and decoding postulates that neurons

operate similarly to communication channels (Ikeda and Manton,

2009). In this view, neurons receive inputs, process information,

and then produce, to some extent, noisy outputs, effectively acting

as conduits for transmitting and transforming information within

the brain. This theory draws on the analogy to information theory,

where communication channels transmit data between a sender

and a receiver (Abramson, 1990; Hamming, 1990; Garliauskas,

2007).

Several coding theories intend to explain how neurons

represent and communicate information. Key frameworks include

rate coding and temporal coding, such as phase coding, inter-spike

interval (ISI) coding, and time-to-first spike (TTFS) coding. Rate

coding represents information by the frequency of spikes within a

specific time frame. Research suggests that the cortex mainly uses

rate coding, as it is resistant to noise due to the averaging effect

over time (London et al., 2010). This makes rate coding particularly

effective for reliable information transfer, even in highly variable

environments. Rate coding carries an implication of temporal

averaging which can work well when the stimulus is constant,

slowly varying, or does not require a fast reaction. Outside these

assumptions, it can be limiting (Gerstner et al., 2014).

Phase coding uses the timing of spikes relative to a

periodic signal, which helps capture temporal patterns in sensory

information (Kayser et al., 2009). This approach has been shown

to strengthen the stability of information carried by spatial

and temporal spike patterns, improving the accuracy of sensory

representations (Kayser et al., 2009).

Similarly, TTFS coding, which focuses only on the timing of

the first spike in response to a stimulus, is valued for its speed in

transmitting information, especially in fast sensory environments

(Guo et al., 2021). Precise spike timing in TTFS coding plays a key

role in interpreting sensory signals (Guo et al., 2021; Park et al.,

2019).

ISIs are important in neural coding, as they provide

information on the statistical properties of stimuli. Neurons

can adapt to different signal features by adjusting their firing

intervals (Lundstrom and Fairhall, 2006). ISIs can reflect

stimulus variability, highlighting the role of spike timing

patterns in sensory processing (Lundstrom and Fairhall, 2006).

Analyzing ISI variability also provides insights into neural

behavior and the characteristics of incoming input signals

(Kuebler and Thivierge, 2014). This is particularly important in

cases where changes in neural behavior need to be quantified,

such as during neuroplasticity, i.e., the learning processes

of neurons.

The encoding mechanisms and activation processes of

biological neurons must be further explored in neural systems,

particularly in the context of developing biologically inspired

AI systems.

While numerous in silico studies have explored I/O

transformations across various complexity levels of neural

systems (Zador et al., 1991; Sidiropoulou et al., 2006; Cazé et al.,

2013; Beniaguev et al., 2021; Ünal and Ba s cift ci, 2023), studying

and observing these phenomena in living biological systems

remain considerably more limited and challenging (Lampl and

Yarom, 1997; Zeng et al., 2019; Kagan et al., 2022). Since currently

the brain as a whole represents an incomprehensible complex

system, it is helpful, if not essential to break down the complexity

to understand the processes of communication and information

transmission. One way to obtain well-defined and reproducible

biological neural systems suitable for studying such phenomena

is to form engineered in vitro neuronal networks with controlled

topology and defined directionality and connectivity (Courte et al.,

2018; Forró et al., 2018; Maoz, 2021). Additionally, it is necessary

to interact with the system in order to provide controlled inputs

and to read out the corresponding outputs. One way to achieve

network directionality and feed-forward information flow is to

culture neurons inside custom-designed polydimethylsiloxane

(PDMS)microstructures and to place them on top of (high-density)

microelectrode arrays (HD-MEAs). This allows for studying I/O

transformations of simplified neural systems by allowing both

the observation of the system through the extracellular recording

and the manipulation of the system through extracellular voltage

stimulation (Bakkum et al., 2013; Shahaf and Marom, 2001; Duru

et al., 2022; Ihle et al., 2022; Kagan et al., 2022). This methodology

has recently been applied to leverage biological systems for various

forms of problem-solving (Zeng et al., 2019; Kagan et al., 2022;

Smirnova et al., 2023).
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To accomplish efficient hybrid computation, three key

components are essential: First, we need to define and understand

the basic computation in the biohybrid system, identifying the

fundamental processing units and their operational principles.

Second, we need to be able to use those basic computational

elements as building blocks to create more complex systems

with hierarchical organization. Third, precise control over how

these elements communicate is needed, specifically controlling the

number, strength, and direction of synaptic connections to ensure

predictable information flow. Recent works by Kagan et al. and

Smirnova et al., while demonstrating the computational capabilities

of biological neural systems, lack these key components of control

and understanding required for efficient hybrid computation.

In our previous work, we aimed to achieve control over the

location of synaptic connections (Mateus et al., 2022) and to

understand the information propagation depending on the size

of the transmission cable (axon bundles) (Amos et al., 2024;

Vulić et al., 2024), in this work we address the first requirement

mentioned above by characterizing the basic computational

capabilities of a simplified biological neural network. We present

a feedforward biological neural network with a two-input-

one-output topology. The topology is controlled by confining

neuronal growth within PDMS microstructures. We interact with

a network through high-density microelectrode arrays. We encode

external inputs using specific stimulation patterns and represent

output information through different encoding schemes. First,

we explore the limitations of information transmission in our

system through simple encoding schemes. We identify the optimal

encoding strategy and valorize the network’s reproducible behavior

to create non-linear biological transfer functions and perform

fundamental logic operations. Characterizing these concepts within

biological systems could provide valuable insights into the

validity and relevance of the principles currently applied in bio-

inspired computing.

2 Materials and methods

2.1 PDMS microstructures

PDMS microstructures for cell and axon guidance were

designed using CAD software (AutoCAD 2021) and fabricated

by Wunderlichips (Zurich, Switzerland). The fabrication process

is elaborated in previous publications (Mateus et al., 2022; Vulić

et al., 2024). In this study, all microstructures feature wells for

cell seeding, microchannels impermeable to soma but accessible

to neurites, and submicron tunnels designed to prevent axonal

outgrowth while allowing penetration of dendritic spines to assure

the directionality of action potential propagation. Schematics

illustrating these microstructures are presented in Figure 1. The

full thickness of the PDMS microstructure measures 75 µm,

with 2 µm high microchannels, and a submicron tunnel area

with a height of 600 nm. The microstructure was designed

to engineer feed-forward neuronal networks consisting of two

presynaptic (input) nodes connecting to the postsynaptic (output)

node. These networks will from now on be referred to as 2-

in-1-out networks. Directionality is achieved by using 250 nm-

wide PDMS tunnels (see Figure 1B iii) that restrict the input axon

from growing through, while still allowing dendritic spines from

output neurons to penetrate and form synaptic connections with

the input (for more details, see previous work Mateus et al.,

2022).

2.2 Microelectrode arrays

Microelectrode arrays (MEAs) used in the experiments are

high-density complementary metal-oxide-semiconductor (HD-

CMOS) MEAs. The small MaxOne HD-MEA chips with flat

surface topology (Maxwell Biosystems, Switzerland) consist of

26,400 electrodes distributed on a 3.85 × 2.10 mm2 surface with

an electrode pitch of 17.5 µm. It is possible to record from

1,020 electrodes simultaneously. These electrodes can be chosen

arbitrarily and are routed to the amplifiers through a switch matrix.

The data is sampled at 20 kHz. Extracellular stimulation is possible

on the same electrodes and is performed with 32 independent

stimulation buffers.

2.3 Substrate preparation

The preparation begins with the pre-cleaning of the reused

MEA, which can be omitted if the new sterile chip is used. Cleaning

involves leaving a chip in 4% Tergazyme (1304-1, Alconox)

overnight, rinsing with ultrapure water (Milli-Q,Merck-MilliPore),

and then leaving the chips for circa 30 min in 70% ethanol

solution. This is followed by three rinses with ultrapure water.

Subsequently, the MEA surface is dried as much as possible using

a nitrogen gun. Next, the chip is functionalized with Poly-D-Lysine

(PDL) (P6407, Sigma Aldrich). The solution is 0.1 mg/mL of PDL

in phosphate-buffered saline (PBS) (10010-023, ThermoFisher).

100 µL of the PDL solution is pipetted onto the chip surface,

and the chip is left for a minimum of 45 min before the chip

is rinsed three times with Milli-Q water to remove unbound

PDL polymers. The chip is then dried with a nitrogen gun.

PDMS microstructure is then placed on the chip surface with

tweezers, ensuring that it is as straight as possible and avoiding

contact of the tweezers with the chip surface. Once positioned, the

microstructure is gently pressed flat onto the chip. Subsequently,

1 mL of warm PBS is added, and the chip is desiccated for a

minimum of 5 min or until no bubbles are observed on the surface

of the microstructure.

2.4 Visualization of PDMS microstructure
with a CMOS MEA

We employ a custom Python script that generates a voltage

map showing the location of electrodes beneath the PDMS

microstructure. The example of a voltage map for this PDMS

microstructure can be seen in Supplementary Figure S1. This

enables us to locate and select the electrodes covering individual

networks within the PDMS microstructure. The method is

described in detail in our previous publication (Duru et al., 2022).
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FIGURE 1

Engineered feedforward neuronal networks on a chip. (A) Microscopy example image of a neuronal network defined by a PDMS microstructure. The
network consists of two input nodes with microchannels guiding the input axons toward the output node. (B) Top view schematic of a network
describing (i) the location of the external stimulus applied at the beginning of the first input axon channel, (ii) the putative synaptic connection
formed between the input axon and output dendrites through submicron tunnels, (iii) part of the area where output action potentials are recorded
from, and (iv) the location of the external stimulus applied at the beginning of the second input axon channel. (C) Cross-section schematic of the
same microstructure showing the microchannel and submicron tunnel heights, well opening sizes, and the total PDMS thickness.

2.5 Cell culture

The cells were cultured in NeuroBasal medium (NB) (21203-

049, ThermoFisher) (Brewer et al., 1993). Fresh NB complete

medium was prepared, consisting of a 2% solution of B-27

supplement (17504-044), a 1% solution of Penicillin-Streptomycin

(P-S) (15070-063), and a 1% solution of GlutaMAX (35050-061), all

sourced from ThermoFisher.

2.5.1 Cell dissociation
Primary hippocampal neurons were obtained from E18

embryos of pregnant Sprague-Dawley rats (EPIC, ETH Phenomics

Center) for use in the experiments. All animal procedures were

approved by the Cantonal Veterinary Office Zurich. The embryonic

neuronal tissue was dissected and stored in Hibernate E medium

(Thermo PN) on ice. Cell dissociation commenced by digesting the

tissue in a solution containing 50 mg/mL Bovine Serum Albumin

(BSA) (A7906, Sigma-Aldrich), 1.8 mg/mL D-glucose (Y0001745,

Sigma-Aldrich), and 0.5 mg/mL papain (P5306, Sigma-Aldrich)

dissolved in sterile PBS. Prior to dissociation, the solution was

warmed to 37◦C, filtered through a 0.2µmfilter, and supplemented

with 1 mg/mL DNAse (D5025, Sigma-Aldrich). The tissue was

incubated in the papain solution for 15 minutes at 37◦C, followed

by replacement with NB medium containing 10% fetal bovine

serum (10500056, ThermoFisher) to halt the digestion process.

Subsequently, two washes with NB medium were performed, with

a 5-min interval between each wash. Trituration was then carried

out, followed by cell counting using the Cell Countess system

(Invitrogen). Cells dissociated from a single pregnant rat were

considered as one biological replicate.

