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Learning andmemory are fundamental processes of the brain which are essential

for acquiring and storing information. However, with ageing the brain undergoes

significant changes leading to age-related cognitive decline. Although there

are numerous studies on computational models and approaches which aim

to mimic the learning process of the brain, they often concentrate on generic

neural function exhibiting the potential need for models that address age-related

changes in learning. In this paper, we present a computational analysis focusing

on the di�erences in learning between young and old brains. Using a bipartite

graph as an artificial neural network to model the synaptic connections, we

simulate the learning processes of young and older brains by applying distinct

biologically inspired synaptic weight update rules. Our results demonstrate the

quicker learning ability of young brains compared to older ones, consistent

with biological observations. Our model e�ectively mimics the fundamental

mechanisms of the brain related to the speed of learning and reveals key insights

on memory consolidation.
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1 Introduction

Learning is a fundamental process of the human brain, which is essential for acquiring,

storing, and retrieving information as memories. Memory enables navigating the world

and responding to various circumstances by making informed decisions. Moreover, it

provides context for adapting to new situations based on past experiences and developing

new skills over time. Learning enhances cognitive function by building neural connections

between different pieces of information, which enhances critical thinking and problem-

solving abilities. From a psychological point of view, memory has been described as the

faculty for encoding, storing and retrieving information (Squire, 2009). It is how we

navigate the world, build on past experiences, acquire new information and learn from it.

In an effort to understand the biological process of learning, Donald Hebb proposed

a theory for the behavior of neural networks in the brain which is now commonly

known as “Hebb’s rule” (Hebb, 1949). Hebb’s rule postulates that when two neurons

are repeatedly activated simultaneously the synapse, or the connection between them,

strengthens. This synpatic strengthening is thought to be the biological basis for learning

and memory formation, and Hebb’s theory laid the foundation for understanding the

workings of synaptic plasticity, the fundamental mechanism by which the brain learns

through strengthening and weakening neural connections.
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Bliss and Lømo (1973) discovered long-term potentiation

(LTP), which follows Hebb’s postulate, and because of its long

duration it is widely thought to underlie long-term memory.

Moreover, various experimental evidence has also supported the

idea that LTP underlies memory. This includes observations that

indicate blocking LTP impairs memory, and learning induces

LTP (Giese, 2012). It is also suggested by research which activate

synapses with optogenetics that LTP induction is sufficient for

memory formation (Nabavi et al., 2014). Researchers have observed

that learning is induced in mice when activating synapses, and a

different frequency of light stimulation that weakens the synapses

blocks learning using a process called long-term depression (LTD).

Moreover, there are morphological changes in dendritic spines

that are associated with synaptic transmission which includes

the formation and shrinkage of new dendritic spines (Ma and

Zuo, 2022). Research by Bliss and Collingridge demonstrates

the crucial role of N-methyl-D-aspartate (NMDA) receptors in

initiating LTP, highlighting the molecular processes that support

synaptic plasticity (Bliss and Collingridge, 1993). Further studies

have shown that blocking NMDA receptors impairs LTP leading to

deficits in spatial learning tasks (Nakazawa et al., 2004). Research

also suggest that LTP and LTD are not unitary phenomena, but

vary depending on the synapses and circuits involved allowing the

brain to adapt to new experiences (Malenka and Bear, 2004). This

indicates the importance of LTP and LTD in tasks that require the

brain to remember spatial environments.

With the ageing population and the increase in rates of

age-related neurological disorders, it is important to understand

how learning differs between young and older individuals.

Burke and Barnes (2006) discusses the age-related changes in

synaptic plasticity and memory, emphasizing the decline in LTP

and slower formation of new synaptic connections in older

adults due to various changes in dendritic morphology, cellular

connectivity, