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Background: In response to the shortcomings of the current Alzheimer’s disease 
(AD) early populations assessment, which is based on neuropsychological scales 
with high subjectivity, low accuracy of repeated measurements, tedious process 
and dependence on physicians, it was found that digital biomarkers based on 
the writing process can effectively characterize the cognitive deficits of patients 
with mild cognitive impairment (MCI) due to AD.

Methods: This study designed a digital writing assessment paradigm, extracted 
dynamic handwriting and image data during the paradigm assessment process, 
and analyzed digital biomarkers of the writing process to assess subjects’ 
cognitive functions. A total of 72 subjects, including 34 health controls (HC) and 
38 MCI due to AD, were enrolled in this study.

Results: Their combined screening efficacy of digital biomarkers based on the 
MCI writing process due to AD populations having an area under curve (AUC) 
of 0.918, and a confidence interval (CI) of 0.854–0.982, was higher than the 
Montreal Cognitive Assessment Scale (AUC = 0.859, CI = 0.772–0.947) and the 
Mini-mental State Examination Scale (AUC = 0.783, CI = 0.678–0.888).

Conclusion: Therefore, digital biomarkers based on the writing process can 
characterize and quantify the cognitive function of MCI due to AD populations 
at a fine-grained level, which is expected to be a new method for intelligent 
screening and early warning of early AD populations in a community-based 
physician-free setting.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder of the central nervous system, primarily characterized by a 
decline in cognitive function (Knopman et al., 2021). Currently, the 
course of AD is viewed as a continuum (Jack et al., 2018), with mild 
cognitive impairment (MCI) being an early stage of AD. MCI is 
mainly characterized by a mild decline in cognitive function and a 
high risk of progression to AD (McGrattan et al., 2022). It is estimated 
that there are currently about 44 million AD patients worldwide (Jia 
et al., 2020), and the probability of MCI converting to AD dementia 
within 3 years is as high as 55% (Okello et  al., 2009). AD has an 
insidious onset and poor therapeutic effect after developing into the 
middle and late stages, which brings a heavy burden to the patient’s 
family and social economy (Chen et al., 2024). Therefore, focusing on 
the critical window for early detection and warning of AD, namely the 
MCI stage, is of great significance for the early prevention and 
treatment of AD.

Currently, there are two main modalities for clinically detecting 
MCI. One is amyloid β-protein (Aβ) pathological testing, including 
Aβ positron emission tomography (Aβ-PET) and cerebrospinal fluid 
testing (Leuzy et al., 2020; Burnham et al., 2019). However, current 
public awareness of MCI is low, and high-cost, invasive diagnostic 
methods are significantly reducing the rate of early diagnosis, which 
is not conducive to large-scale screening efforts. The other method is 
neuropsychological testing, such as the Mini-Mental State 
Examination (MMSE) and the Montréal Cognitive Assessment 
(MoCA) and other sets of assessment scales. However, 
neuropsychological tests are time-consuming, require a well-
coordinated subject and an experienced clinician, and have highly 
subjective scores that are less accurate when repeated over a short 
period of time, and are easily influenced by the patient’s years of 
education (Yu et al., 2012). These factors greatly hinder the prevention 
and treatment process of AD. In particular, it is difficult to achieve 
objective and effective early warning of AD in places such as Asia and 
Africa, where populations are concentrated and medical care is 
unevenly distributed. Therefore, there is an urgent need to find new 
rapid and intelligent screening and early warning methods suitable for 
large-scale initial screening of MCI in community settings 
without physicians.

A large number of previous studies have assessed cognitive 
functioning in early AD populations, but there is a lack of time-series-
based ratings of cognitive tasks to quantify cognitive functioning at a 
dynamic fine-grained level over the entire course of time. Numerous 
studies have shown that in the early stages of AD, patients exhibit 
equally significant deficits in several cognitive dimensions, such as 
executive functioning and speed of information processing (Hayden 
et al., 2012; Kim et al., 2021; Wu et al., 2023; Haworth et al., 2016). 
Executive functioning refers to the mental process by which an 
individual exerts conscious control over thoughts and behaviors, and 
involves a variety of higher-level cognitive abilities, such as inhibitory 
control, working memory, and cognitive flexibility (Diamond, 2013). 
Impairment of executive functioning in MCI due to AD is mainly 
manifested by decreased cognitive flexibility, impaired response 
inhibition, and decreased decision-making ability (Guarino et  al., 
2018). Information processing speed refers to the speed at which an 
individual goes from receiving information to making a response or 
decision, and this indicator plays an important role in cognitive 

functioning, learning ability, and daily life. The slower information 
processing speed in MCI due to AD is mainly manifested in brain 
sluggishness and delayed responses, requiring more time for the brain 
to process information (Haworth et al., 2016). Therefore, based on the 
above cognitive impairment characteristics, precise quantitative 
assessment of executive function and information processing speed in 
patients with MCI due to AD can provide insights for early screening 
and warning.

