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Reductionist modeling of
calcium-dependent dynamics in
recurrent neural networks

Mustafa Zeki* and Tamer Dag

College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait

Mathematical analysis of biological neural networks, specifically inhibitory

networks with all-to-all connections, is challenging due to their complexity

and non-linearity. In examining the dynamics of individual neurons, many fast

currents are involved solely in spike generation, while slower currents play a

significant role in shaping a neuron’s behavior. We propose a discrete map

approach to analyze the behavior of inhibitory neurons that exhibit bursting

modulated by slow calcium currents, leveraging the time-scale di�erences

among neural currents. This discrete map tracks the number of spikes per burst

for individual neurons. We compared the map’s predictions for the number

of spikes per burst and the long-term system behavior to data obtained from

the continuous system. Our findings demonstrate that the discrete map can

accurately predict the canonical behavioral signatures of bursting performance

observed in the continuous system. Specifically, we show that the proposedmap

a) accounts for the dependence of the number of spikes per burst on initial

calcium levels, b) explains the roles of individual currents in shaping the system’s

behavior, and c) can be explicitly analyzed to determine fixed points and assess

their stability.
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calcium-activated potassium channels, integrate and fire, neural networks, inhibitory
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1 Introduction

The primary goal of this study is to characterize the role of calcium-dependent

adaptation in bursting neurons observed in many brain regions (e.g., see Lee et al., 2010;

Wallén et al., 2007; Matthews et al., 2009; Gold et al., 1996; Behr et al., 1996; Bhattacharjee

and Kaczmarek, 2005; Guckenheimer et al., 1993; Bazhenov et al., 2001a). While these

models arise in many neuronal systems (e.g., see Traub et al., 2005; Bazhenov et al., 2001a;

Moustafa et al., 2008; Zeki and Moustafa, 2017), there has been almost no mathematical

analysis of biologically realistic models. This difficulty arises because the models are

highly nonlinear, include a large number of parameters, and typically exhibit a complex

structure of oscillatory behavior (e.g., see Wilson and Laurent, 2005; Perez-Orive et al.,

2004; Bazhenov et al., 2001b; Zeki and Balcı, 2019, 2020).

In our study, we initially examine a network consisting of one excitatory neuron

and two inhibitory neurons, where the inhibitory neurons are connected through lateral

inhibition and receive synaptic input from the excitatory neuron. As a slow modulatory

current, inhibitory cells are assumed to include an intrinsic slow afterhyperpolarization

(sAHP) current (e.g., see Lee et al., 2010; Wallén et al., 2007; Matthews et al., 2009;

Gold et al., 1996; Behr et al., 1996; Bhattacharjee and Kaczmarek, 2005; Guckenheimer

et al., 1993; Bazhenov et al., 2001a). For example, in the case of two inhibitory neurons,

one neuron fires and inhibits the other. With ongoing activity, calcium in the active cell

increases, which activates the sAHP current. The sAHP current decreases the excitability
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of the active inhibitory cell. At some point, the second inhibitory

cell manages to take over the activity. In this network, we aim

to determine the number of spikes each active cell makes per

burst [number of spikes per burst (NSPB)] and how it depends on

important model parameters.

Our approach for studying a general class of networks is to

first reduce the full system of differential equations to a discrete-

time dynamical system using a Poincaré map-like approach. This

is done systematically so that every parameter in the full model

corresponds to some parameter, or combination of parameters,

in the discrete model. The discrete model has many advantages

over the full continuous model; it is considerably easier to solve

numerically, allowing for a more systematic study of how the

model’s behavior depends on parameters. Moreover, in many

cases, we can mathematically analyze the discrete model, which

is typically impossible for the full system of equations, except in

very special circumstances (see Liu et al., 2015; Terman et al., 1998;

Rubin and Terman, 2000 for examples of mathematical analysis at

the single neuron level and on networks with relaxation oscillator

neurons, respectively).

We reduce the full model to a discrete one by constructing a

map, which keeps track of the active and silent (inhibited) cells.

That is, if we know which inhibitory cell is active and for how long

it has been active, then the discrete map determines which cell fires

during the next bursting period. However, it turns out that it is not

enough to simply keep track of active and silent inhibitory cells.

We must also know what the calcium levels of these cells are. In

some sense, the calcium levels can be thought of as a slow variable

in the sense of geometric singular perturbation theory (e.g., see

Ermentrout and Terman, 2010). If we know which cell is active

during a bursting episode and what the initial calcium levels of

all the cells, and then the map determines the current number of

spikes per burst and which cell is going to be active during the next

bursting period.

Transient synchronization phenomena, observed prominently

in biological neuronal networks such as the olfactory systems

of insects and mammals, play a crucial role in sensory

information processing and neural coding. Bazhenov et al. (2001a)

and Bazhenov et al. (2001b), through extensive experimental

recordings and computational modeling of the locust antennal

lobe, explicitly showed that transient synchronization emerges

from inhibitory neuronal competition mediated predominantly

by calcium-dependent potassium currents. Despite the biological

clarity provided by such experimental and computational studies,

rigorous analytical frameworks explicitly capturing and predicting

these transient synchronization behaviors remain underdeveloped.

Our study explicitly addresses this gap by deriving analytically

tractable discrete maps of calcium-dependent potassium currents,

providing explicit formulas for the number of spikes per burst

(NSPB). Such analytical maps allow systematic analysis of stability,

bifurcations, and parameter sensitivity, significantly deepening

theoretical insights into transient synchronization and directly

complementing the foundational work by Bazhenov et al. (2001a)

and Bazhenov et al. (2001b).

We begin this study by considering small excitatory-inhibitory

networks with special network architectures. By considering small

networks, we are able to more easily demonstrate how the

discrete map is constructed. Moreover, we perform a detailed

mathematical analysis of the types of solutions that these networks

exhibit and how they depend on parameters. The analysis

leads to concrete formulas for the number of spikes each cell

exhibits during each episode. In particular, we obtained an

explicit formula for the number of spikes per burst, depending

on initial calcium values and system parameters (see Lemma

3.4). Using this formula, we constructed an explicit map and

analyzed the existence and stability of its fixed points for

various networks (see Theorem 3.6). The discrete map leads

to a clear understanding of the roles each component of the

model, including the ionic currents, plays in generating the

network behavior.

2 Materials and methods

Inhibitory cells (IC) were modeled as a single compartment

with currents that are governed by integrate-and-fire kinetics

as follows:

Cm
dv

dt
= −

(

gl(v− EL)+ IAHP
)

+ Isyn + Iapp (1)

where Cm is the membrane capacitance, which has a value of 1µF,

gl is the leakage conductance with gl = 0.18µS, EL is the leak

reversal potential with EL = −60mV , and Isyn denotes the sum

of synaptic currents. In this study, IAHP is Ca2+ dependent K+

current (Huguet et al., 2016; Sloper and Powell, 1979; Bazhenov

et al., 2001a,b; Terman et al., 2002). The applied current Iapp is set

to a value of 0.2nS.

Cells are assumed to fire an action potential when the

membrane potential reaches a threshold level vT = −50mV . Once

the threshold level is crossed, the membrane potential is reset to the

level vR = −75mV .

The intrinsic IAHP current is described by the following:

IAHP = gAHP(v− EK)
[Ca]

[Ca]+ k1
(2)

with maximal conductance gAHP = 50µS. IAHP rate constant

k1 = 10. The reversal potential for IAHP is EK = −90mV .

The calcium concentration [Ca] is assumed to increase by 1 µM

with every action potential and decays exponentially according to

the equation

[Ca]′ = −kca[Ca] (3)

with the decay rate parameter kCa = 0.001ms−1.

The calcium dynamics used in this model follow an exponential

decay form that reflects the experimentally observed behavior of

calcium-dependent potassium currents in hippocampal neurons,

as reported by Sloper and Powell (1979). This modeling approach

has also been employed in several biologically detailed neuronal

models (Traub et al., 2005; Bazhenov et al., 2001a,b). While more

complex calcium handling mechanisms exist, including buffering

and multi-compartmental effects, the effective decay rate used

here serves as a biologically grounded approximation that enables

analytical tractability without sacrificing key dynamical features

relevant to the bursting behavior and inhibitory competition

under study.
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An excitatory cell (EC) is modeled as follows:

Cm
dv

dt
= −gl(v− EL)+ Istim (4)

The parameters are identical to those of the inhibitory cell. The

applied current for the EC is given as Istim = 2nS.

2.1 Synaptic currents

The synaptic inhibition between the inhibitory cells is given as

Isyn = II→I + IE→I . The currents II→I and IE→I are modeled as

II→I = gisi(v− EGABA)

IE→I = gese(v− EAMPA)

with peak synaptic conductance gi = 25µS and ge = 4µS,

respectively. The synaptic activation variables si and se are reset to

1 with every action potential and decay exponentially according to

the equations

s′i = −βisi

and

s′e = −βese

with decay rates given as βi = 0.1ms−1 and βe =
2ms−1, respectively.

2.2 Network geometry

We analyze networks consisting of both excitatory

and inhibitory neurons, focusing on configurations

with one excitatory cell and two or more inhibitory

cells (see Figure 1). In these networks, all neurons are

connected through all-to-all coupling, allowing for direct

interactions between every neuron. This architecture

enables competition between inhibitory cells in response

to excitatory input, a key aspect we explore in this paper,

though the precise mechanism of this competition will be

detailed later.

3 Results

3.1 Simple networks

3.1.1 Network behavior
In Figure 2, the behavior of a single IC in response to a

step current is displayed together with the [Ca] dynamics.

In response to the input current, inhibitory cells fire, but

inter-spike intervals gradually increase with time. This is

due to the AHP current that activates with the build-up

of calcium (Figure 2). AHP current is a hyperpolarizing

current (making the membrane potential more negative).

With continued spiking, interspike intervals reach a point

at which the increase in calcium is compensated by its slow

decay. Hence, inter-spike intervals eventually stabilize to a

constant level.

In a 2IC-1EC network, each inhibitory cell (IC) receives

synaptic inhibition from the other (see network architecture,

Figure 1). Inhibitory cells compete to spike in response to excitatory

input from the excitatory cell (EC). The competition between

ICs is primarily driven by the calcium levels within the ICs

and the strength and decay rate of the slow inhibitory currents

between them.

The network functions as follows: When excitatory input

is received, one inhibitory cell, called the active IC (aIC),

fires an action potential and inhibits the other, referred to as

the silent IC (sIC), via inhibitory-to-inhibitory (I-to-I) slow

inhibition (see Figure 3). The aIC may continue spiking for

several cycles, maintaining inhibition of the sIC. However,

with each spike, calcium builds up in the aIC, activating

the calcium-dependent potassium current (IAHP), which

gradually decreases the excitability of the aIC (see Figure 3,

second panel).

The sIC eventually becomes active after a few cycles, depending

on the kinetics and strength of the IAHP and II→I currents, and

takes over the spiking activity. This allows the roles of the ICs to

switch. During the subsequent burst, calcium levels in the former

aIC decay while they increase in the newly active sIC (see Figure 3).

Through this process, ICs alternate in firing bursts in response to

the excitatory input.

The number of cycles required for the interchange between the

active IC (aIC) and the silent IC (sIC), which corresponds to the

number of spikes per burst (NSPB), varies depending on the kinetic

and conductance parameters, as well as the initial values of the

activation variables for the IAHP and II→I currents (Figure 4). In

Figures 4A, B, different initial conditions for Ca2+ concentrations

and varying values of the Ca2+ decay parameter (kCa) lead to

different NSPB outcomes. The NSPB does not stabilize immediately

and shows variability from burst to burst. One of the primary

objectives of this study is to characterize the evolution of NSPB

and explore its variation based on initial Ca2+ levels and other key

model parameters.

3.2 Approximation of pre-excitation
potential values

At the subthreshold levels, the only active currents are IAHP,

IL, and the synaptic inhibition II→I . The changes in the IAHP and

II→I are very slow within the inter-spike interval. That is, in the

ICs model

d[Ca]

dt
∼= o(ǫ) and

dsi

dt
∼= o(ǫ).

If we let ǫ → 0, then the membrane potential value can be

approximated as a fixed point of the potential equation; that is,

−(Il + IAHP + II→I)+ Iapp = 0
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FIGURE 1

Network geometries. Simulations of networks consisting of 2 inhibitory cells (IC) and one excitatory cell (EC), as well as 3 ICs and 1 EC, are presented.

In both configurations, the systems exhibit all-to-all coupling. Regular arrowheads indicate excitatory connections, while oval arrowheads represent

inhibitory connections.

FIGURE 2

Oscillations in inhibitory cells. The response of the inhibitory cell (IC) to square pulses results in spike frequency adaptation. With each spike, calcium

current activation increases, thereby activating the calcium-dependent potassium current. This potassium current has a hyperpolarizing e�ect,

causing the membrane potential to become more negative.

or

−(gl(v− EL)+ gAHPxCa(v− EK)+ gisi(v− EGABA))+ Iapp = 0

where xCa : = [Ca]
[Ca]+k1

(see Equation 2). Solving for v, we obtain v

as a function of [Ca]

vsub([Ca]) : = EK +
gl(EL − EK)+ gisi(EGABA − EK)+ Iapp

gl + gAHPxCa + gisi
(5)

If we can estimate [Ca] and si amounts of the inhibitory cells

at the end of inter-spike intervals, we can approximate preburst

subthreshold potential values using the above formula.

In Equation 5, the synaptic inhibition variable si decays

exponentially from its initial value of 1, with decay rate βi. Thus,

si can be approximated explicitly as si = e−βit3 , where t3 is the

duration of the inter-spike interval. This demonstrates explicitly

how the duration of inhibition influences NSPB calculations.

3.3 Calcium dynamics

The concentration of calcium, denoted as [Ca], is assumed

to undergo an immediate surge when the membrane potential

attains a predetermined threshold level, vtresh. Subsequently, it

experiences exponential decay throughout the inter-spike intervals

(see Equation 3).

Specifically, for an active inhibitory cell, the calcium dynamics

can be represented by the following differential equation:

d[Ca]

dt
=

{

IC , if v = vtresh

−kCa[Ca] otherwise

Here, the constant IC represents the instantaneous activation of the

calcium current. Solving this differential equation explicitly allows

us to determine the calcium value at the conclusion of the inter-

spike interval based on the initial calcium value. Let a0 and s0
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FIGURE 3

IC competition. In response to synaptic input from the excitatory cell (EC), inhibitory cells (ICs) compete to spike (upper panel). The key factor

determining which IC fires is the activation of the calcium-dependent potassium current (AHP), which increases with rising calcium levels (second

panel). Prolonged activation of the AHP current makes the membrane potential more negative, decreasing the likelihood of further spiking. This

process determines which IC remains active and which becomes silent.

FIGURE 4

Example network behaviors. Competition among inhibitory cells (ICs) in a 2IC-1EC network results in varying numbers of spikes per burst (NSPB)

depending on the initial calcium levels of the ICs and other key network parameters. (A) Upper: Comparison of two cases with initial calcium

concentrations of Ca2+1 (0) = 0 mM and Ca2+2 (0) = 3mM vs. Ca2+1 (0) = 0 mM and Ca2+2 (0) = 4 mM, both with a calcium decay rate of

kCa = 0.001 ms−1. (B) In the second simulation, kCa is varied: kCa = 0.001 ms−1 vs. kCa = 0.008 ms−1 with initial calcium values of Ca2+1 (0) = 0 mM

and Ca2+2 (0) = 3 mM for IC1 and IC2, respectively.

represent the calcium values of the spiking (active) and inhibited

(silent) inhibitory cells right at the onset of the inter-spike interval,

i.e., just before the membrane potential reaches the firing threshold,

vtresh. Consequently, the calcium level of the active cell, denoted

as [Ca]a, undergoes exponential decay according to the equation

derived from the initial value of a0 + IC . Thus, at the conclusion of
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an inter-spike interval, we obtain the following:

[Ca]a = (a0 + IC)e
−kCat3

Here, t3 represents the duration of the inter-spike interval.

Similarly, the calcium level of the inhibited (silent) cell, denoted

as [Ca]s, experiences exponential decay according to the same

equation. Hence, at the conclusion of the inter-spike interval, we

have the following:

[Ca]s = s0e
−kCat3

.

Assuming that the spiking inhibitory cell maintains its activity

for k consecutive spikes, we can compute the calcium levels of

both the spiking ([Ca]a) and silent ([Ca]s) inhibitory cells at the

conclusion of the kth inter-spike interval as follows: Let r = e−kCat3 .

Thus, at the conclusion of the first inter-spike interval, we have:

[Ca]a(1) = a0r + ICr

. This value can serve as the initial value for the second inter-spike

interval. Consequently, we obtain the following:

[Ca]a(2) = (a0r + ICr)r + ICr = a0r
2 + IC(r

2 + r)

At the conclusion of the kth inter-spike interval, we obtain

the following:

[Ca]a(k) = a0r
k + IC(r

k + rk−1 + ...+ r) = a0r
k + ICr

1− rk

1− r
.

By replacing the expression IC
1−r with A, we derive the following:

[Ca]a(k) = rka0 + A(1− rk) (6)

Similarly, we determine the calcium level of the inhibited cell

([Ca]s) at the conclusion of the s0 and the parameter r as follows:

[Ca]s(1) = s0r, [Ca]s(2) = s0r
2, ..., [Ca]s(n) = s0r

n. (7)

3.4 Explicit formula for number of spikes
per burst (NSPB) depending on pre-burst
calcium values and on the system constants

Knowing subthreshold [Ca] and si values alone is not enough

to estimate the NSPB; we should, in addition, quantify the effects of

[Ca] and si variables on the excitability of aIC and sIC. In order to

reach this goal, we consider the Equation 4 of the potential given in

the model. The idea to calculate the NSPB is that the interchange

between inhibitory cells will occur right after the subthreshold

potential values of the neurons are equal at the end of an

inter-spike interval (ISI).

Now, combining the ISI-end [Ca] and si calculation and the

quantification of their effects on the ISI-end potential value, we

can estimate how many cycles it takes for the excitability of

the sIC to be more than that of the aIC, that is, NSPB. If we

observe the excitability in terms of the ISI-end potential values,

we should calculate how many cycles calcium should accumulate

in the aIC so that the ISI-end potential of the aIC would be

equal to or less than that of the sIC, as in Figure 3. By combining

nth-calcium iteration and potential approximations, we obtained

an explicit formula (see Equation 8) for the NSPB of the aIC

depending on the initial [Ca] values and on the other system

parameters and compared NSPBs of the continuous model and

explicit NSPB formula, corresponding to different initial [Ca]

values (see Figure 5C).

We define one burst as a combination of cycles until the

interchange between aIC and sIC occurs. To understand when

exactly this interchange occurs, we look at the subthreshold

potential behavior of the ICs. With the accumulation of [Ca],

the potential level of aIC is reduced via the IAHP current.

The interchange will occur right after the potential level

of the aIC is equal to that of the sIC (Figure 3). Since

we have explicit formulas for the potential level depending

on pre-excitation [Ca] values of the aIC and sIC after n

consecutive cycles, we can combine these to obtain an equation

for NSPB in terms of other system parameters and ISI-end

[Ca] values.

Lemma. Let x0 and y0 denote the burst-initial [Ca] amounts of aIC

and sIC, respectively. Then, the number of spikes per burst, that is,

NSPB, can be given by

nxy(x0, y0) : = ceil(nCa(x0, y0)) (8)

with

nCa(x0, y0) =
ln

(

−m2+
√

m2
2−4m1m3

2m1

)

ln r
(9)

where for x ∈ R ceil(x) : = min{z ∈ Z : z > x}. Here m1, m2, m3

are functions of x0, y0 and system parameters.

Proof: Let va(n) : = vsub([Ca]a(n)) and vs(n) : = vsub([Ca]s(n)).

Also define x0 : = [Ca]a(0) and y0 : = [Ca]s(0). Assuming the

interchange between the active and silent inhibitory cells will occur

right after when va(n) = vs(n) and using the Equation 5, we obtain

gl(EL − EK)+ Iapp

gl + gAHPxn
=

gl(EL − EK)+ gisi(EGABA − EK)+ Iapp

gl + gAHPyn + gisi
(10)

with

xn : =
[Ca]a(n)

[Ca]a(n)+ k1
(11)

yn : =
[Ca]s(n)

[Ca]s(n)+ k1
(12)

(see Equation 2). This equation can be solved for n explicitly to

obtain the desired formula.

Inverting both sides of the Equation 10, we obtain

the following:

gl + gAHPxn

gl(EL − EK)+ Iapp
=

gl + gAHPyn + gisi

gl(EL − EK)+ gisi(EGABA − EK)+ Iapp
.

(13)
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FIGURE 5

Comparison of the explicit formula with the full system. Heat maps illustrate the stable number of spikes per burst (NSPB) as a function of initial

calcium concentrations ([Ca2+]) for the continuous system (left) and the discrete map using the explicit formula (right). The color gradient indicates

the number of spikes per burst, with warmer colors (red, orange) corresponding to higher NSPB values and cooler colors (blue, cyan) representing

lower NSPB values. The axes represent the initial calcium concentrations for inhibitory neurons. These visualizations demonstrate the accuracy of the

discrete map in capturing the complex dynamics observed in the continuous model.

Let us introduce the following parameters.

a =
gl

gl(EL − EK)+ Iapp

b =
gAHP

gl(EL − EK)+ Iapp

c =
gl + gisi

gl(EL − EK)+ gisi(EGABA − EK)+ Iapp

d =
gAHP

gl(EL − EK)+ gisi(EGABA − EK)+ Iapp
.

Substituting the above variables in the Equation 13 we obtain the

following simple form.

a+ bxn = c+ dyn

After substituting xn and yn from the Equations 11, 12 into this

equation, we obtain the following equation:

a+ b
[Ca]a(n)

[Ca]a(n)+ k1
= c+ d

[Ca]s(n)

[Ca]s(n)+ k1
(14)

The Equation 14 can be rewritten as follows:

a+ b

(

1−
k1

[Ca]a(n)+ k1

)

= c+ d

(

1−
k1

[Ca]s(n)+ k1

)

Rearranging this equation, we obtain the following equation:

−b

[Ca]a(n)+ k1
+

d

[Ca]s(n)+ k1
=

−a− b+ c+ d

k1
(15)

We previously calculated the formulas for the calcium levels of the

spiking and inhibited neurons after n spikes (see Equations 6, 7,

respectively). Substituting the formulas for [Ca]a(n) and [Ca]s(n)

into the Equation 15 and defining m : = −a−b+c+d
k1

, we obtain the

following equation:

−b

rna0 + A(1− rn)+ k1
+

d

s0rn + k1
= m

This equation can be rewritten as follows:

−b

(a0 − A)rn + A+ k1
+

d

s0rn + k1
= m

Combining the fractions, we obtain the following equation:

[

d(a0 − A)− bs0
]

rn − bk1 + d
(

A+ k1
)

s0
(

a0 − A
)

r2n +
[

s0
(

A+ k1
)

+ k1
(

a0 − A
)]

rn + k1
(

A+ k1
) = m

(16)

Rearranging the Equation 16, we obtain the following equation:

ms0
(

a0 − A
)

r2n +
(

m
[

s0
(

A+ k1
)

+ k1
(

a0 − A
)]

−
[

d(a0 − A)− bs0
])

rn

+
(

A+ k1
) [

mk1 − d
]

+ bk1 = 0 (17)
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FIGURE 6

Comparison of the explicit formula with the full system. Heat maps illustrate the stable number of spikes per burst (NSPB) as functions of

afterhyperpolarization conductance (gAHP) and inhibitory synaptic current conductance (gi) for the continuous system (left) and the discrete map

model (right). The color gradient represents the NSPB values, with lighter colors indicating higher NSPB values and darker colors indicating lower

values. The figures show how the parameters influence bursting behavior and highlight the strong qualitative correspondence between the

continuous model and the discrete map.

Setting

m1 =ms0
(

a0 − A
)

m2 =
(

m
[

s0
(

A+ k1
)

+ k1
(

a0 − A
)]

−
[

d(a0 − A)− bs0
])

m3 =
(

A+ k1
) [

mk1 − d
]

+ bk1

the Equation 17 becomes the following

m1r
2n +m2r

n +m3 = 0

This equation is a quadratic equation for the variable rn and can be

solved to have

rn =
−m2 +

√

m2
2 − 4m1m3

2m1

As a result, we obtain the following equation:

n =
ln

(

−m2+
√

m2
2−4m1m3

2m1

)

ln r

3.5 Comparison of explicit “number of
spikes per burst (NSPB)” formula with
continuous system simulations

In Figure 5, we illustrate how NSPB depends on the initial

calcium levels using both the continuous model (left panel) and

the discrete formula (right panel) derived in the previous Lemma.

Notably, the discrete formula qualitatively captures the relationship

between NSPB and the initial [Ca] values of the inhibitory cells.

When the difference in initial calcium levels between the

inhibitory cells is small, both the discrete formula and the

continuous model yield a low NSPB, as expected. In such cases,

only a few spikes are needed to reduce the excitability of the active

inhibitory cell compared to the silent one. Conversely, when the gap

between initial calcium levels increases, more spikes are required to

hyperpolarize the active IC (see Figure 5).