2.5.2 Cell seeding and maintenance
Prior to cell seeding onto the chip substrate, PBS was gradually

replaced with NB complete medium, avoiding the reformation

of air bubbles in the microchannels. Cells were seeded in

suspension with a concentration of 70,000 cells per MEA (which

corresponds to roughly 250 cells/mm2). MEA chips were then

transferred into the incubator at 37 ◦C, 90% humidity, and

5% CO2. 20–30 min upon seeding, cells were re-suspended in

the chip by pipetting up and down to increase the probability

of more cells falling into the PDMS wells. The first medium

exchange was done one day after seeding to remove the dead
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cells and cell debris and the medium was then exchanged twice

per week.

2.6 Experimental setup

The experimental setup involved stimulation and recording of

the neurons topologically constrained to form 2 input node and

1 output node networks (see Figure 1A). Each chip contained up

to 10 independent networks The experiments were performed in

the third week of culture to ensure the functional maturity of the

network (Ichikawa et al., 1993).

2.6.1 Network selection
Networks were selected based on the activity in each node.

Up to three 2-in-1-out networks were tested simultaneously due

to restrictions on the number of recording channels (approx. 280

electrodes per network, up to 1020 recording channels). Only

networks that showed activity in three nodes and the connecting

channel were used for the analysis. The stimulation electrode

location was chosen based on previous research (Duru et al., 2023)

and will be further discussed in Section 3.2.

2.6.2 Data collection
Data was collected on day in vitro (DIV) 21 or 22. The

MaxOne headstage with the chip was placed in a custom-designed

incubator at 36◦C, 90% humidity, and 5% CO2 (Duru et al.,

2024). To account for temperature increases from the recording

headstage during operation, the baseline temperature was set below

37◦C. The recording headstage temperature remained constant

throughout all experimental trials, independent of stimulation

frequency or amplitude, thereby minimizing temperature-related

variability in neural responses. Multiple recording headstages

allowed for recording from up to four MEA chips simultaneously,

meaning that on each experiment trial, up to 12 networks could be

recorded. In each experiment trial, multiple stimulation paradigms

were tested, resulting in continuous data collection over multiple

hours.

2.6.3 Stimulation and recording paradigms
Two types of experiments were performed to explore the

response of the network to external stimuli: voltage amplitude-

modulated experiments and frequency-modulated experiments.

In both setups, biphasic pulses with a duration of 400 µs were

delivered periodically to the MEA. For the amplitude-modulated

experiments, the stimulation frequency was fixed at 4 Hz, as

established previously (Ihle et al., 2022). The stimulation amplitude

ranged from 0 mV to a maximum of 800 mV (Duru et al., 2023). In

the frequency-modulated experiments, the inter-stimulus time was

altered while the pulse amplitude was kept constant at 400 mV. The

stimulation frequency ranged from 1Hz to 80 Hz. Each sequence of

same-amplitude or same-frequency stimuli will be further referred

to as a pulse set, and each full amplitude or frequency modulation

experiment will be referred to as a stimulation set. The recording

of the neuronal activity was conducted simultaneously during

stimulation. Output signals were recorded on electrodes in the

output node (see Figures 1B iv, 2A). A time window of up to 10

ms after the input stimulus was considered as the output. For a

modulation experiment, each pulse set was recorded once for a

minimum of 30 seconds. The order of pulse sets was randomized.

Further, it was ensured that the number of iterations used for the

analysis was equivalent across all parameters within each specific

experimental condition.

2.6.4 Data analysis
Data was processed using a custom-designed Python

processing pipeline. The stimulation artifact of each

recording electrode was cut out and linearly interpolated (see

Supplementary Section S3 for a detailed explanation). The signal

was then filtered using a second-order Butterworth high-pass filter

with a cutoff frequency of 200 Hz. It was further smoothed with a

2nd-order Savitzky-Golay filter (Savitzky and Golay, 1964) using

a window size of 0.25 ms to remove high-frequency fluctuations

irrelevant for spike detection. Spike times were then determined

using a smoothed nonlinear energy operator (SNEO) with lag

k = 3 (Mukhopadhyay and Ray, 1998). Peaks exceeding 20 times

the median of the absolute energy and no larger peak within 1.5 ms

were considered spikes. The parameters for spike detection were

chosen according to previous work (Maurer et al., 2024). After

spike detection, an encoding method of choice (see Section 2.7.1

and Supplementary Figure S2) which maps a spike train during the

response window to a scalar value was applied for each electrode.

The resulting values were averaged across all recording electrodes.

2.7 Information encoding

In this work, four different encoding schemes (see

Supplementary Figure S2) for spike trains of each experiment

run were evaluated and compared in terms of performance.

2.7.1 Neural Codes
Rate coding was defined as the total number of spikes within

the response window. ISI encoding was also used. There, the output

is interpreted by calculating the average distance between spikes.

ISI is not defined if there are less than two spikes detected within

the given response time window. In these cases, the ISI response

was set to the duration of the considered response time window.

Classical phase coding could not be used for the experiments of

this work because it requires an intrinsic background oscillation

of the neuronal culture as a reference (Gerstner et al., 2014). As

only a short temporal segment is checked for a response, such an

interpretation is not feasible. An inherited oscillatory behavior was

not present in the cultures. Hence, the length of one cycle of the

oscillation was defined as the time window considered. Afterward,

the average phase difference of all recorded spikes was calculated.

In the case of zero spikes, the phase was set to 2π − δ with δ

being the sampling interval. This ensures consistency with the

handling of edge cases for other temporal codes. Another encoding

type that is especially used with spiking neural networks is TTFS

(Eshraghian et al., 2023). There, the delay between the stimulation
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FIGURE 2

Overview of the experiment. (A) Voltage map showing the PDMS microstructure on a CMOS MEA. We stimulate inputs inside the axon channels and
record the response from the electrodes at the output. We color-coded each recording electrode. (Bi) First input variant: sweeping the input voltage
amplitude from 100 to 800 mV with 100 mV step size while keeping the stimulation frequency constant at 4 Hz. (Bii) Corresponding post-stimulus
raster plots. In this case, the same stimulus is simultaneously applied 110 times for each amplitude iteration through both input electrodes. The first
10 ms of the output response is plotted after each stimulus. (Ci) Second input variant: sweeping through stimulation frequency from 1 to 80 Hz while
keeping the stimulus voltage amplitude constant at 400 mV. (Cii) Corresponding post-stimulus raster plot. In this case, stimulus at the same
frequency is simultaneously applied at both input electrode 1 and input electrode 2. The output response is plotted 10 ms after each stimulus.

and the first occurring spike was measured and all remaining

activity was discarded. If no spiking occurred within a given time

window, TTFS was set to the length of the analyzed time window.

All four encoding schemes were computed for each electrode and

subsequently averaged.

2.7.2 Channel capacity estimation
To assess the performance of the different encoding schemes,

notions from information theory were used. A stimulus at time

t was modeled as a discrete random variable Xt and the neural

activity induced by the stimulus was encoded to a scalar value by

one of the introduced neural codes as the discrete random variable

Yt . The probabilistic mapping from the stimulus to Yt is called a

channel. It was postulated that a good encoding contains most of

the information of the input stimulus. The change of the entropy

H(·), a measure of uncertainty, of Xt given the response Yt was

investigated. This is known as the mutual information:

I(Xt;Yt) = H(Xt)−H(Xt|Yt) (1)

On one hand, it is beneficial to effectively use a large portion of

the input alphabet. On the other hand, a symbol of the alphabet

must be reliably transferred to the output. This optimization

problem described by themutual information has a theoretical limit

of the capacity C:

C = sup
P(Xt)

I(Xt;Yt) (2)

The capacity has the advantage over the mutual information

as it does not assume any prior on P(X) and has the power to
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discard stimuli that only result in a highly variable output. For

a discrete memoryless channel, it can be approximated with the

Blahut-Arimoto (BA) algorithm (Blahut, 1972; Arimoto, 1972).

Memory was assessed by testing whether a time series Yt|Xt=x

resulting from a pulse set is stationary with the augmented Dickey-

Fuller test. Furthermore, significant active information storage

(AIS) was evaluated with state-of-the-art estimators (Faes et al.,

2011; Wibral et al., 2014; Lizier et al., 2012; Wollstadt et al., 2018).

It was assumed that if there is no information gain of Yt using Yt−1,

there is also no information gain with Yt−i ∀ i > 1. Based on this

assumption, AIS was estimated with a lag of one by computing

I(Yt;Yt−1|Xt = x,Xt−1 = x) using the Kraskov estimator (Kraskov

et al., 2004). The P-values across all stimulus parameters for both

tests were combined using the weighted Stouffer’s Z Method. Time

series with little activity (E[Yt|Xt=x] < 0.1 with the observable

Yt|Xt=x being rate encoded) were given a weight of one while time

series with a larger average activity had a weight of ten. AIS was

non-significant (p > 0.05) and the time series were stationary (p <

0.05), supporting the conclusion that the channel can be modeled

as memoryless under the tested conditions. With this memoryless

assumption, t is left out in the subsequent part.

To have a fully discrete system, it was necessary to partition an

output observation y ∈ R into a region bi. For each experiment

run and encoding separately, the edges of n bins were placed

between the minimal and maximal value of the observed output Y .

These edges were selected such that the frequency of observations

was evenly distributed across all bins. An entry of the resulting

transition matrix T, which fully describes the discrete channel, is

defined as

Txi = P(B = bi|X = x). (3)

P(X) was estimated by maximizing the mutual information

using T with the BA algorithm, which fully defines Ĥ(X).

To approximate the conditional entropy term, the conditional

distribution P(Y|X) was estimated in a continuous fashion using

a Gaussian kernel density estimation (KDE) with a bandwidth of

2.5% of the total span of the observed values Y . The estimate of the

channel capacity becomes

Ĉ = Ĥ(X)− Ĥ(X | Y), (4)

with

Ĥ(X) = −
∑

x

PBA(X = x) log
(

PBA(X = x)
)

, (5)

and

Ĥ(X | Y) = −
∑

x

∫

y
PBA(x)PKDE(X = x | Y = y)

log
(

PKDE(X = x | Y = y)
)

dy. (6)

The number of bins n was chosen such that the bias was

kept at a minimum while maintaining sufficient granularity (see

Supplementary Figure S3).

3 Results

We report the successful long-term culturing of feedforward

in vitro neural networks that can represent a non-linear activation

function (also referred to as transfer function), i.e., non-linear

I/O relationship. By growing these networks inside custom-

designed PDMS microstructures on top of CMOS HD-MEAs (see

Figure 1B i), we can stimulate the network at precise presynaptic

locations. We specifically chose the electrode at the start of

the input microchannel for stimulation (see Figures 1B ii, B v,

2A). This stimulation provides a means to reliably generate an

action potential at the input, which then travels along the axons

to the output neurons. We chose to analyze the output node

as a unified/averaged response rather than examining individual

neuronal activity and its interplay. We justify this approach by the

high correlation observed between individual neuronal responses

within nodes, as demonstrated in Supplementary Figure S11B).

At our current spatiotemporal recording resolution, individual

neurons within a node exhibit such similar response patterns

that parsing their individual contributions would provide minimal

additional information while significantly increasing analytical

complexity. The high correlation suggests that neurons within a

node functionmore as a cohesive computational unit rather than as

independent processors in our specific experimental configuration.

Therefore, we defined the resulting input-output relationship

between the stimulated neurons in the input microchannels and the

activated output neurons, which constitutes a non-linear biological

transfer function.

We demonstrate that these networks can perform basic

computations, such as the NAND or OR gate. In addition,

we explore how the type of information encoding in neurons

influences its transmission, identifying the encoding method that

maximizes information transmission and efficiency.

3.1 Information transmission is a�ected by
choice of neural code

Since the mechanisms of neuronal communication remain

unclear, it is yet ambiguous how to interpret extracellular

recordings of neurons. To choose a good method of interpreting

the output signal, we compared four neural coding schemes

using the concept of channel capacity. We estimated the channel

capacity using the approach described in Section 2.7.2 for response

window sizes of up to 10 ms. The calculated averages across

multiple networks of each neural coding scheme are shown in

Figure 3. We discarded networks that exhibit a smaller capacity

than 1 bit per channel for any encoding from the analysis. In

addition to the 10 ms response window, smaller variants were

also evaluated. For both amplitude modulation (Figure 3Ai) and

frequency modulation experiments (Figure 3Bi), TTFS coding

outperformed the other encodings on average. As expected, most

of the information is transferred during the very initial part

of the response. As subsequent spikes are discarded, the noise

resulting from more stochastic spiking at later stages is small, and

the input can still be reliably transferred. Except for very short

windows, rate coding performed slightly worse on average than
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FIGURE 3

The Quality of a neural code is assessed with the estimation of the channel capacity. (Ai) Average capacity across fourteen networks as well as the
standard error of mean for amplitude modulation. A higher capacity indicates that an encoding scheme is more expressive and reliable in
transmission. The speed of the encoding is investigated by looking at multiple possible response window sizes up to 10 ms. (Aii) To investigate the
performance di�erences on a network level, capacities for a response window of 10 ms are shown for each network. Encoding schemes
corresponding to the same network are connected with a line. (Bi) Average capacity across ten networks for frequency modulation and (Bii) the
analysis for a 10 ms time window on a network level.

TTFS coding for frequency modulation and significantly worse

for amplitude modulation. There are two possible contributions to

this observation. For longer windows, spikes triggered with lower

probabilities are also taken into account. They lead to uncertainty

in the transfer function. The occurrence of a spike for TTFS

coding can alter the output value either continuously or, at a

minimum, in discrete steps determined by the temporal sampling

frequency of the recording system. For rate coding, such nuances

are missing as the number of spikes recorded on an electrode is

restricted to a small integer number due to the low cell count in

the output node. This means that the accessible output range is

rigid, and with limited output options, the transferred information

is reduced.

Phase coding can be seen as an intermediate between TTFS and

rate coding. While it does not suffer from the lack of expressiveness

of rate coding, it can be more heavily affected by unreliable firing

of neurons both in terms of spike occurrence and spike timing.

This would explain why phase coding performed the worst for

frequency modulation using a longer response window and yet was

almost identical to TTFS coding when only the initial response was

considered. For frequency modulation, the output inherently has

a higher noise level. The capacity of ISI coding naturally behaves

differently. This metric is not properly defined for small response

windows as there is not enough time for multiple spikes to occur.

Interestingly, ISI coding is highly robust to spiking noise occurring

in later parts. While it failed to outperform any of the other

neural codes for amplitude modulation, the obtained capacity for

frequency modulation was comparable.

Capacity is not only determined by the encoding scheme. It

also depends on inherent network properties. We observe three

aspects when comparing the performances on a network level for

a window size of 10 ms as seen in Figures 3Aii, Bii. Phase coding is

at most as good as TTFS. This suggests that spike timings in later

window parts are in general not stable enough to carry additional

information as seen in the decaying capacity curve. ISI coding

either performs similarly to rate coding or worse. When compared

to phase coding, ISI has a similar capacity for frequencymodulation

but tends to score lower for amplitude modulation.

In summary, the analysis underscores the importance of the

initial response window size in determining the capacity of different

encoding schemes, with TTFS coding matching or outperforming

others with its ability to capture nuanced timing information.

Rate coding suffers from a rigid, low-resolution representation,

while phase coding strikes a balance between expressiveness and

susceptibility to noise. ISI coding, though inherently unsuitable for

small windows, demonstrates robustness to late-stage spiking noise,

particularly in frequency modulation. These findings highlight

the dynamic relationship between coding strategies and network

properties in maximizing information transfer. In addition,

information transfer during a later part of the response is more
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challenging due to the inherent stochasticity of the neural network

formation and behavior. However, constraining neural growth

within PDMS microstructures helps mitigate complexity and

reduce variability to some extent.

3.2 Biological neurons exhibit non-linear
responses similar to activation functions
used in machine learning

To investigate the transfer functions in our feedforward

networks, which consist of two inputs converging into a single

output, we conducted experiments using both voltage amplitude

and frequency sweeps as described in Section 2.6.3. In the first

experiment, biphasic rectangular voltage pulses were applied with

amplitudes ranging from 100 to 800 mV in 100 mV increments (see

Figure 2Bi) at a frequency of 4 Hz. Each voltage level was delivered

simultaneously and identically through two electrodes located in

the input axon channel (see Figure 2A), in a sequence of 120 pulses.

Since a few pulses were not sent due to hardware issues and/or

their response was not detected in the post-processing, we decided

to keep a total of 110 pulses for the analysis to ensure an equal

number of repetitions for every amplitude. Neural spikes occurring

within 10 ms after each stimulus were detected and plotted to

generate a post-stimulus raster plot (see Figure 2Bii), where each

dot represents a neural spike on a corresponding color-coded

output electrode, as defined in Figure 2A.

To minimize possible carryover effects from prior stimulation,

the order of the eight same-amplitude pulse sets was randomized,

and a 5-min rest period was included between stimulation sets. In

Figure 2Bii, we observed a stable response per electrode, reflected

in the consistent timing of spike occurrences post-stimulus. This

is manifested in the observed distinct vertical “activity bands”

represented in various colors depending on the electrode location.

Bands with shorter latencies appear more defined and likely

reflect direct action potential propagation along the input axon.

In contrast, bands with longer latencies are broader and paler,

indicating a lower spike frequency and greater variation in post-

stimulus latency, suggesting these are likely spikes from output

neurons activated via synapses between the input axon and the

output neuron’s dendrites. Since these spikes are the result of

synaptic transmission rather than direct propagation of an elicited

action potential, the stochastic component is more pronounced.

