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Introduction: Machine performance has surpassed human capabilities in various 
tasks, yet the opacity of complex models limits their adoption in critical fields 
such as healthcare. Explainable AI (XAI) has emerged to address this by enhancing 
transparency and trust in AI decision-making. However, a persistent gap exists 
between interpretability and performance, as black-box models, such as deep 
neural networks, often outperform white-box models, such as regression-based 
approaches. To bridge this gap, the Explainable Boosting Machine (EBM), a class 
of generalized additive models has been introduced, combining the strengths of 
interpretable and high-performing models. EBM may be particularly well-suited for 
cognitive health research, where traditional models struggle to capture nonlinear 
effects in cognitive aging and account for inter- and intra-individual variability.

Methods: This cross-sectional study applies EBM to investigate the relationship 
between demographic, environmental, and lifestyle factors, and cognitive 
performance in a sample of 3,482 healthy older adults. The EBM’s performance 
is compared against Logistic Regression, Support Vector Machines, Random 
Forests, Multilayer Perceptron, and Extreme Gradient Boosting, evaluating 
predictive accuracy and interpretability.

Results: The findings reveal that EBM provides valuable insights into cognitive 
aging, surpassing traditional models while maintaining competitive accuracy with 
more complex machine learning approaches. Notably, EBM highlights variations 
in how lifestyle activities impact cognitive performance, particularly differences 
between engaging in and refraining from specific activities, challenging regression-
based assumptions. Moreover, our results show that the effects of lifestyle factors 
are heterogeneous across cognitive groups, with some individuals demonstrating 
significant cognitive changes while others remain resilient to these influences.

Discussion: These findings highlight EBM’s potential in cognitive aging research, offering 
both interpretability and accuracy to inform personalized strategies for mitigating 
cognitive decline. By bridging the gap between explainability and performance, this 
study advances the use of XAI in healthcare and cognitive aging research.
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Introduction

Artificial Intelligence (AI) is transforming scientific research, driving advancements in 
medical diagnosis (Aggarwal et al., 2023; Kumar et al., 2023), protein structure prediction 
(Jumper et al., 2021), drug discovery and development (Paul et al., 2021), strategic gameplay 
(Silver et  al., 2017) and natural language processing (Bommasani et  al., 2022). In aging 
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research, AI has the potential to promote cognitive health and support 
independent living by identifying key determinants of cognitive aging 
(Pollack, 2005). With the global population of adults over 65 projected 
to surpass 1.6 billion by 2050 (Jumper et al., 2021), understanding 
modifiable factors that support healthy cognitive aging is an urgent 
priority. AI-powered approaches enable real-time monitoring of vital 
signs, cognition and daily activities (Czaja and Ceruso, 2022), 
providing new insights into aging processes. However, despite its 
potential, a major challenge remains as many AI models lack 
interpretability, limiting their scientific and practical application in 
cognitive aging research (Martin et al., 2023). The black-box nature of 
many high-performing models results in unexplainable, unjustifiable, 
and unaccountable decision-making processes. This is a significant 
limitation for healthcare and cognitive science, where transparency is 
essential (Hassija et al., 2023).

To address these challenges, Explainable AI (XAI) has emerged as 
a key approach for improving the interpretability, auditability, and 
trustworthiness of AI models (Gilpin et al., 2018; Hassija et al., 2023; 
Molnar, 2020). While some authors interchangeably use the terms 
“interpretable” and “explainable,” distinctions have been made by 
others (Marcinkevičs and Vogt, 2023). Interpretable models, or 
white-box models, are inherently understandable, whereas explainable 
models require additional techniques to clarify their decision-making 
processes (Ribeiro et  al., 2016). XAI methods can provide global 
explanations, which describe overall model behavior, and local 
explanations, which focus on individual predictions. These techniques 
range from model-specific (e.g., regression-based, tree-based, neural 
networks) to model-agnostic approaches that can be applied across 
different AI frameworks (Molnar, 2020). Beyond model 
interpretability, XAI techniques include data explainability (e.g., 
explainable feature engineering), post-hoc explainability, and the 
assessment of explanations, including trust and transparency (Ali 
et al., 2023). While these advancements have improved AI adoption 
in scientific research, a critical question remains: Can inherently 
interpretable XAI models provide predictive accuracy comparable to 
black-box models while offering meaningful insights into 
cognitive aging?

An emerging approach for addressing this challenge involves 
generalized additive models (GAMs) (Hastie, 1992) combined with 
shallow machine learning models (Lengerich et al., 2023). Among 
these, Explainable Boosting Machine (EBM) (Nori et al., 2019; Zhang 
et al., 2019), has gained attention for its ability to balance transparency 
and predictive accuracy. EBM employs bagging and boosting decision 
trees (Friedman, 2002) to model complex interactions, including 
nonlinear relationships between predictors. Unlike traditional additive 
models, such as regression-based models, which associate a single 
weight to each variable, EBM assigns weights to variable bins, enabling 
more granular and interpretable feature contributions. This is 
particularly relevant in cognitive aging research, where understanding 
individual variability in cognitive outcomes remains a major challenge 
(Patel et al., 2022; Rodrigues and Moreno, 2023).

While cognitive decline is commonly associated with aging 
(Rodrigues et al., 2022), some individuals maintain stable cognitive 
performance on various everyday tasks (Zhang et al., 2015; Lee et al., 
2010). This variability remains poorly understood, with multiple 
theories proposed and no clear consensus on the underlying 
mechanisms (Rodrigues et al., 2024; Rodrigues and Moreno, 2023). 
Traditional approaches have struggled to capture the complexity of 

these individual differences, often relying on simplified linear 
assumptions that fail to reflect the nonlinear interactions between key 
drivers of cognitive aging. As such, interpretable approaches, such as 
EBM, offer a promising alternative by enabling the identification of 
nonlinear relationships between cognitive performance and its 
predictors while maintaining transparency in decision-making. Given 
the absence of pharmacological interventions to prevent cognitive 
decline, research has increasingly focused on identifying modifiable 
factors that promote good cognitive health. In fact, understanding 
how lifestyle and environmental factors influence cognitive aging has 
become a public health research priority (Huang et  al., 2020). 
Emerging evidence suggests that sedentary behavior, poor diet, 
smoking, and excessive alcohol consumption are associated with 
accelerated cognitive decline in old age (Wajman et  al., 2018). 
Conversely, engagement in healthy lifestyle choices may preserve 
cognitive aging (Huang et al., 2020). However, the impact of these 
factors varies significantly across individuals, leading to inconsistent 
findings and challenges in identifying robust associations 
(Lindenberger et al., 2011). This inconsistency may be linked to the 
limitations of traditional methods, which often rely on mean group 
comparisons or linear models that fail to fully capture heterogeneous 
outcomes of cognitive aging (Christie et al., 2017).

Beyond individual variability, cognitive aging research faces 
additional methodological challenges, including small effect sizes, lack 
of reproducibility, and reliance on conventional statistical models that 
impose linearity assumptions (Krivanek et al., 2021). Many studies 
also suffer from limited sample size, lack of randomized control trials, 
and focus on univariate analyses, not fully capturing real-life impacts 
of diverse environmental and lifestyle factors on measures of cognition 
(Machado et al., 2018; Salthouse, 2000). As an example, a systematic 
review of 893 papers in clinical psychology found that 92% relied on 
linear methods and were unclear about approaches used (Ernst and 
Albers, 2017). In addition, the study of cognitive health in aging has 
often relied on linear models to assess the effects of age on cognitive 
outcomes (Ghisletta et al., 2020; Krakovska et al., 2019). While these 
models are interpretable, they assume a constant rate of cognitive 
decline across the lifespan, which does not reflect the complex and 
nonlinear nature of cognitive aging (Chen et al., 2016). Addressing 
this limitation requires alternative approaches capable of capturing 
nonlinear interactions while maintaining transparency. Some studies 
have begun leveraging machine learning techniques, such as Support 
Vector Machines (SVM) (e.g., Dai et al., 2017; Wu et al., 2020, 2021) 
and Random Forests (RF) (e.g, Dai et al., 2017; Wu et al., 2021), to 
model cognitive aging. However, these approaches often function as 
black box models which are suboptimal for health data where 
replicability and understanding the model’s decisions is critical (Das 
and Do, 2023). As a solution, XAI techniques have been explored in 
pathological research, demonstrating how explainable models can 
improve transparency in clinical decision-making. For instance, XGB 
has been successfully applied in the early detection of Parkinson’s 
disease by integrating statistical analysis with recurrent neural 
networks to differentiate neurodegenerative conditions, achieving 
high accuracy while enhancing model interpretability (Cincovic et al., 
2024), however, its applicability in healthy aging remains unclear.

To address this gap, we  apply EBM to investigate how 
demographic, environmental and modifiable lifestyle factors are 
associated with cognitive outcomes in a large cohort of healthy older 
adults. In this paper we analyze data from 3,482 healthy older adults 
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from the Health and Retirement Study (HRS) (Ann Arbor, 2020; 
Sonnega and Weir, 2014), a large-scale longitudinal database. 
We examine the relationship between age, education, daily lifestyle 
activities and socioeconomic status in cognitive health, leveraging 
EBM as an interpretable machine learning approach. Further, 
we  compare EBM to Logistic Regression (LR), Support Vector 
Machines (SVM), Random Forests (RF), Multilayer Perceptron 
(MLP), and Extreme Gradient Boosting (XGB), to assess whether an 
interpretable model can achieve predictive accuracy comparable to 
black-box models while providing greater transparency. To further 
investigate individual variability in cognitive aging, we  stratify 
participants into cognitive subgroups based on cognitive performance 
measures. This allows us to examine whether the influence of the 
selected factors on cognitive performance differs across cognitive 
groups. To enhance reproducibility, we provided the open-source code 
and supplementary results in a GitHub repository.1

Our hypothesis are fourfold: H1 - The EBM model will achieve 
predictive performance comparable to the state-of-the-art machine 
learning models (RF XGB, and MLP) while maintaining 
interpretability; H2 - The impact of engaging versus not engaging in 
specific lifestyle activities will differ significantly across cognitive 
groups, with measurable variations in magnitude; H3 - Engagement in 
negative health behaviors (e.g., smoking, excessive alcohol 
consumption, housing instability) will have a stronger detrimental 
impact on cognitive performance than the protective effects of 
avoiding these behaviors; H4 – Subgroups within the population will 
exhibit varying responses to environmental and lifestyle factors, with 
some individuals showing strong cognitive outcomes (both positive 
and negative) in response to exposures, while others remain resistant, 
exhibiting minimal cognitive variation across different environmental 
exposures. By bridging the gap between advanced AI capabilities and 
the need for interpretability in cognitive aging research, this study 
investigates how transparent machine learning models can lead to 
meaningful insights into healthy cognitive aging.

Methodology

Dataset

The HRS (Ann Arbor, 2020; Sonnega and Weir, 2014) dataset is a 
longitudinal public survey dataset collected every two years of participants 
over 50 years old. The collected data includes different components such 
as income and wealth, health and use of health services, employment, 
psycho-social, and lifestyle activities. In the present work, we  select 
participants aged over 60 years old from the 2012 (collected from April 
2012 to April 2013) and 2016 (collected from April 2016 to April 2018) 
(Health and Retirement Study, 2019, 2020, p.  1) waves to assess the 
relationship between cognitive health, background factors, and lifestyle 
activities. The included waves were selected given that part of the included 
lifestyle factors were part of a “leave-behind questionnaire,” which is 
collected every four years. These questions are left with the participants 

1 https://github.com/abdjiber/

Interpretable-Machine-Learning-for-Precision-Aging

after the core interview and mailed back at a later date. Given this process, 
attrition rates for this portion of the data are particularly high.

We examined missing data patterns across all variables, with 
particular attention to items from the leave-behind questionnaire. 
We  observed that participants missing one lifestyle variable were 
typically missing most or all such items, suggesting a non-random 
pattern of missingness. Given the central role of these lifestyle 
variables in our analysis and the extent of missingness (often 
exceeding 65%), we  judged the data to be  likely Missing Not at 
Random (MNAR). Therefore, we opted for a complete-case analysis 
to ensure the robustness of our findings. The proportion of missing 
data for each variable is provided in Supplementary Table 7, and the 
distribution of missingness across individuals is shown in 
Supplementary Figure 24.

Participants

In this study, we employed a cross-sectional approach. The initial 
sample consisted of 31,646 observations. Participants aged 60 years or 
older were selected, leading to a subsample of 9,165 observations. 
Given the structure of the leave-behind questionnaire, where 
missingness in one lifestyle variable was strongly associated with 
missingness in others, individuals with missing values in any lifestyle 
variable were excluded, reducing the sample to 3,832 observations. To 
ensure consistency across waves, we further restricted the sample to 
individuals present in both the 2012 and 2016 waves, resulting in a 
final sample of 3,482 observations (mean age = 71.5 years, SD = 7.9; 
mean years of education = 12.9, SD = 2.8). The final sample was 
balanced with respect to the proportion of male (49.4%) and female 
(50.6%) participants.

Cognition

The dependent variable was identified based on available 
literature. Memory has been widely recognized as a cognitive function 
that typically declines with age, making it a sensitive indicator of 
cognitive change over time (Schroeder and Marian, 2012). To 
maximize the intrinsic variability in the data while minimizing ceiling 
and floor effects, we selected a composite word recall test (immediate 
+ delayed) as a dependent variable (outcome measure). Cognitive 
performance scores ranged from 0 to 20, with higher scores indicating 
better recall ability. The distribution was centered around the middle 
of the scale (mean cognition score = 9.5, SC = 3.2). Cognitive 
performance was assessed at each wave.

We stratified and categorized the composite scores into 3 (Cogn3), 
5 (Cogn5), and 9 (Cogn9) homogenous cognitive categories with low 
values (respectively high values) of cognitive categories representing 
individuals with low (respectively high) cognitive performance. 
We used Cogn3 as the dependent variable in our main experiments 
and the remaining stratified variables in the verification analyses. As 
independent variables, we  selected two continuous factors: 
participants’ age (Age) and their number of years of education 
(Education) from the two waves and 34 daily lifestyle activities and 
socioeconomic status. A description of each variable is provided in 
Supplementary Table 1. For simplicity of modeling and interpretations 
of results, we binarized each lifestyle activity.
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Model selection

A wide range of machine learning techniques for cognitive aging 
research have been developed and implemented in the literature 
(Graham et  al., 2020). In supervised learning popular techniques 
include Naïve Bayes, Support Vector Machines (SVM), Logistic 
Regression (LR), Decision Trees, Random Forests (RF), Ensemble 
Models, Gradient Boosting, Multilayer Perceptron (MLP), 
Convolutional Neural Networks, and Long Short-Term Memory 
(Graham et al., 2020). Similar to Wang et al. (2022), we selected five 
models  - LR, SVM, RF, MLP, Extreme Gradient Boosting (XGB) 
(Chen and Guestrin, 2016)  - to compare against the Explainable 
Boosting Machine (EBM) in the study of cognitive performance and 
modifiable lifestyle factors (Nori et  al., 2019; Zhang et  al., 2019). 
We selected these models due to their popularity and different levels 
of performance and interpretability. The EBM model is highlighted in 
this study given that it addresses the gap between interpretability and 
performance, common to many modern machine learning methods. 
White-box models, such as regression-based models, are the first 
category of models intelligible to human-beings, however their 
performance is often lower than those of black-box models, such as 
deep neural networks. The EBM model (Nori et al., 2019; Zhang et al., 
2019) was introduced to mitigate this issue. By combining shallow 
machine learning models, such as bagging and boosting machines 
(Friedman, 2002), with GAMs (Hastie, 1992), the EBM model can 
achieve accuracy similar to the state-of-the-art machine learning 
models while preserving intelligibility (Zschech et  al., 2022). In 
specific, the EBM model associates a weight to each independent 
variable category in contrast to traditional interpretable models such 
as the LR which associates a single weight to the entire variable 
(Bogdanovic et al., 2022). These weights can be used both for global 
and local interpretations of the model. This granular interpretability 
could allow more precise profiling of data subjects, as discussed in the 
following section. Furthermore, this combination allows for the 
detection of complex patterns such as non-linear associations between 
the dependent and independent variables (Konstantinov and 
Utkin, 2021).

Although we did not explicitly model time as a covariate, the EBM 
model captures temporal dependencies through feature interactions. 
Specifically, the model learns how features from the 2012 wave interact 
with features from the 2016 wave. The EBM model partitions the 
feature space based on these interactions, such that the predictions for 
the 2016 outcome depend on the features from that wave and on how 
they relate to the features from the 2012 wave. This ability to model 
non-linear relationships and interactions between features across 
different time points allows the EBM to implicitly account for 
temporal dependencies even without treating time as an explicit 
covariate. This characteristic is especially valuable when working with 
repeated-measures data, where the assumption of independence 
between observations may not hold. Studies such as Ntekouli et al. 
(2022) and Kobayashi and Alam (2024) have demonstrated that 
generalized models and tree-based models like EBM can effectively 
model complex temporal relationships without requiring explicit 
temporal variables.

Formally, the EBM model is defined by:

 
( ) ( ) ( )0 , ,j j ij i j

j i j
g y f x f x xβ

≠
= + +∑ ∑

where jx  is the thj  independent variable, g  a link function and jf  
a feature mapping function (shape function) associated to the jx  
variable, ijf  are interaction terms associated to the thi  and thj  variables, 
y refers to the dependent variable, and β0 the intercept. Here, we used 
the logit and boosted trees, respectively, as link and shape functions. 
The link function, in this case, the logit function, is used to transform 
the dependent variable y  into a space where linear relationships can 
be assumed between the transformed outcome and the independent 
variables. The logit link function is particularly used in EBM models 
for binary outcomes, transforming the probability of the outcomes 
into log odds. This facilitates the application of linear combinations of 
predictors and interaction terms. The shape function is represented by 
boosted trees for each independent variable jx . This approach allows 
the model to capture non-linear relationships between each 
independent variable and the dependent variable by aggregating the 
outcomes of shallow boosted trees. Interaction terms in the EBM 
model refer to the combined effects of pairs of independent variables 
( ), i jx x  on the dependent variable. These terms allow the model to 
account for situations where the effect of one variable on the outcome 
depends on the presence of another variable. These settings 
correspond to the default Python implementation (InterpretML 
version 0.2.7) of the model used in this work. This implementation 
also supports interaction terms only for binary outcomes, therefore 
we ignored these terms.

At the training phase, independent variables are randomly 
selected to fit the model with the features contributing the best to the 
entire model selected each time. The random selection in combination 
with a small learning rate allows the model to discard feature orders. 
This approach ensures that the contribution of each variable is 
considered in the context of the entire model, rather than in isolation. 
At each iteration, a set of shallow boosted trees is trained on one 
variable at a time where the outcome of the thj  variable corresponds 
to the residual of the trained model on the ( )−1 thj  variable. Each tree 
is designed to explain different aspects of the variable’s relationship 
with the response. When aggregated, these trees correspond to a shape 
function that represents the variable’s contribution to the model’s 
predictions. This ensemble of shallow trees allows the EBM to capture 
complex, non-linear relationships and interactions between the 
variables and the outcome. Through the local scoring procedure 
(Hastie, 1992), the model associates a weight to each variable bin (yes 
or no), in contrast to regression-based models where the weights are 
attributed to the entire variables. The obtained weights are then used 
to estimate the likelihood of the class membership. In addition, these 
weights serve as a basis to the model interpretability such as feature 
importance, local and global explanations.

Overall, the EBM’s strengths are threefold: Firstly, as a glass-box 
model, it offers competitive accuracy compared to black-box models 
while providing interpretability (Körner et al., 2024; Whig et al., 2023). 
This is crucial for ensuring that the model’s predictions are reliable and 
trustworthy. Secondly, it provides granular explanations by assigning 
weights to each variable bin, enabling a better understanding of the 
model’s decision-making process (Konstantinov and Utkin, 2021; Lou 
et al., 2013). Thirdly, it can model complex interactions and non-linear 
relationships between features without sacrificing interpretability (Lou 
et al., 2013). It does so by learning a separate shape function for each 
feature and, optionally, for pairs of features, allowing it to capture both 
global and local structures in the data.
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Model performance and interpretability 
comparison

In contrast to traditional interpretable machine learning models 
such as the LR which associates a weight to each independent variable, 
the EBM associates a weight to each independent variable category 
through a local scoring procedure (Hastie, 1992). This level of 
interpretability is critical for precision cognitive health interventions 
as it allows more granular profiling of data subjects. Suppose the 
weight associated with the covariate Often Use Computer by the LR 
model is +1.3 for the cognitive category 3. This weight would 
be interpreted as a unit increase in Often Use Computer will lead to 
an increase of +1.3 in the likelihood of being in the cognitive category 
3. If the reference category of this binary variable is NO, it implies that 
going from not using a computer to using it, increases the likelihood 
of being in the highest cognitive category. Implicitly, regression-based 
models associate the same weight to covariate categories (category 1: 
performing the activity, category 0: not performing the activity). 
However, in practice, the magnitude of positive and negative impacts 
of certain independent variable categories can differ from the state of 
cognitive performance of data subjects. For instance, smoking or 
drinking can have a more detrimental impact on individuals with low 
cognitive health than those with high cognitive health.

In addition to the EBM and LR models which are inherently 
interpretable, other selected models have some level of interpretability. 
SVMs provide decision boundaries that can be used to interpret the 
model. Tree-based models, RF and XGB, provide feature importance 
for each independent variable, in addition to the visualization of the 
trees to support the decision-making processes. However, black-box 
models such as the MLP require post hoc explainability to explain the 
model (Konstantinov and Utkin, 2021; Mahya and Fürnkranz, 2023). 
To homogenize and facilitate the interpretability of the selected 
models, two model-agnostic interpretable techniques were used: 
LIME (Ribeiro et al., 2016) and the Shapley additive explanations 
(SHAP) (Lundberg and Lee, 2017). We  reported the global 
explanations of the EBM model in the main manuscript to illustrate 
the effectiveness of the model for precision interventions and 
compared local explanations of the EBM to the LIME and SHAP 
explanations of other models in the Supplementary material (see 
Supplementary Figure 16 for EBM results, Supplementary Figures 7–11 
for LIME results and Supplementary Figures 12–15 for SHAP results).

Beyond interpretability comparison, the performance of each 
model was also compared to test the hypothesis that EBM can achieve 
similar performance to state-of-the-art shallow machine learning 
models such as the RF and XGB, and deep neural networks models 
such as the MLP, while being interpretable. The performance of the 
models was measured through a five-fold cross-validation and area 
under the ROC curve (ROC AUC) for each dependent variable 
(Cogn3, Cogn5, and Cogn9). The performance comparison was 
supported with statistical tests and post hoc analysis with Kruskal-
Wallis analysis of variance and Wilcoxon signed-rank tests. 
We  selected these non-parametric tests as the homoscedasticity 
criteria to run parametric tests such as ANOVA was not met.

As the EBM model used in this study does not provide statistical 
significance for either entire variables nor individual bins, significance 
was estimated at the 5% level of each bin and within each class using 
Z-tests. The Z-scores were computed from the weights and standard 
deviations obtained from the EBM model.

Results

Lifestyle factors and cognitive health

In this work, we  investigated the associations between 
environmental factors and cognitive performance using EBM and 
compared its performance and interpretability with LR, RF, SVM, 
XGB and MLP models on a sample of 3,482 healthy older adults from 
the HRS. We adopted a cross-sectional approach, where both cognitive 
performance and covariates were measured at the same wave. Here, 
we report the global explanations obtained from the EBM model for 
all 36 variables. As EBM associates a weight with each variable bin, 
we plotted the obtained weights in Figure 1. In this figure, we observe 
the magnitude of impact of individual features on each cognitive 
category. The y-axis reflects the magnitude of impact, which 
corresponds to the likelihood of class membership, while the x-axis 
represents features values (for continuous variables such as Age and 
Education). For binary variables, values on the x-axis between −1 and 
0 correspond to the weight for category 0 (NO), while values between 
0 and 1 correspond to category 1 (YES). Each line represents a distinct 
cognitive trajectory. Green scores correspond to the high cognition 
group, the blue scores correspond to the central cognition group and 
the red scores correspond to the low cognition group. Each feature is 
plotted by order of importance, as reported in Supplementary Figure 1. 
Lastly, horizontal lines represent error bars.

The results presented in Figure  1 suggest that most variables 
present distinct magnitudes of effects when comparing the presence 
and absence of specific activities. Further, this difference is evident 
across the three cognitive groups, with the most pronounced 
differences observed in the lowest (Cogn 1) and highest (Cogn 3) 
cognitive categories. This pattern is evident for Often Use Computer 
and Drinking Alcohol. Often using a computer (x > 0) is associated 
with an increased likelihood of being in the highest cognitive category 
(green scores in Figure 1) while not often using a computer (x < 0) is 
associated with an increased likelihood of belonging to the lowest 
cognitive category (red scores in Figure  1). In contrast, drinking 
alcohol (x > 0) is associated with an increased likelihood of being in 
the lowest cognitive category whereas not drinking alcohol (x < 0) 
increases the likelihood of being in the highest cognitive category. 
Further, our results suggest that increasing age is associated with a 
higher likelihood of belonging to the lowest performing cognitive 
group (Cogn 1), whereas lower age is associated with an increased 
likelihood of belonging the highest cognitive performing group (Cogn 
3). For education, we  obtained the opposite pattern. For binary 
variables, often using a computer is associated with a lower likelihood 
of belonging to the lowest cognitive group and increased likelihood of 
belonging to the highest cognitive group. The opposite pattern was 
observed for those who did not use a computer. We obtained similar 
patterns in our verification analysis with five and nine cognitive 
groups, as detailed in the Supplementary material (See 
Supplementary Figures 5, 9).

Binned covariate analysis

Supplementary Table 2 and Supplementary Figure 4 include the 
results of the statistical analysis evaluated at 5% for each variable 
bin and within each cognitive group using Z-tests. For clarity 
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we selected representative bins for “Age” (60, 65, 70, 80, and 85) and 
“Education” (10, 12, and 14) and reported the results when the 
activities are performed (bin 1). For most of the variable categories, 
the Z-tests were not significant for the central cognitive category 
(Cogn 2). For some variables such as Often Use Compute, Ongoing 
Housing Problems, Drink Alcohol, and Often Moderate Activity, 
Regularly Help Ailing Friend/Family, all variable categories were 
significant across all cognitive groups, whereas for other variables 
the categories were significant only for certain cognitive groups. For 
instance, Often Volunteer with Youth was significant only for the 
lowest cognitive category and Often Watch Television only for the 
highest cognitive group. These statistical results also show 
differences in the impact of doing and not doing an activity. 
We  reported additional statistical results for the remainder of 
variables and dependent variables in the provided 
GitHub repository.

Performance comparisons

The performance of EBM was compared against LR, SVM, RF, 
XGB and MLP. A 5-fold cross-validation was used and the average 
area under the ROC curve was reported (ROC AUC; with higher 
values reflecting a higher performance of model) when the 3 (Cogn3), 
5 (Cogn5) and 9 (Cogn9) cognitive groups are considered as 
dependent variables in Table 1. The obtained results suggest that most 
of the models achieved similar performances. The Kruskal-Wallis 
analysis of variance was used to statistically compare the mean scores 
for each dependent variable. Non-parametric tests were used as the 
cross-validation standard deviations of the models differ and violate 
the homoscedasticity criteria to perform a traditional analysis of 
variance. For all dependent variables, we obtained a p-value < 0.05 and 
rejected the null hypothesis, i.e., equal mean scores for all models.

Following these results, post hoc analyses were performed through 
Wilcoxon signed-rank tests for pairwise comparisons of the models. 
The results of the dependent variables Cogn3, Cogn5, and Cogn9 are 
reported, respectively, in Supplementary Tables 2–4. As shown in 
Table  2, the Wilcoxon signed-rank tests indicate that no model 
significantly outperformed another in terms of AUC, suggesting 
comparable predictive performance across models. Specifically, for the 
dependent variable Cogn3, EBM, LR, XBG, and RF exhibit similar 
p-values, with higher p-values observed for comparisons involving 
SVC and MLP. A similar trend can be  observed in 
Supplementary Table 3 (Cogn5), where EBM, XGB, MLP, and RF form 
one group, while LR and SVM form another. In Supplementary Table 4 
(Cogn 9), all models (EBM, LR, XGB, RF, MLP, and SVM) show 
similar p-values, reinforcing the lack of significant differences in 
predictive performance. Table  2 is presented below. 
Supplementary Tables 3, 4 are presented in the Supplementary material 
of this manuscript. Given these findings, model selection should 
consider both predictive performance and interpretability. EBM 

FIGURE 1

Weights associated to each variable when bin is 1 (Left) or 0 (Right). X scores between −1 and 0 correspond to a negative contribution to that group. X 
scores between 0 and 1 correspond to a positive contribution to that group. The legend refers to the cognitive groups – low cognition, central 
cognition and high cognition. The features are plotted by order of importance as reported in Supplementary Figure 2.

TABLE 1 Mean and standard deviations of ROC AUC scores obtained over 
a 5-fold cross-validation and with Cogn3, Cogn5, and Cogn9 as dependent 
variables.

Models Cogn3 Cogn5 Cogn9

EBM 0.669 ± 0.07 0.653 ± 0.016 0.626 ± 0.008

LR 0.666 ± 0.006 0.654 ± 0.016 0.627 ± 0.006

MLP 0.665 ± 0.004 0.649 ± 0.015 0.622 ± 0.011

XGB 0.634 ± 0.015 0.618 ± 0.013 0.595 ± 0.008

SVM 0.665 ± 009 0.647 ± 0.016 0.63 ± 0.013

RF 0.657 ± 0.011 0.63 ± 0.019 0.599 ± 0.008

The highest scores per output variable are highlighted in bold. When the mean of two 
models is equal, we considered the upper bound score (Mean + STD).
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provides a transparent and explainable approach, making it valuable 
for understanding cognitive aging. To further support this, 
we compared EBM’s local explanations with those of LIME and SHAP, 
which are presented in the Supplementary material.

Verification analyses

To verify the patterns obtained in Figure 1 several verification 
analyses were performed. First, we increased the number of cognitive 
groups and re-ran the analyses with the EBM model. The results are, 
respectively, described in Supplementary Figures 5, 6 for Cogn5 and 
Supplementary Figures  9, 10 for Cogn9 as dependent variables. 
We have also included in the Supplementary material the Z-test scores 
obtained for each independent variable category both for Cogn5 (See 
Supplementary Table 4) and Cogn9 (See Supplementary Table 6). For 
Age and Education, the categories were determined by the 
EBM model.

Lastly, we calculated the p-values for the Wilcoxon signed-rank 
tests results obtained for the dependent variable Cogn5 (See 
Supplementary Table 3) and for the dependent variable Cogn9 (See 
Supplementary Table 5).

Discussion and conclusion

This work evaluates the influence of lifestyle factors on 
maintaining or promoting good cognitive health and investigates their 
significance in the context of cognitive aging and Explainable AI 
(XAI). To the best of our knowledge, this is the first application of 
EBM in this context. The representative sample (reflected in the large 
sample size), paired with the flexibility of the model, including its 
ability to model non-linearity, interpretability, and accuracy, enabled 
a detailed assessment of the magnitude of impact of each factor on 
cognitive performance within the older adult population.

Through this work, we  were able to conduct a comparative 
analysis to evaluate the trade-offs between predictive performance and 
interpretability across different models. Our results indicate that EBM 
performs comparably to both performance of traditional black-box 
models and interpretable models, while enhanced interpretability. 
This balance makes EBM a valuable tool for and generating insights 
into the factors influencing cognitive health in aging. Further, the 
associations identified in our analysis align with existing literature, 
reinforcing the robustness of our findings. In specific, findings suggest 
that engagement in a given lifestyle factor can largely influence the 
likelihood of being in a specific cognitive category, particularly the 

lowest and highest cognitive groups (Figure  1). As an example, 
individuals who do not engage in mild activities (x < 0) have a 
significantly higher likelihood of being in the lowest cognitive category 
than in the highest cognitive category. Conversely, engaging in mild 
activities (x > 0) increases the likelihood of being in the highest 
cognitive category while reducing the likelihood of being in the lowest 
cognitive category. A second critical finding lies with the stability of 
the second cognitive category. Here, results suggest that regardless of 
whether an individual engages or not in mild activities, the likelihood 
of increasing or decreasing in cognitive performance never changes. 
This pattern is consistent across most lifestyle factors, suggesting that 
while certain behaviors strongly influence cognitive extremes (lowest 
and highest cognitive groups), their impact on the central cognitive 
group remains minimal.

Our results indicate that the observed patterns for continuous 
variables align with what has previously been reported. Specifically, 
increasing “Age” is associated with lower categories of cognitive 
performance, while increasing levels of “Education” appear to be more 
strongly associated with higher categories of cognitive performance. 
Among binary variables, those that contribute to the highest cognitive 
category appear to be mostly associated with concentration-related 
activities (e.g., “Often Use Computer,” “Often do Word Games,” and 
“Reading”), exercise-related activities (e.g., “Mild Activities” and 
“Moderate Activities”), and social-related activities (e.g., “Drinking” 
and “Regularly Help Ailing Friends/Family”). In contrast, variables 
associated to the lowest cognitive category appear to be  mostly 
associated with socioeconomic status such as “Ongoing 
Housing Problems.”

Our results indicate that for certain factors, the detrimental effects 
on cognitive health are more pronounced when these activities are 
neglected compared to the beneficial effects observed when they are 
actively pursued. For example, the magnitude of not using a computer 
in the lowest and highest cognitive groups is greater than the 
magnitude of using a computer in these groups. Conversely, for other 
factors, the reverse pattern is observed, where the adverse effects 
outweigh the benefits. This is evident in variables such as “Ongoing 
Housing Problems,” “Smoking,” “Ongoing Health Problems,” and 
“Difficulty Paying Bills” (see Supplementary Figure  4; 
Supplementary Table  2), where the negative impact of these 
experiences is greater than the positive contribution of not 
experiencing them. The stability observed in the central cognitive 
category across most factors suggests that these influences remain 
constant, regardless of whether they are being performed or not. The 
increased susceptibility observed in the lowest and highest categories, 
compared to the resistance observed in the central category, may 
be indicative of subtypes of the population previously described in 
studies of aging (Rodrigues et al., 2022). These differences in response 
may represent subtypes of individuals with distinct susceptibilities to 
environmental exposures (such as lifestyle factors). In previous studies 
these subtypes have been described as environment-sensitive (lowest 
and highest cognitive groups), that experience greater cognitive gains 
but also greater cognitive losses depending on external conditions, 
and environment-resistant (central cognitive group), whose cognitive 
performance remains stable regardless of whether external conditions 
are optimal or detrimental (but are never as good or as bad as 
environment-sensitive individuals) (Rodrigues et al., 2022).

These findings indicate that the effects of environmental factors on 
cognitive health are not uniform, highlighting differential impacts across 

TABLE 2 p-values of Wilcoxon signed rank tests results obtained for the 
dependent variable Cogn3.

EBM XGB LR SVM MLP RF

EBM 1 0.062 0.062 0.125 0.188 0.062

XGB 0.062 1 0.062 0.062 0.062 0.062

LR 0.062 0.062 1 0.812 0.438 0.062

SVM 0.125 0.062 0.812 1 1 0.062

MLP 0.188 0.062 0.438 1 1 0.125

RF 0.062 0.062 0.062 0.062 0.125 1
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individuals. Identifying these variations can inform the development of 
targeted interventions, allowing for more personalized strategies to 
promote cognitive well-being among older adults. The comparative 
analysis of predictive models indicates that EBM effectively captures 
non-linear interactions while maintaining interpretability. While its 
predictive performance was comparable to other models, its ability to 
provide granular feature attributions and interpretable decision-making 
offers valuable insights into the determinants of cognitive aging.

The success of EBM model in our study underscores the significance 
of advancing Explainable AI in cognitive health research. Unlike 
black-box models such as gradient boosting decision trees and deep 
neural networks, EBM provides interpretability alongside competitive 
predictive accuracy, addressing the need for transparency in healthcare 
decision-making. This aligns with the broader trajectory of Explainable 
AI, toward developing models that are transparent and interpretable in 
real-world applications. Additionally, our findings highlight that a 
one-size-fits-all approach to promoting cognitive health may 
be  insufficient. The personalized insights derived from this study 
emphasize the importance of tailoring interventions based on individual 
profiles and specific environmental factors. This shift toward precision 
medicine in cognitive aging emphasizes the need for personalized 
healthcare strategies to improve cognitive outcomes in aging populations.

In conclusion, this study examines the relationship between 
environmental factors and cognitive performance while demonstrating 
the application of Explainable AI techniques, particularly the EBM 
model, in cognitive aging research. By using an interpretable machine 
learning approach, we  provide a framework for assessing nonlinear 
interactions between cognitive aging predictors while maintaining 
model transparency. The findings highlight the advantages of using XAI 
models in aging research, where interpretability is essential for both 
scientific validation and practical applications in healthcare and policy.

Some limitations have been identified in the present work. 
Theoretical limitations include the fact that GAMs, including EBM, can 
produce different interpretations depending on the feature mapping 
function used (e.g., splines and gradient boosting machines) (Chang 
et al., 2021). Consequently, our results might not be reproducible with 
different mapping functions. Additionally, like many machine learning 
models, EBM is sensitive to sample size, resulting in high standard 
deviations of the scores (logits) in variable ranges with low data as 
observed for “Age” and “Education” (see Supplementary Figures 2, 3, 
respectively). Practical limitations include the use of default 
hyperparameters when comparing EBM to other models (LR, MLP, 
SVM, RF, and XGB), which could affect both their performance and 
training time. In addition, the study focuses on a population of healthy 
older adults that participate in large longitudinal studies. These 
individuals tend to be  healthier, more educated and of higher 
socioeconomic status than average, limiting generalizability of results.

An additional limitation includes the predictive performance of all 
models which was modest. This likely reflects the inherent complexity 
of cognitive health outcomes in aging. The fact that EBM achieved 
AUC values comparable to these models suggests that it can provide 
useful insights while maintaining interpretability. However, 
we acknowledge that further improvements in predictive performance 
may require incorporating additional features or alternative 
modeling approaches.

The findings of this study have implications for cognitive health 
policy and decision-making. This study demonstrates how interpretable 
machine learning models can be applied in cognitive aging research to 

provide transparent and reproducible insights. The ability of interpretable 
AI models to provide transparent results can support targeted 
interventions for cognitive maintenance and consequently independent 
living. By leveraging interpretable machine learning, future work focused 
on healthcare systems can develop data-driven prevention strategies, 
improve screening protocols, and optimize resource allocation. 
Additionally, the integration of XAI into public health decision-making 
can improve trust and accountability in AI-driven healthcare 
applications, ensuring compliance with regulatory and ethical standards. 
The continued development of XAI in aging research may enhance both 
scientific understanding and its practical applications in healthcare and 
policy-making.
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