It has been found that physiological and behavioral “digital 
biomarkers” captured by digital devices can make up for the 
shortcomings of traditional diagnostic methods, which are dependent 
on clinicians, subjective, and difficult to quantify digitally, because of 
their objective, quantifiable, and fine-grained portrayal of complex 
processes (Lio et al., 2019). Currently, digital biomarkers have received 
more and more attention from scholars in the field of early screening 
and early warning of AD (Bera et al., 2019; Lio et al., 2019). In recent 
years, digital biomarkers based on writing characteristics have shown 
good potential for early screening for AD. Writing activity, as a 
complex executive process, requires the joint participation of 
cognitive, kinesthetic, and perceptual-motor components (Tseng and 
Cermak, 1993). Characteristics of writing behavior during a writing 
task not only effectively reflect the participant’s executive function, but 
also adequately reflect multiple domains of cognitive function, such 
as higher-order neurocognitive planning and speed of information 
processing (Piers et al., 2017). Jacek Kawa extracted digital biomarkers 
based on short and long text data to screen and identify MCI (Kawa 
et al., 2017). Nan-Ying Yu extracted digital handwriting biomarkers 
based on computerized handwriting to further identify MCI (Yu and 
Chang, 2019). Kai Li extracted digital biomarkers of fingertip-
interactional writing to analyze the impairment of spatial executive 
process in people with MCI due to AD, achieving area under curve 
(AUC) of 0.88 (Li et al., 2023). Thus, digital biomarkers based on the 
assessment paradigm are expected to be an effective way to screen and 
warn people in the early stages of AD.

To summarize, we hypothesized that digital biomarkers of the 
writing process can be used to characterize cognitive deficits in people 
with MCI due to AD at a fine-grained level. To test the above 
hypothesis, we developed a digital writing assessment paradigm to 
extract cognitive deficits in executive function and information 
processing speed characteristic of MCI due to AD, and provide new 
ideas for intelligent and rapid screening and early warning of early AD 
patients in a community-based physician-free setting.

2 Materials and methods

2.1 Human-computer interaction paradigm 
design and experimental procedures

We hypothesized that digital biomarkers of the writing process 
hold promise for fine-grained portrayal of cognitive deficits in MCI 
due to AD populations. A digital writing evaluation paradigm was 
designed using projected mutual capacitive tactile feedback technology.

2.1.1 Experimental paradigm design hardware 
and software foundations

The hardware requirements for this experiment include an Intel 
computer (NUC11PAHi5), and a 3,840*2,160 pixel touchable monitor 
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(length, width and height: 392*250*10 mm, 17.3 in.). The software 
system involved in this experiment is based on the pre-existing 
human-computer interaction system (Tao et al., 2023). The writing 
digital assessment paradigm is built using HTML5 Canvas, which in 
turn meets the software requirements for the experiment. A schematic 
diagram of the paradigm is shown in Figure  1. This experiment 
collected behavioral data from participants (specifically, the trajectory 
of writing the Chinese character “米”) and did not gather any 
personally identifiable information, such as facial data. All behavioral 
data were uniformly uploaded to our local database, where they were 
stored under anonymised identifiers. A dedicated database engineer 
managed and maintained the data to minimize the risk of breaches.

2.1.2 Experimental paradigm design and principle 
interpretation

There is a close relationship between writing and executive 
functions and speed of information processing. Information 
processing speed is the foundation of writing fluency, and executive 
functions ensure the organization and accuracy of writing through 
planning and regulation, and both work together to influence writing 
efficiency and writing results. Chinese characters for “米” as a 
handwriting assessment task, it is mainly based on its unique 
advantages in the Chinese writing system: (1) Operational simplicity 
(few strokes and clear structure), (2) Age-friendliness (high frequency 
character, reducing cognitive load), and (3) Cultural universality 
(highly related to daily life in terms of semantics, with low dependence 
on years of education). These characteristics make it an ideal tool for 
cognitive screening in the Chinese population (Li et al., 2023). The 
specific design of the writing digital assessment paradigm in this study 
was as follows: subjects are required to write 10 Chinese characters for 
“米” on the screen through fingertip interaction, and the time limit of 
the paradigm is 3 min.

2.1.3 Definition and quantitative analysis of digital 
biomarkers in the writing process

Based on the above raw data and pre-existing algorithms (Li et al., 
2023), we  extracted digital biomarkers of the writing process via 
python 3.10.0. In order to portray the cognitive functions of the 

subjects at a fine-grained level, we categorized the digital biomarkers 
into information processing speed digital biomarkers and executive 
function digital biomarkers.

The information processing speed digital biomarkers (IPSDB) 
measured subjects’ planning and thinking before execution through 
fingertip interaction, including total task time (IPSDB1), task process 
time (IPSDB2), writing time (IPSDB3), total pause time (IPSDB4), 
initial pause time (IPSDB5), total process pause time (IPSDB6), 
maximum process pause time (IPSDB7), average process pause time 
(IPSDB8), variability in process pause time (IPSDB9), and the number 
of pauses (IPSDB10). The total task time was the time interval from 
when subjects entered the paradigm to when they finished writing the 
10 Chinese characters for “米,” i.e., the total time taken to complete 
the paradigm. The task time is the time interval from when the 
subjects started writing to when they finished writing the 10 Chinese 
characters for “米.” The writing time was the time the subject’s finger 
wrote on the screen during the paradigm evaluation. Total pause time 
was the time when the subject’s finger did not touch the screen during 
the paradigm assessment, which was used to characterize the subject’s 
thinking throughout the writing process. The initial pause time was 
the time between the subject’s entry into the paradigm and the first 
start of writing, and it was used to characterize the subject’s starting 
thinking time. Total process pause time, maximum process pause 
time, average process pause time, variability in process pause time, 
and the number of pauses were used to characterize the subject’s 
process-planning thinking after the subject started writing. Research 
indicates that patients with early-stage Alzheimer’s disease (AD) may 
experience prefrontal metabolic decline, which affects their ability to 
set goals, sequence tasks, and self-monitor during writing, leading to 
increased writing task duration (Schroeter et al., 2012; Jagust, 2018). 
Neuroimaging studies have identified cortical thinning and amyloid 
deposition in the prefrontal cortex of AD patients, which may impair 
motor coordination and semantic processing required for writing (Liu 
et al., 2022). Additionally, the dorsolateral prefrontal cortex (DLPFC), 
a subregion of the prefrontal cortex located in the lateral frontal lobe, 
plays a central role in executive functions such as working memory, 
decision-making, and attentional control (Jung et al., 2022; Hagler and 
Sereno, 2006; Lüthi et  al., 2014). In this study, abnormalities in 
working memory (e.g., Chinese character writing) and spatial 
planning (e.g., character structure) were found to indicate an early risk 
of Alzheimer’s disease.

The executive function digital biomarkers (EFDB) was a fingertip 
interactive technology that measures the subject’s performance after 
“thinking,” including task score (EFDB1), stroke counts (EFDB2), stroke 
counts per minute (EFDB3), writing efficiency (EFDB4), total stroke 
trajectory length (EFDB5), maximum stroke trajectory length (EFDB6), 
average stroke trajectory length (EFDB7), variability in stroke trajectory 
length (EFDB8), maximum writing speed (EFDB9), average writing speed 
(EFDB10) and variability in writing speed (EFDB11). Among them, the 
task score was a rating of the subjects’ writing process and the writing 
result, which was used to judge whether the order of the strokes in 
writing the Chinese characters for “米” was correct or not, and whether 
the number of Chinese characters for “米” was correct or not after the 
completion of the writing. The stroke count was the number of times a 
subject’s finger paused while writing on the screen during the paradigm 
assessment. The stroke count per minute was the number of strokes 
written per minute during the paradigm assessment. Research indicates 
that the lateral prefrontal cortex is responsible for representing and 

FIGURE 1

The schematic diagram of the paradigm.
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selecting task rules, which may affect the planning of stroke order and 
structure. For example, patients with frontal damage may exhibit 
executive dysfunction, making it difficult to effectively control stroke 
numbers (Shimamura, 2000). Moreover, the prefrontal cortex maintains 
writing rules (e.g., stroke order in Chinese characters) through working 
memory, thereby reducing redundant strokes (Han et al., 2009; Collette 
et al., 2005). Writing efficiency was the cumulative length of time the 
subject’s finger spent writing on the screen during the paradigm 
evaluation process, and then analyzing that length as a percentage of task 
length. Research shows that the prefrontal cortex (especially the right 
prefrontal cortex) exhibits increased activity during predictive tasks and 
is linked to executive planning abilities. This function has a direct impact 
on writing fluency, which in turn affects writing efficiency (Newman 
et al., 2003). Total stroke trajectory length, maximum stroke trajectory 
length, average stroke trajectory length, and variability in stroke trajectory 
length were used to characterize the stroke trajectories of the finger 
writing on the screen during the paradigm evaluation process of the 
subjects. Maximum writing speed, average writing speed, and variability 
in writing speed were used to characterize the stroke speed of finger 
writing on screen during the paradigm assessment. Research shows that 
individuals with mild cognitive impairment (MCI) and Alzheimer’s 
disease (AD) exhibit significantly slower writing speeds during dictation 
tasks compared to healthy controls (HC). This may be related to cognitive 
deficits caused by damage to the temporal cortex (An et al., 2023). To 
facilitate future analysis of digital biomarkers mining, we  provided 
detailed conceptual definitions of various digital biomarkers in the 

paradigm, and digital biomarker illustrations are shown in Figures 2, 3. 
Digital information processing speed biomarkers is shown in Table 1, and 
digital executive function biomarkers is shown in Table 2.

We know the total task time (IPSDB1), the initial pause time (IPSDB5) 
and the stroke counts (EFDB2) of a certain subject, who has written a total 
of J strokes (EFDB2 = J), the time interval between the j-th stroke and the 
(j + 1)-th stroke is t(j, j + 1), and the time of the j-th stroke writing was tj, and 
there are a total of K stroke coordinate points in the process, the k-th 
stroke coordinate point is (Xk, Yk). The task process time (IPSDB2) is 
calculated by Equation 1, the total pause time (IPSDB4) is calculated by 
Equation 2, the total process pause time (IPSDB6) is calculated by 
Equation 3, the maximum process pause time (IPSDB7) is calculated by 
Equation 5, the average process pause time (IPSDB8) is calculated by 
Equation 4 and the variability in process pause time (IPSDB9) is calculated 
by Equation 7, the specific details are as follows:

 = −2 1 5IPSDB IPSDB IPSDB  (1)

 = +4 5 6IPSDB IPSDB IPSDB  (2)
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FIGURE 2

Illustration of information processing speed digital biomarkers.
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In Equation 6, σt  was the standard deviation of the process 
pause length.

The writing time (IPSDB3) is calculated by Equation 8, the number of 
pauses (IPSDB10) is calculated by Equation 10, the stroke counts per minute 
(EFDB3) is calculated by Equation 11, the writing efficiency (EFDB4) is 
calculated by Equation 12, the total stroke trajectory length (EFDB5) is 
calculated by Equation 14, the maximum stroke trajectory length (EFDB6) 
is calculated by Equation 15, and the average stroke trajectory length 
(EFDB7) is calculated by Equation 16, the specific details are as follows:
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FIGURE 3

Illustration of executive function digital biomarkers.
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TABLE 1 Information processing speed digital biomarkers.

Cognitive functioning deficit Digital biomarkers Abbreviation Interpretation and units

Decreased speed of information processing may be present 

in patients with early stages of AD (Shi et al., 2020)

Information processing speed digital biomarkers 1: total task time IPSDB1

It was used to calculate the length of the task from the time the 

subjects enters the paradigm to the time of subjects finishes 

writing 10 Chinese characters for “米,” i.e., the total time taken 

to complete the paradigm. (Seconds, s)

Information processing speed digital biomarkers2: task process time IPSDB2

It was used to calculate the length of time it takes for a subject 

to finish writing 10 Chinese characters for “米” after the first 

writing session during the paradigm assessment. (Seconds, s)

Information processing speed digital biomarkers3: writing time IPSDB3

It was used to calculate the length of time the subject’s finger 

was writing on the screen during the paradigm assessment. 

(Seconds, s)

Information processing speed digital biomarkers4: total pause time IPSDB4

It was used to calculate the amount of time the subject’s finger 

was not in contact with the screen during the paradigm rubric. 

(Seconds, s)

Information processing speed digital biomarkers5: initial pause time IPSDB5

It was used to calculate the time between when a subject enters 

the paradigm and when they first start writing. (Seconds, s)

Information processing speed digital biomarkers6: total process pause time IPSDB6

It was used to calculate the time between when a subject enters 

the paradigm and when they first start writing. (Seconds, s) It 

was used to calculate the total time period during which the 

subject’s finger did not touch the screen after first starting to 

write. (Seconds, s)

Information processing speed digital biomarkers7: maximum process pause time IPSDB7

It was used to calculate the maximum time a subject’s finger 

was not in contact with the screen after the first writing session 

during the paradigm assessment. (Seconds, s)

Information processing speed digital biomarkers8: average process pause time IPSDB8

It was used to calculate the average time that a subject’s finger 

did not touch the screen after the first writing session during 

the paradigm evaluation. (Seconds, s)

Information processing speed digital biomarkers9: variability in process pause time IPSDB9

It was used to calculate the degree of change (coefficient of 

variation) in the length of time a subject’s finger was not in 

contact with the screen after the first writing session during 

the paradigm rubric.

Information processing speed digital biomarkers10: the number of pauses IPSDB10

This indicator is used to count the number of finger pauses 

when the subject’s finger is written on the screen during the 

paradigm assessment. (Times)
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TABLE 2 Executive function digital biomarkers.

Cognitive functioning deficit Digital biomarkers Abbreviation Interpretation and units

Possible decline in executive function in patients with 

early AD (Wu et al., 2023).

Executive function digital biomarkers1: task score EFDB1

It was used for the writing process and the writing result of the subjects to 

determine whether the order of the strokes in writing the Chinese 

characters for “米” was correct or not, and whether the Chinese characters 

for “米” Chinese characters was correct or not after the completion of the 

writing, and to calculate the decision-making performance of the subjects. 

(Score)

Executive function digital biomarkers2: stroke counts EFDB2

It was used to count the number of finger pauses when the subject used 

their finger to write on the screen during the paradigm assessment. 

(Times)

Executive function digital biomarkers3: stroke counts per minute EFDB3

It was used to calculate the number of strokes written by the subject during 

the paradigm assessment per minute for calculation. (Times)

Executive function digital biomarkers4: writing efficiency EFDB4

It was used to calculate the cumulative length of time the subject’s finger 

was writing on the screen during the paradigm assessment, and then 

analyze that length as a percentage of task length, i.e., execution efficiency.

Executive function digital biomarkers5: total stroke trajectory length EFDB5

It was used to calculate the maximum value of the stroke trajectory length 

of a subject’s finger writing on the screen during paradigm evaluation. 

(Pixels, px)

Executive function digital biomarkers6: maximum stroke trajectory length EFDB6

It was used to calculate the maximum value the of the stroke trajectory 

length of a subject’s finger writing on the screen during paradigm 

evaluation. (Pixels, px)

Executive function digital biomarkers7: average stroke trajectory length EFDB7

It was used to calculate the average length of the stroke trajectory of a 

subject’s finger writing on the screen during the paradigm assessment. 

(Pixels, px)

Executive function digital biomarkers8: variability in stroke trajectory length EFDB8

It was used to calculate the degree of variability in the stroke trajectory 

length of a subject’s finger writing on the screen during paradigm 

assessment, i.e., the variability in stroke trajectory length.

Executive function digital biomarkers9: maximum writing speed EFDB9

It was used to calculate the maximum stroke speed when the subject’s 

finger was written on the screen during the paradigm evaluation. (Pixels/

Seconds, px/s)

Executive function digital biomarkers10: average writing speed EFDB10

It was used to calculate the average stroke speed of the subject’s finger 

while writing on the screen during the paradigm evaluation. (Pixels/

Seconds, px/s)

Executive function digital biomarkers11: variability in writing speed EFDB11

It was used to calculate the degree of variability in stroke speed when the 

subject used their finger to write on the screen during the paradigm 

assessment.
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In Equation 9, pause(j,k) was used to determine whether the k-th 
stroke coordinate point and the (k + 1)-th stroke coordinate point are the 
same when the subject draws the j-th stroke. In Equation 13, Dj was the 
trajectory length of the j-th stroke. The variability in stroke trajectory 
length (EFDB8) is the same as the variability in process pause time 
(IPSDB9). The maximum writing speed (EFDB9) is calculated by 
Equation 17, the average writing speed (EFDB10) is calculated by 
Equation 18, and the variability in writing speed (EFDB11) is calculated 
by Equation 20, the specific details are as follows:
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In Equation 19, σv  was standard deviation of writing speed.

2.1.4 Design of experimental rules
The experiment was conducted in a quiet room to avoid 

interference with the results from ambient noise. We  placed a 
comfortable and stable chair in front of the touch screen display. 
Staff assisted participants in adjusting their posture and position 
to maintain a distance of approximately 30 centimeters from the 
touch screen display. This design ensured that the subjects could 
clearly observe the content of the screen and easily manipulate the 
screen with their fingers, thus avoiding any adverse effects on the 
experiment due to visual impairment or manipulation  
difficulties.

2.2 Experimental setup

2.2.1 Estimated sample size
In this study, the sample size for final inclusion was roughly 

estimated by the G*Power tool, with the relevant parameters as ‘Test 
family’ choosing ‘t tests’, for ‘Statistical test’ select ‘Means: Difference 
between two independent means (two groups)’, for ‘Tail(s)’ select 
‘Two’, for ‘Type of power analysis’, select ‘A priori: Compute required 
sample size - given α, power, and effect size’, “Effect size d” is “0.7,” ‘α 
err prob’ fill in “0.05,” “Power(1 - β err prob)” fill in “0.8,” “Allocation 

ratio N2/N1” fill in “1,” and the total sample size was calculated to 
be 68, 34 persons for each of the healthy control (HC) population, and 
34 persons for persons with MCI due to AD.

2.2.2 Subjects
A total of 75 subjects were recruited for this study at the First 

Medical Centre of the General Hospital of the Chinese People’s 
Liberation Army. Diagnostic criteria for MCI due to AD origin were 
consistent with the 2011 National Institute on Aging and Alzheimer’s 
Disease Association (NIA-AA) criteria (Albert et  al., 2011). The 
healthy control (HC) populations had no subjective complaints or 
objective evidence of neurological disorders, and all diagnoses were 
made by two experienced neurologists. Specific criteria for this study 
were as follows:

Inclusion criteria for MCI due to AD: (1) NIA-AA criteria were met 
and subjective memory loss was present; (2) Minimum Mental State 
Examination (MMSE) total score >24; (3) no significant deficits in 
ability to perform activities of daily living and Clinical Dementia Rating 
(CDR) score of 0.5; (4) Ability to cooperate in doing the examination 
as well as the paradigm tasks, right-handedness; (5) Participants were 
required to have a primary school or higher education level.

Exclusion criteria for MCI due to AD: (1) Atypical forms of AD, 
such as the posterior cortical variant, progressive aphasia variant, frontal 
variant, and Down’s syndrome; (2) Severe psychiatric conditions like 
major depression, cerebrovascular disease, metabolic disorders, central 
nervous system infections, intracranial tumors, or severe cardiac, 
hepatic, pulmonary, or renal diseases; (3) Conditions affecting clinical 
assessment, such as motor impairments from Parkinson’s disease or 
arthritis, aphasia, severe auditory or visual impairments, or 
severe dysarthria.

Inclusion criteria for HC: HC were volunteers or healthy 
spouses of patients who came to the hospital for health checkups 
during the same period, (1) Without complaints of memory loss 
or other cognitive decline, and no history of cognitive 
impairment; (2) MMSE scores above the cut-off score >17 points 
for those with elementary school education and below, and >24 
points for those with junior high school education and above); 
daily life function scale (activity of daily life, ADL) ≤ 20 points; 
(3) CDR-global = 0 points; (4) Able to cooperate in doing the 
examination as well as the paradigm tasks, right-handedness. 
Daily life, ADL) ≤ 20 points; (5) Participants were required to 
have an educational level of primary school or higher.

All subjects were native Chinese speakers and long-term 
residents of China. They provided informed consent before 
considering inclusion. During the conduct of the formal trial, two 
people in the MCI group refused to participate due to flu and one 
person in the HC group withdrew from the trial for other reasons. 
A total of 38 cases of MCI of AD origin and 34 cases of HC were 
finally included in this study. The study followed the basic 
principles of the Helsinki Declaration, an international code of 
medical ethics, and was approved by the Medical Ethics Committee 
of the General Hospital of the Chinese People’s Liberation Army 
(Ethics No. S2022-770-02). Clinical information about each patient 
was collected, including demographic data, general clinical 
information, and neuropsychological assessments, including 
MMSE and MoCA, were performed on all subjects. Standardized 
Chinese versions of the MMSE and MoCA were used (Jia 
et al., 2021).
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2.3 Paradigm experimental process

Based on the research hypothesis that digital biomarkers 
through the writing process are expected to portray cognitive 
deficits at a fine-grained level in MCI due to AD populations, 
we designed a writing digital assessment paradigm for assessing 
cognitive function. Before the paradigm began, we trained staff in 
advance, informing them about the testing process and the 
operation of the human-computer interaction system. Subsequently, 
the staff would inform the participants about the standard 
procedure and handling methods. All subjects were in a quiet room 
for the assessment. A comfortable and stable chair was placed in 
front of the touch screen display. Staff helped participants adjust 
their posture and position to about 30 cm from the display, 
ensuring easy access to the screen. Subjects were asked to write 
continuously on the touch screen with the tip of their right index 
finger. Subjects had only one chance to perform the writing-
number evaluation paradigm. If a subject’s task duration exceeded 
3 min, they were considered unable to complete the paradigm and 
were excluded from subsequent analyses. We  used an artificial 
intelligence algorithm to extract digital biomarkers of the writing 
process, and then assessed the subject’s cognitive deficits, and 
professional clinicians will give patients corresponding suggestions 

based on clinical evaluation results and paradigm evaluation results 
to reduce the potential impact of paradigm evaluation results on 
patients’ health, and the paradigm information is shown in 
Figure 4.

2.4 Statistical analysis

All statistical analyses were performed using the generalized 
data analysis software package SPSS 26.0. The count data were 
compared with the chi-square test to compare the differences 
between groups, and the measurement data conforming to the 
normal distribution were expressed as x ± s, and the t-test 
independent samples were used to compare the differences 
between groups; the measurement data conforming to the skewed 
distribution were expressed as M(IQR), and the Mann–Whitney U 
test was used to compare the differences between groups. Second, 
we  used binary logistic stepwise regression to screen digital 
biomarkers of the writing process. Finally, we plotted the subjects’ 
work characteristic curve (ROC) and determined the single digital 
writing process biomarker and multiple digital writing process 
biomarkers combined to alert the MCI group by comparing the 

FIGURE 4

The information of paradigm. (A) Evaluation scene; (B) visualize the results, dynamic trajectory diagram; (C) visualize the results, writing results.
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area under the curve. p < 0.05 was considered 
statistically significant.

3 Results

3.1 Demographic and clinical 
characteristics

The effective sample size of this study was 72 participants, 38 
MCI due to AD and 34 HC, who were included in the MCI and HC 
groups, respectively. We analyzed the baseline information of the 
two groups for differences, and there were no significant 
differences (p > 0.05) between the two groups of participants in 
age (p = 0.068), gender (p = 0.738), and years of education 
(p = 0.062), as shown in Figure  5 and Table  3. Participants’ 
cognitive functioning was assessed by clinicians at the time of 
enrolment, and we performed the MoCA, MMSE Neurological 
Psychological Scale, and an intergroup variability analysis, 
suggesting that both groups had significantly lower MMSE total 
scores (p < 0.001) and MoCA total scores (p < 0.001) in the MCI 

group than in the HC group. All p-values reported are two-tailed 
unless stated otherwise.

3.2 Analysis of digital biomarkers

We analyzed the differences in digital biomarkers in the writing 
process between MCI and HC groups. The results showed that a total 
of 13 writing process digital biomarkers were significantly different 
between the HC and MCI groups (p < 0.05). In the MCI group, total 
task time (IPSDB1), task process time (IPSDB2), stroke counts per 
minute (IPSDB3), total pause time (IPSDB4), initial pause time 
(IPSDB5), total process pause time (IPSDB6), maximum process pause 
time (IPSDB7), average process pause time (IPSDB8), variability in 
process pause time (IPSDB9), the number of pauses (IPSDB10), and 
variability in writing speed (EFDB11) were significantly higher than 
that of the HC group, whereas the number of strokes counts per 
minute (EFDB3) and writing efficiency (EFDB4) were significantly 
lower than that of the HC group, and the results of the test of 
variability between the two groups are shown in Figure  6 and 
Tables 4, 5.

FIGURE 5

Data distribution of demographic and clinical characteristics in the MCI and HC groups.
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3.3 ROC curves for identifying MCI due to 
AD patients from all participants

We assessed the presence of cognitive deficits in the MCI and HC 
groups through the participant’s work characteristic curve (ROC) 
combined with the above digital biomarkers of the writing process 
with intergroup variability, but considering the limited effective 
sample size of this study and the risk of model overfitting by including 
too many indicators, we  used a stepwise regression method to 
downscale the digital biomarkers of the writing process, and after 
downscaling, average process pause time (IPSDB8), the number of 
pauses (IPSDB10), and variability in writing speed (EFDB11) were 
retained. We plotted the ROC curves for the discriminative ability of 
these three digital writing process biomarkers individually for HC and 
MCI groups, with an AUC of 0.783 (CI = 0.678–0.888) for the average 
process pause time (IPSDB8), an AUC of 0.675 (CI = 0.549–0.801) for 
the variability in writing speed (EFDB11), an AUC of 0.644 
(CI = 0.516–0.773) for the number of pauses (IPSDB10). The joint 
AUC value of the above three writing process digital biomarkers was 
0.918 (CI = 0.854–0.982), which was higher than the MMSE scale 
(AUC = 0.783, CI = 0.678–0.888) and MoCA scale (AUC = 0.859, 
CI = 0.772–0.947) are shown in Figures 7, 8.

4 Discussion

In this study, we propose a novel method for rapid intelligent 
screening of AD due to MCI based on the dynamic writing time series 
process. The method is based on a numerical writing assessment 
paradigm, which can characterize and quantify the cognitive deficits 
of MCI due to AD populations at a fine-grained level. We selected 
three digital biomarkers of the writing process, namely, average 
process pause time (IPSDB8), the number of pauses (IPSDB10), and 
variability in writing speed (EFDB11), whose combined warning 
efficacy was 0.918. This study provides a new and effective way to 
evaluate cognitive function of people with MCI due to AD based on 
human-computer interaction, and offers a new approach to rapid and 
intelligent screening of MCI due to AD. This method is not only time-
consuming and low-cost, but also has a high early warning effect, 
which has an important practical application value.