In Figure 6, we present heat maps showing the dependence of

NSPB on key model parameters, specifically gAHP and gi, for both

the continuous model and the discrete formula. NSPB is inversely

related to the conductance of the AHP current, gAHP, because

as gAHP increases, less calcium is needed to hyperpolarize the

active IC. On the other hand, NSPB increases with the inhibitory

conductance gi, as higher inhibitory conductance requires more

calcium to hyperpolarize the active IC, resulting in more spikes

per burst.

3.6 Discrete map

To clarify the analytical approach used to derive the discrete

map from the continuous calcium dynamics model, we provide a

detailed schematic diagram (see Figure 7). The diagram illustrates
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FIGURE 7

Schematic diagram illustrating the step-by-step derivation of the

discrete calcium map from the continuous model. The workflow

begins with voltage and calcium dynamics in the continuous

system, applies timescale separation, extracts the number of spikes

per burst (NSPB), and updates calcium levels analytically.

each step involved in constructing the discrete map: starting from

the continuous model defined by differential equations for voltage

and calcium dynamics, identifying timescale separation to treat

calcium as a slow variable, estimating the subthreshold voltage,

calculating the number of spikes per burst (NSPB) explicitly, and

updating calcium levels accordingly. Finally, this procedure yields

an analytically tractable discrete map.

Understanding the NSPB formula allows for the calculation of

the initial [Ca] values for the next burst. This is achieved by using

formulas that estimate the calcium concentrations of inhibitory

cells following n-spikes (see Equations 6, 7, respectively). In this

manner, a map that calculates the initial calcium values of the

(n + 1)th burst based on the nth burst’s initial calcium values and

other system parameters is constructed (see Equation 18).

The constructed map is non-linear. However, using certain

linearization techniques, the fixed points of the map can

be calculated explicitly, and their existence and stability can

be established.

To understand the long-term behavior of the network, we

examine the following non-linear map by combining the iterated

[Ca] Equations 7, 6 with the equation for NSPB (Equation 8). Let

Cx(k) and Cy(k) denote the calcium levels of the aIC and sIC,

respectively, at the beginning of the kth interchange of the neurons

with k = 1, 2, .... Let us also define

nxy(k) : = nxy(Cx(k),Cy(k))

as the burst number corresponding to [Ca] values Cx(k) and Cy(k)

(see Equation 8). Therefore, the discrete map to find k + 1th
pre-burst calcium values and corresponding NSPB can be set up

as follows:

Cx(k+ 1) = rnxy(k)Cy(k)

Cy(k+ 1) = rnxy(k)Cx(k)+ A(1− rnxy(k)).

Let F :R2 → R
2 be defined as F(−→w ) = rnxy(

−→w )D + d(−→w ) with,

D : =

[

0 1

1 0

]

and d(−→w ) : =

[

0

A(1− rnxy(
−→w ))

]

. Then the discrete

map takes the following form:

−→c (k+ 1) = F
(−→c (k)

)

with−→c (k) : =

[

Cx(k)

Cy(k)

]

. (18)

Since r < 1 with the given parameter set, the following

lemma follows.

Lemma. Given n ∈ N
+, let Fn :R2 → R

2 be defined as Fn(
−→x ) =

rnD−→x +
−→
d n with

−→
d n =

[

0

A(1− rn)

]

. Then the map

−→x (k+ 1) = Fn(
−→x (k)) (19)

has stable fixed points Dn : = (I2 − rnD)−1−→d n.

Theorem. Let Dk be defined in the above lemma for k ∈ N
+. If

k − 1 < nCa(Dk) < k, then Dk is a stable fixed point of the map

(Equation 18).

Proof: Since nxy(Dk) = k, by lemma, Dk is a fixed point of the map

(Equation 18). Again by the continuity of the function nCa, there

exist a δ neighborhoodNk(δ) ofDk, such that k−1 < nCa(Nk(δ)) <

k. ∀ Ek ∈ Nk(δ), ‖F(Dk) − F(Ek)‖2 = rk‖D(Dk − Ek)‖2 ≤
rk‖Dk−Ek‖2 < rkδ where ‖x‖2 denotes Euclidean norm of x ∈ R

2.

This shows that Dk is stable as r < 1.

Corollary. Given k ∈ N
+, there exists a gAHP value such that Dk is

a fixed point of the map given in Equation 18.
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FIGURE 8

Bifurcation diagrams illustrating the dependence of stable bursting solutions (NSPB) on parameters gAHP (left) and gi (right), comparing results from

the continuous system (black curves) and the discrete map model (red curves). Each point represents the long-term stable number of spikes per

burst (NSPB). Both systems exhibit discrete saddle-node bifurcations, where stable NSPB solutions appear or disappear as parameter values vary,

demonstrating that the discrete map e�ectively captures the qualitative dynamical behavior of the continuous model.

Proof: nCa(x0, y0) given in Equation 9 is a continuous function of

the parameter gAHP. For gAHP ≫ 1, nCa(Dk) < 1 and as gAHP → 0,

nCa(Dk) → ∞; that is, neurons either interchange in the initial

cycle or never interchange, respectively. Then, by continuity of nCa,

there exists a gAHP such that k − 1 < n(Dk) < k, and hence,

nxy(Dk) = k. By the theorem, Dk is a stable fixed point of the map

(Equation 18).

3.7 Bifurcation analysis

To explicitly characterize how parameter changes affect

the long-term bursting behavior, we conducted a bifurcation

analysis, illustrated clearly in Figure 8. These bifurcation

diagrams explicitly show the dependence of the stable number

of spikes per burst (NSPB) on critical model parameters,

specifically gAHP and gi. As these parameters vary, we

observe discrete saddle-node (fold) bifurcations, where stable

NSPB solutions either appear or disappear, clearly reflecting

transitions in the system’s qualitative dynamical behavior.

These bifurcations are accurately captured by the discrete

map, further validating its effectiveness in modeling the

system’s dynamics.

3.8 Generalization to all-to-all couplings

The analysis of small networks is generalized to larger ones.

An illustrative example is the nIC-1EC network with all-to-all

coupling. Techniques used to analyze the behavior of the 2IC-1EC

network are generalized to understand the dynamics of the nIC-

1EC network.

The dynamics of the larger network are very similar to 2EC-

1EC network: In response to EC excitation, one of the ICs fires

and inhibits the other ICs. The firing IC competes with the IC that

has the lowest [Ca] among the inhibited ICs. The duration of this

competition is determined similarly to the 2IC-1EC network.

A discrete map is constructed for this system by ordering ICs

with respect to their initial [Ca] levels (see Equation 20).

Similar linearization techniques used in the analysis of the 2IC-

1EC network are applied to this system to understand the long-term

behavior of the system. Here, more interesting solutions, such as

alternating NSPBs, were obtained. Through this analysis, explicit

formulas for fixed NSPBs and k-periodic (alternating NSPBs)

solutions are derived.

We now consider a network of m + 1 ICs and one EC. All ICs

are coupled to all other ICs via inhibition. We order ICs according

to their initial calcium amounts as I1, I2, ..., Im+1. In response to

the EC excitation, I1, the IC with the lowest calcium level, spikes

and inhibits all other ICs. As calcium builds up in I1, I2 will be the

second IC to spike, as it has the highest level of excitability among

all other ICs since it had the second lowest calcium level initially.

Here we assume that inhibition is strong enough and calcium builds

up fast enough so that the calcium level of the aIC will be more

than that of any other sIC after completing its burst. To analyze the

network behavior in the long run, we consider the following map.

Let Cx(k) and Cyi(k), with i = 1, 2, ...,m denote calcium

levels of aIC and sICs right after the kth interchange, respectively.

Set nxy(k) = nxy(Cx(k),Cy1(k)), then calcium amounts, and

corresponding burst numbers can be followed with the following
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map:

Cx(k+ 1) = rnxy(k+1)Cy1(k)

Cy1(k+ 1) = rnxy(k+1)Cy2(k)

.........

Cy(m−1)(k+ 1) = rnxy(k+1)Cym(k)

Cym(k+ 1) = rnxy(k+1)Cx(k)+ A(1− rnxy(k+1)).

Define

−→
Cam(k) : =









Cx(k)

Cy1(k)

...

Cym(k)









(m+1)×1

,
−→
d m(k) : =









0

...

0

A(1− rnxy (k+1))









(m+1)×1

and

Em : =















0 1 0 0 ... 0

0 0 1 0 ... 0

.....

0 0 0 ... 0 1

1 0 0 ... 0 0















(m+1)×(m+1)

.

Then we obtain following non-linear map,

−→
Cam(k+ 1) = rnxy(k+1)Em

−→
Cam(k)+

−→
d m(k). (20)

s-periodic Solutions

Given s ∈ Z
+ with s < m+ 1 and l ∈ N set

−→
d m

l
: =











0

..

0

A(1− rl)











(m+1)×1

and

Fml (
−→x ) : = rlEm

−→x +
−→
d m

l ,
−→x ∈ R

(m+1).

For a given −→n s : = (n1, n2, ..., ns)1×ns , we consider the following

function of−→x

Fm−→n s
(−→x ) : = Fmns (F

m
ns−1(...F

m
n1
(−→x )))

= rn1+n2+...+nsEsm
−→x + rn2+...+nsEs−1

m

−→
d m

n1
+

rn3+...+nsEs−2
m

−→
d m

n2
+ ...+ rnsEm

−→
d ns−1 +

−→
d ns .

If we let
−→
d nsm : = rn2+...+nsEs−1

m

−→
d m

n1
+ rn3+...+nsEs−2

m

−→
d m

n2
+ ... +

rnsEm
−→
d m

ns−1
+

−→
d m

ns

Fm−→n s
takes the following form:

Fm−→n s
(−→x ) = rn1+n2+...+nsEsm

−→x +
−→
d nsm. (21)

Again, since r < 1, we obtain the following lemma.

Lemma. Let−→n s, m and s be given as above. Then the map−→x k+1 =
Fm−→n s

(−→x k) has stable fixed point D−→n s
given as follows:

D−→n s
: = (Im+1 − rn1+..+nsEsm)

−1−→d ns . (22)

The following theorem can be proved by the same approach

taken to prove the 2IC-1EC case.

Theorem. Let −→n s = (n1, .., ns) and D−→n s
= (v1, .., vm+1) be

defined as above for m, s ∈ Z
+ with s < m. If ni − 1 <

nxy(r
n1+...+ni−1 (vi, vi−1)) < ni for i = 1, 2, ...s, then D−→n s

is an

s-periodic stable point of the map (Equation 20).

4 Discussion

In this paper, we developed a new, simple discrete model

of calcium-modulated bursting inhibitory neurons. The discrete

model explains key observations regarding the bursting activity

patterns of the cells and is closely related to the singular

perturbation approach used to analyze biological neural networks.

The model consists of two main parts: 1) a nonlinear function that

calculates the NSPB of the active (firing) cell depending on the

initial calcium levels, and 2) functions tracking the calcium levels

of inhibitory cells (active and silent) depending on the calculated

NSPB. The observed bursting activity converged to a constant

NSPB, which might change depending on the model parameters.

Importantly, the resulting fixed points of the discrete map are

stable. Given the nonlinear nature of the resulting map, this is a

significant outcome of the study.

The present study focuses on the development and

mathematical analysis of a calcium-dependent bursting model

derived from biologically grounded principles. While direct

validation against calcium imaging or electrophysiological data is

beyond the scope of this work, our findings complement previous

modeling and experimental studies on transient synchronization

in olfactory networks (Bazhenov et al., 2001a,b), where inhibitory

competition and calcium-dependent potassium currents play a

key role.

Although rebound-like activity is observed in our model, it

is important to note that the underlying mechanism does not

rely on classical post-inhibitory rebound (PIR) currents, such

as T-type calcium (Wang et al., 1991) or h-currents (Lüthi and

McCormick, 1998). Rather, the rhythmic switching behavior

between inhibitory neurons arises from calcium accumulation

during spiking, which activates a calcium-dependent potassium

current. This hyperpolarizes the neuron and temporarily

suppresses its excitability, thereby allowing its counterpart to

become active. Thus, the rebound-like behavior in our system is

driven by a calcium-mediated inhibitory competition mechanism,

consistent with findings in biologically grounded models of

olfactory networks (Bazhenov et al., 2001a,b).

The proposed model exhibited several key properties related

to the spiking behavior underlying the bursting dynamics of

inhibitory cells. First, the discrete model contained many of the

biophysical parameters of the continuousmodel. Second, themodel

could replicate the NSPB using the initial calcium values and other

important model parameters. Finally, the model enabled explicit

mathematical analysis. We demonstrated that the proposed model

could explain the alternation between inhibitory cells and the

associated NSPB in all-to-all coupled nIC-1EC networks.

Several previous studies have explored calcium-dependent

bursting using discrete maps or simulations (e.g., see

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2025.1565552
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zeki and Dag 10.3389/fncom.2025.1565552

Channell Jr et al., 2007; Rubin and Terman, 2012; Ibarz et al.,

2011). Unlike heuristic or purely numerical methods common in

prior work, our key contribution is an explicit closed-form formula

(Equation 8) that analytically predicts the number of spikes per

burst (NSPB). This explicit formulation enables direct, analytical

insights into how calcium levels and key parameters (gAHP, gi, kca)

affect burst lengths, facilitating stability analyses and natural

extensions to larger networks.

Although we primarily illustrate our findings around a

single stable equilibrium, the discrete map derived here indeed

supports multiple stable solutions depending on parameters and

initial conditions (gAHP, gi, kca, initial calcium concentrations). Our

method explicitly allows the exploration of multistability, which we

discuss further in Section 4.7 for larger network structures.

We compared the behavior of the model to the data obtained

from the continuous system. However, we assumed that the

number of excitatory neurons remained constant (one) in the

simulated systems. In Terman et al. (2008), the authors developed a

discrete map that can function with different numbers of excitatory

cells in the network. However, no explicit mathematical analysis for

the long-term behavior of the network activity was shown, possibly

due to the complications caused by the varying synaptic excitation

to the inhibitory cells at each cycle.

In this study, we assumed that the switch between the

active inhibitory cell and the silent inhibitory cell occurs when

their subthreshold potential levels are equalized. Generalization

to random connections can be done by including synaptic

excitation to the compared subthreshold potentials. This type of

generalization would make sense in the case of instantaneous

activation of excitatory synaptic currents (AMPA), as opposed to

NMDA-type excitatory synaptic currents that operate on much

slower time scales. We obtained promising preliminary results for

random network architectures with varying excitatory connections

to the inhibitory cells, but we did not include them here to keep

the focus of the current study on the bursting duration of the

inhibitory cells.

The proposed model not only generated NSPB similar to the

continuous system data but also explicitly predicted the long-term

NSPB. In summary, our model predicted various aspects of the

bursting behavior in an nIC-1EC network with all-to-all couplings

in a way that made explicit mathematical analysis of the long-term

behavior possible. Our results revealed a high degree of overlap

between the discrete map and continuous network results.
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