They also occur less frequently, as the probability of successful

synaptic transfer is less than 1, and are also less temporally precise

due to expected variations in synaptic delay times (Katz andMiledi,

1965; Boudkkazi et al., 2007). It is furthermore important to note

that electrodes in the middle of the output region that are located

below the seeding well and therefore uncovered by the PDMS

have worse signal-to-noise ratio (SNR) as opposed to the covered

regions (see Supplementary Figure S4). This means that activity

from neurons positioned in this region will most likely not be

recorded by the system, which is visible in Supplementary Figure S4

with the whole middle region of the output not having a spike

recorded within the first 5 ms upon stimulation (electrodes colored

in pink).

Additionally, as can be seen in Figure 2Bii, we observed that

stimulation voltages below 400mV failed to elicit responses reliably

in the output region, as indicated by the absence of activity bands.

The recorded spikes are most likely due to spontaneous network

activity. In contrast, voltages of 400 mV or higher consistently

generated clear and regular response patterns in the output.

However, the voltage amplitude at which the network reliably reacts

to the applied stimulus is not necessarily identical for all networks,

which will be discussed in more detail later. The observations are in

line with previous work (Ihle et al., 2022; Duru et al., 2023).

For each electrode, the time of the first spike occurrence

within a 10 ms latency window is taken and averaged across

the electrodes in the output region, providing a mean TTFS per

electrode. This encoding method is shown in Figure 4Ai, where

the mean TTFS per electrode is shown as a function of stimulation

voltage amplitude. The results for the remaining encodings can be

found in Supplementary Figures S5 Ai–Aiii. We observe a sigmoid

dependency of the TTFS on the increasing stimulation voltage with

a broad response distribution for amplitudes at or above 400 mV.

In Figure 4Aii, we present sigmoid fits for various individual 2-

in-1-out networks (dashed lines) and the fit calculated over all

collected data points for the experiment in question (solid line).

While networks show reproducibility in the overall behavior, they

display variability in saturation values and around the transition

region, which is attributable to several factors.

The heterogeneity of neuronal networks introduces inherent

variability in the input and output cluster characteristics. Due

to the stochastic nature of cell seeding and potential cell loss

during culture, cell cluster sizes differ, ranging from single cells to

populations containing tens of cells (see Supplementary Figure S6).

These spatial distribution and inter-connectivity differences can

substantially influence neuronal activation patterns, particularly

manifesting in variations of the sigmoid response curve’s plateau

values. Additionally, axonal excitability is spatially dependent, with

proximity to stimulation electrodes directly influencing action

potential initiation. Networks with closer axonal adherence require

lower stimulation voltages to trigger action potentials (Grosberg

et al., 2017; Fernandes et al., 2023), resulting in a variable input

range for a transition region.

The overall sigmoid profile can be influenced by the choice of

the stimulation electrode. In our approach, we recorded activity

in the input channel region for 30 s and selected the electrode

with the highest activity as the stimulation electrode. This criterion

was intended to ensure that stimulation targeted an active axon,

however, high activity upstream does not necessarily correlate with

robust response elicitation downstream in the network.

In the second set of experiments, we applied a biphasic

stimulation pulse at a fixed voltage amplitude but varied the

frequency from 1 to 80 Hz, as shown in Figure 2Ci. We picked

400 mV for the stimulation amplitude because this was the first

amplitude above the threshold that we identified with the previous

experiment. Seven frequencies were chosen: 1, 2, 5, 10, 20, 40,

and 80 Hz. The number of iterations in the same time window

for each frequency was in this case variable because it directly

depends on the frequency. To ensure a fair comparison between

the different parameters, the 1 Hz frequency pulse set was applied

for twice the duration. For frequencies exceeding 2 Hz, a subset of

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2025.1559936
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Küchler et al. 10.3389/fncom.2025.1559936

M
e

a
n

 T
T

F
S

 /
 E

le
ct

ro
d

e
 [

m
s]

Stimulation Frequency [Hz]

M
e

a
n

 T
T

F
S

 /
 E

le
ct

ro
d

e
 [

m
s]

Stimulation Frequency [Hz]

R
e

sp
o

n
se

 In
d

e
x

Stimulation Amplitude [mV]

M
e

a
n

 T
T

F
S

 /
 E

le
ct

ro
d

e
 [

m
s]

R
e

sp
o

n
se

 In
d

e
x

Ai

Bi

Aii

Bii

Mean activation

Mean activation

Stimulation Amplitude [mV]

M
e

a
n

 T
T

F
S

 /
 E

le
ct

ro
d

e
 [

m
s]

FIGURE 4

(Ai) An example of a response encoded as a TTFS for an amplitude-modulation experiment. A sigmoid function is fitted to a scatter plot of individual
iteration responses. There are 110 responses for each amplitude and they are color-coded by time. (Aii) Individual sigmoid fits (dashed lines) for each
network, and the mean sigmoid fit (black line) representing the average result from all experiments combined. Fit parameter values can be found in
Supplementary Table S3. (Bi) An example of a response encoded as a TTFS for a frequency-modulation experiment. Leaky ReLU is fitted to a scatter
plot of individual responses. Fifty five responses are shown for each frequency and they are color-coded by time. (Bii) Individual leaky ReLU fits
(dashed lines) for each network, and the mean leaky ReLU fit (black line) representing the average result from all experiments combined. In both
experiments, the data is recorded from 17 networks and the curves are fitted using the non-linear least squares method. Fit parameter values can be
found in Supplementary Table S4. The y-axis is reverted in all plots.

responses was selected to maintain an equal number of samples for

each parameter. Additionally, the time intervals between retained

samples were standardized and maximized and only responses that

resulted from stimulation on both input electrodes were kept. An

example of a post-stimulus raster plot during this frequency sweep

is presented in Figure 2Cii. We observed higher output activity at

lower stimulation frequencies (1–5 Hz), with a marked decrease

in induced activity at higher frequencies. Additionally, the activity

bands within the first 2 ms were more stable at lower frequencies.