Firstly, digital biomarkers based on the dynamic writing time 
series process can characterize executive function deficits in MCI 
populations at a fine-grained level. The results of the present study 
showed that stroke counts per minute (EFDB3) and writing efficiency 
(EFDB4) of the digital biomarkers of executive function in the MCI 
group were significantly smaller than those in the HC group, and the 

variability in writing speed (EFDB11) was greater than that in the HC 
group in both MCI groups, and these findings are basically in 
agreement with those of Yu and Chang (2019) and Li et al. (2023), 
which suggests the possibility of the existence of the populations in 
the MCI group with executive dysfunction. Previous studies have also 
shown that writing characteristics such as writing strokes and speed 
changes can be used as important indicators for assessing executive 
functioning in patients with MCI due to AD (An et  al., 2023). 
Executive functioning is an umbrella term for a series of complex 
cognitive processes involved in the achievement of goal-directed 
behaviors by an individual, including a number of aspects such as 
planning, inhibitory control, and cognitive flexibility, which work 
synergistically with one another to ensure that an individual is able to 
plan effectively. These aspects work together to ensure that individuals 
can effectively plan, organize, monitor, and adjust their behaviors to 
achieve their goals (Diamond, 2013). Several studies have shown that 
executive dysfunction in people with MCI is primarily related to the 
frontal cortex, especially the dorsolateral prefrontal cortex (Liang 
et al., 2011; Wu et al., 2014). Numerous studies have shown that the 
dorsolateral prefrontal cortex plays a key role in a variety of executive 
functions, such as response inhibition, cognitive flexibility, working 
memory, planning, and abstract reasoning (Jung et al., 2022; Elliott, 
2003; Hudziak et al., 2014). Functional magnetic resonance imaging 
(fMRI) studies showed that when MCI patients completed the Stroop 
range test and Wisconsin card classification tasks, the activation 
intensity and pattern of DLPFC were significantly abnormal, and their 
neural response time was significantly prolonged by Ko et al. (2009) 
and Miyake et al. (2000). Thus, MCI populations may suffer from 
executive dysfunction due to dysfunction in the dorsolateral prefrontal 
cortex, which ultimately manifests itself as abnormalities in numerical 
biomarkers of executive function during paradigm assessment.

Secondly, we found that digital biomarkers based on the dynamic 
writing time series can characterize the information processing speed 
of MCI populations at a fine-grained level. The results of this study 
showed that total task time (IPSDB1), task process time (IPSDB2), 
writing time (IPSDB3), total pause time (IPSDB4), initial pause time 
(IPSDB5), total process pause time (IPSDB6), maximum process pause 
time (IPSDB7), average process pause time (IPSDB8), variability in 
process pause time (IPSDB9), and the number of pauses (IPSDB10) 
were significantly higher in the HC group. These findings are in 
general agreement with those of Haworth et al. (2016) and Gonzales 
et al. (2017), and suggest a possible decline in information processing 
speed in the MCI populations. Previous studies have also shown that 
writing characteristics such as writing time and pause time can 
be important indicators for assessing information processing speed in 
MCI due to AD (Meulemans et al., 2022). Information processing 
speed is the speed at which an individual moves from receiving 
information to responding to or making decisions, and this metric 
plays an important role in cognitive functioning, learning ability, and 
performance in daily life. Studies have shown that slowing down the 
speed of information processing in patients with early AD may 
be related to a reduction in the volume of gray matter in the brain, 
especially atrophy of the hippocampus and entorhinal cortex (Toepper, 
2017). Other studies have shown that the decrease in information 
processing speed in early AD patients is the result of coordinated 
degeneration of multiple brain regions, including cortical atrophy 
(frontal and parietal lobes), damage to the hippocampus and limbic 
system, default mode network dysfunction, and loss of white matter 

TABLE 3 Differential results of demographic and clinical characteristics 
in the MCI and HC groups.

MCI n = 38 HC n = 34 p value

Age, years 63.50 (7.75) 60.50 (13.25) 0.068

Sex (female/male) 22/16 21/13 0.738

Years of education 12.00 (3.75) 9.00 (4.00) 0.062

MMSE score ** 25.50 (3.00) 28.00 (2.00) <0.001

MoCA score ** 20.00 (5.00) 26.00 (2.50) <0.001

** Indicates a significant difference between the two groups, at p < 0.01.
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FIGURE 6

Digital biomarkers of the writing process with intergroup variability in the MCI and HC groups.
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pathway integrity (Hassan et al., 2022; Van Dijk et al., 2012; Koch 
et al., 2015). Together, these changes lead to reduced neural signaling 
efficiency and abnormal allocation of cognitive resources. Therefore, 
the phenomenon of slowing down information processing speed in 
MCI populations during paradigm assessment ultimately manifests 
itself as an abnormality of numerical biomarkers of information 
processing speed during paradigm assessment process.