These results suggest that high-frequency stimulation leads

to activity depletion, a phenomenon previously noted in studies

of deep brain stimulation at 130 Hz (Yousif et al., 2012). The

frequencies that deplete activity (80–185 Hz) (Garcia et al., 2003;

Griffin et al., 2011) align with the higher frequencies used in

our experiments. Other studies have demonstrated partial or

complete blockage of neural activity, depending on the relationship

between the stimulation frequency and the neuron’s intrinsic firing

frequency (Ye et al., 2022).

The corresponding TTFS is given in Figure 4Bi and shows an

increase with increasing stimulation frequency. A leaky rectified

linear unit (ReLU) is fitted to the data and shown in pink.

The results for the remaining encodings can be found in

Supplementary Figures S5Bi–Biii. In Figure 4Bii we show the mean

leaky ReLU of the 15 different 2-in-1-out networks. It is visible

that for some networks stimulation evoked negligible activity (there

were no spikes recorded within the 10 ms window on average),

but for most networks, we observed the characteristic curve when

encoding the output response in the form of TTFS.

In general, stimulation of 2-in-1-out neural networks shows

reproducible behavior for both stimulation paradigms when stimuli

with different amplitude or frequency are applied simultaneously

at both input locations. Furthermore, amplitude and frequency

sweep provide two distinct activation functions. The encoded

output response is noisy due to intrinsic network activity as

well as inevitable variations of the experimental parameters.

For both input types, the response index shows a uniform

distribution of response values over time (see Figures 4Ai, Bi),

which means that we do not induce long-term modification

in the network behavior with our stimulation paradigms. The

insensitivity of the observed response to the randomization of

the applied amplitude and frequency sequence also supports

this claim.
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3.3 Fundamental logic operations with
biological neurons

In this section, we expand on the findings of Section 3.2 and

now simultaneously apply either distinct voltage amplitudes or

different frequencies to the chosen stimulation electrodes in the

input channels. Additionally, we introduce an optional delay of

1.2 ms between the pulses of one iteration to investigate its effect

on activation patterns (see Supplementary Figure S7). The latter

pulse is considered the start of the response to mitigate potential

issues of stimulation artifacts. The resulting activation patterns are

illustrated in Figure 5.

As previously seen in Figure 4Ai, voltages above a certain

threshold elicited a slightly noisy yet consistent response for

amplitude modulation when stimulating both electrodes with the

same amplitude simultaneously. In this experiment, we investigated

if and how the measured TTFS depends on which of the two

pulses exceeds the threshold. We found four distinct regions within

the activation function with high TTFS values in the bottom left

quadrant, low values in the top right, and intermediate values in the

remaining two quadrants (see Figure 5A). Analogies can be drawn

to the operation of fundamental logic gates. In logic gates, multiple

input bits are combined through logic operations to produce a

single output bit. Similarly, if one maps the observed TTFS and the

given input amplitudes to bits through thresholding, the network

exhibits behavior akin to OR or AND gates. All tested neural codes

showed an equivalent behavior as seen in Supplementary Figure S8.

By applying a delay to one of the inputs, it is possible to shift the

relative weighting between the two stimuli. The contribution of the

earlier applied stimulus decreases as seen in Figures 5Ai, Aii. This

is in agreement with the observation seen in Figure 2Bii that the

initial response during the first few milliseconds gives a strong and

stable band and becomes more sparse for later time points.

Frequency modulation exhibits a less evident pattern (see

Figure 5B) compared to amplitude modulation. The TTFS

encoding scheme shows a continuous low-pass characteristic

in the mean response. While this trend remains observable,

it is less pronounced for the other three neural codes

(Supplementary Figure S8). As previously illustrated in Figure 4Bii,

frequency modulation indeed provides a more nuanced and

smoother nonlinear output response. However, these responses

also exhibit significant variability at higher frequencies. Combined

with the capacity analysis presented in Figure 3B—which indicates

an upper limit of approximately 1.5 bits per channel use—it

becomes challenging to reliably encode more than two distinct

states. Nevertheless, stable responses observed at low frequencies,

along with distinctly different average delays at higher frequencies,

enable the mapping of bits to frequencies in a manner suitable

for implementing logic NOR or NAND operations. Similar

observations hold true for delayed versions of the input stimulus,

mirroring those made for amplitude modulation, with the delayed

input stimulus typically becoming more dominant.

This behavior is consistent across different networks. For both

modulations, one of the two stimuli has a larger impact compared

to its counterpart. For the amplitude modulation, this means that

the more influential stimulus gives rise to earlier spikes across the

whole output region. For frequency modulation in general, high

stimulation frequency results in low activity in the output. The

input that has a weaker response for amplitude modulation will

have severely less impact on the output for frequency modulation.

This suggests that an input connection is responsible for a specific

sub-region of the output. Overstimulated neurons of the first input

node will no longer elicit a response in the neurons of the output

node which can only be partially compensated by the neurons of

the second input node. This would allow for more targeted control

of a network’s output.

4 Discussion

This study contributes to our understanding of how small

biological neuronal networks with controlled topology process

information, suggesting that their input-output relationships can

be characterized as non-linear activation functions. Our findings

indicate that these minimal networks can execute fundamental

operations resembling Boolean logic, such as NAND and OR,

through simple two-input, one-output architectures. The relatively

consistent responses observed across different preparations

represent a promising step toward addressing one of the key

requirements we identified for effective biohybrid computation:

defining basic computational capabilities of biological neural

systems. Furthermore, our analysis highlights the role of output

encoding schemes in determining the quantity and quality of

information transmitted through the system. Our work identifies

certain limitations of rate coding for information transmission

due to its reliance on temporal averaging, which can result

in information loss. Among the alternative spike-time output

encoding schemes examined (TTFS, ISI, and phase coding),

only TTFS performed better or on par with rate coding. This

observation raises important questions about whether timing

information is not being captured adequately in our experimental

paradigm, or whether rate coding—despite its simplicity—can

capture substantial information content, a point also discussed by

others (Brette, 2015). Brette argues that the rate vs. timing debate

is less about which coding scheme is fundamentally relevant,

but rather about whether rate-based approaches can adequately

capture neural behavior. Our findings suggest that selecting an

appropriate coding scheme should be guided by the specific

computational objectives of the biocomputing system.

In this work, we tried to leverage the potential of a high-

density recording readout and its spatio-temporal precision while

capturing the important characteristics of the network dynamics.

While each individual neuron pair in our system could be

treated as an individual non-linear operator, the choice had to be

made to balance the system in terms of functionality, robustness,

efficiency, and experimental possibilities. Treating neural activity

as population activity in this case offered several advantages. For

one, it accounted for noise. Individual neurons exhibit stochastic

firing patterns and considerable variability in their responses.

By averaging across a population, random fluctuations tend to

cancel out, revealing underlying signal patterns more clearly.

Furthermore, it is speculated that information in neural systems

is often encoded across multiple neurons rather than in single

cells (Georgopoulos et al., 1986; Averbeck et al., 2006). Population
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FIGURE 5

2D planes illustrating the activation function for distinct signals on the two inputs for a single network. (Ai) The amplitude is modulated on the two
inputs independently, and the stimulation pulse sent to the second input precedes the one on the first by 1.2 ms. (Aii) The order is reversed. (Aiii)
Both pulses are sent simultaneously. The resulting activation resembles a logic AND or OR gate depending on the applied threshold. (Bi) The
frequency is modulated, and the periodic signal sent to the second input is shifted 1.2 ms earlier in time. (Bii) The shift is reversed. (Biii) Both signals
are synchronized. The resulting activation exhibits low-pass behavior, analogous to a logic NOR or NAND gate depending on the used threshold.

activity captures these distributed representations that might be

missed when focusing on individual neurons. Then, as mentioned

earlier, neurons within local circuits often work as functional

units with highly correlated activity patterns. Therefore, examining

individual neurons adds analytical complexity without providing

proportional additional insights. On the other hand, precisely

controlled networks with structured, non-random connectivity

at the single-neuron level would likely yield valuable additional

insights—a direction we are actively pursuing in our upcoming

work and touched upon in our past work regarding the

experimental realization of it (Mateus et al., 2022; Duru et al., 2023;

Vulić et al., 2024).

While our work provides insights into the fundamental

processing capabilities of simplified biological networks, it

represents only an initial step toward the broader goal of

harnessing biological computation. The remaining challenges

include developing methods to integrate these basic computational

units into more complex hierarchical systems and gaining precise

control over their communication pathways—specifically the

number, strength, and directionality of synaptic connections.

For instance, classical logic circuits composed of NAND

gates can theoretically implement arbitrary computations,

such as half- or full-adders. However, directly emulating

such circuits in biological neuronal networks might be

inefficient, potentially requiring extensive interconnections

and a substantial number of neuronal units as it does not

try to exploit the inherent properties of biological neurons.

Additionally, reliably interconnecting these neuronal units into

functional hierarchies presents significant difficulties, particularly

regarding suitable encoding strategies at both input and output

stages. An intuitive approach might involve using frequency

modulation as the input encoding while interpreting outputs

through a form of rate coding, though the identification of

an optimal scheme remains an open question. Alternatively,

introducing a distinct encoding specifically for inter-network

communication could simplify integration. Another possible
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approach involves artificially mediating interconnections between

networks, translating between input and output encodings

externally; however, this would shift part of the computational

load away from the biological neurons themselves, which

would not be necessarily desirable, especially in the context of

computational efficiency.

There are long ways to go yet to fully realize the potential

of biocomputing. To progress beyond basic operations, several

advancements are necessary. A crucial next development would

be incorporating learning mechanisms through stimulation

paradigms that enable short-term and long-term modulation of

synaptic weights. This could shift our approach from passively

characterizing inherent network behavior to actively shaping

computational capabilities for specific problem-solving. The

ability to modify biological synaptic weights would allow direct

examination of learning rules commonly implemented in

artificial bio-inspired systems (Serb et al., 2020). Additionally,

enabling real-time online interaction would enhance control

and adaptability of these biological systems (Voitiuk et al., 2024;

Maurer et al., 2024). Further exploration of input encoding

strategies is also needed to optimize information transmission.

To improve understanding and reduce variability, as mentioned

earlier, simplifying network topology to study single-neuron

I/O relationships could prove valuable. Much of the variability

in our current neural systems stems from inadequate control

over network subpopulations and synaptic connectivity within

and between neural nodes. Previous studies have demonstrated

how network topology influences information processing

in spiking neural networks (Downes et al., 2012; Dimovska

et al., 2019), highlighting the importance of addressing these

methodological challenges. Achieving comprehensive control

and systematically correlating topology with computational

characteristics will be essential for advancing hybrid intelligence

and biocomputing systems. The adaptability of PDMS design

platforms offers a promising experimental approach to

empirically validate whether in silico proposed network

topologies can translate effectively into functional biological

neural architectures.

To summarize, understanding how biological networks process

information at a fundamental level enhances the plausibility and

fidelity of bio-inspired AI systems. Incorporating these principles

into AI models can improve their generalization, learning

efficiency, and adaptability, aligning themmore closely with human

cognitive capabilities. The ability to execute Boolean logic is a

foundational requirement for computation. If small biological

networks can perform these tasks, it validates the potential

of spiking and bio-inspired systems to handle more complex

logical and algorithmic operations at scale. This study attempts

to bridge the gap between biological insights and computational

implementation, facilitating advancements in energy-efficient,

scalable, and biologically plausible AI systems.
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