Then, previous studies have also used writing handwriting 
characteristics to screen for early warning MCI populations, but most 
of them are final outcome assessments without a fine-grained 
assessment of the dynamic process of writing time series, and they also 
suffer from poor age appropriateness and poor reliability with small 
sample sizes. The handwriting characteristics proposed by Jacek Kawa 
are good at distinguishing between patients with MCI, but they lack a 
detailed assessment of the writing process, and the task is relatively 
complex (Kawa et al., 2017). It requires a certain level of literacy and 
aids such as electronic pens, and is therefore somewhat unfavorable 
for large-scale screening. Nan-Ying Yu found that the handwriting 
accuracy of the MCI group differed significantly from that of the 

subjects in the normal group, but the sample size of the MCI and NC 
included was only 32, so the results needed to be further validated (Yu 
and Chang, 2019). The early warning performance of the new 
computational cognitive neural-based screening method for MCI due 
to AD in this study (AUC = 0.918) was improved compared to our 
previous fingertip interaction-based screening method (AUC = 0.830) 
(Li et al., 2023). In addition, the AUC of the MMSE and MoCA rating 
scales for early warning efficacy for MCI due to AD were 0.783 and 
0.859, respectively, which still had shortcomings such as high 
subjectivity, long time-consumption, and low early warning efficacy 
compared with the new method of screening for MCI due to AD 
proposed in this study. Therefore, the digital written assessment 
paradigm in this study has the advantages of intelligence, convenience, 
and high early warning efficacy, which is worthy of further research 
and popularization. The results of the paradigm evaluation will 
be  provided by professional physicians in combination with the 
patient’s clinical evaluation results and provide corresponding 
suggestions to reduce the potential impact of the paradigm evaluation 
results on the patient’s health. In addition, the digital writing 
evaluation paradigm designed in this study has been promoted and 
applied in many hospitals and communities in China. It is currently 
only used on desktop computers, and any laptops and desktop 
computers with touch functions can be  evaluated for patients. 
Clinicians only need simple training to implement a digital patient 
assessment paradigm. In the future, we will expand this paradigm to 
platforms such as tablets and smartphones.

Finally, this study has some limitations. (1) Only 72 subjects were 
included in this study, with a small sample size. In the future, large-
scale multi-center sample studies and cohort follow-up studies should 
be conducted, and multiple verification methods should be adopted, 
and machine learning methods should be  considered to further 
improve the accuracy of the research results; (2) The dimensions of 
digital biomarkers extracted in this study were limited, and digital 
biomarkers in dimensions such as eye movement tracking, EEG, voice, 
and gait should be added to conduct a more comprehensive cognitive 
ability assessment; (3) The subjects of this study were limited to 
individuals who use the Chinese language, so the handwriting 
characteristics in this study may only be valid for Chinese speakers. 
However, this also limits universality across cultures and languages. 
In the future, we  will discuss the adaptability of the paradigm to 
non-Chinese scripts, or how to replicate similar concepts in alphabetic 
language systems. (4) Although the early warning effect of digital 
biomarkers extracted in this study was high, the medical mechanism 
behind them was unknown. In the future, it is necessary to further 
verify their reliability and scientificity in combination with 
neuroimaging data such as fMRI and PET.

5 Conclusion

In summary, we  propose the research hypothesis that digital 
biomarkers of the writing process are expected to portray cognitive 
deficits at a fine-grained level in MCI due to AD populations. Based 
on this hypothesis, we designed a writing digital assessment paradigm 
and extracted digital biomarkers that can characterize the writing 
process of the subjects to achieve fine-grained quantification of their 
cognitive behavioral processes. After clinical validation, the efficacy of 
digital biomarkers of writing process in distinguishing between 

TABLE 4 Differential results of digital biomarkers of information 
processing speed in the MCI and HC groups.

MCI n = 38 HC n = 34 p value

IPSDB1, s ** 47.23 (27.91) 64.85 (41.70) <0.001

IPSDB2, s ** 36.17 (19.62) 25.09 (8.70) <0.001

IPSDB3, s ** 14.18 (6.32) 12.77 (3.28) <0.001

IPSDB4, s ** 29.94 (18.54) 18.57 (9.29) <0.001

IPSDB5, s ** 7.05 (6.11) 3.40 (5.23) 0.007

IPSDB6, s ** 20.33 (13.20) 12.24 (6.67) <0.001

IPSDB7, s ** 2.73 (3.54) 1.00 (0.95) <0.001

IPSDB8, s ** 0.34 (0.21) 0.22 (0.11) <0.001

IPSDB9, s ** 0.61 (0.94) 0.11 (0.14) <0.001

IPSDB10, time * 50.00 (20.5) 46.00 (7.25) 0.035

* Indicates a significant difference between the two groups, at p < 0.05; ** indicates a 
significant difference between the two groups, at p < 0.01.

TABLE 5 Differential results of digital biomarkers of executive function in 
MCI and HC groups.

MCI n = 38 HC n = 34 p value

EFDB1, score 0.00 (1.00) 1.00 (1.00) 0.103

EFDB2, time 59.68 (6.26) 57.71 (3.71) 0.075

EFDB3, time ** 79.65 ± 49.51 117.55 ± 48.87 <0.001

EFDB4* 0.38 (0.12) 0.42 (0.12) 0.011

EFDB5, px 9,051.29 ± 2,565.92 8,969.04 ± 2,186.12 0.146

EFDB6, px 417.12 (276.62) 388.04 (164.86) 0.752

EFDB7, px 154.49 ± 51.35 156.01 ± 38.44 0.889

EFDB8, px 57.48 (40.83) 48.90 (42.95) 0.122

EFDB9, px/s 1,068.36 (699.69) 1,131.05 (330.49) 0.423

EFDB10, px/s 594.18 ± 249.91 690.49 ± 160.21 0.059

EFDB11* 84.64 (53.68) 58.75 (36.45) 0.011

* Indicates a significant difference between the two groups, at p < 0.05; ** indicates a 
significant difference between the two groups, at p < 0.01.
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AD-MCI and HC populations was up to 0.918, and this method 
provides ideas for early warning screening of AD-MCI and 
HC populations.
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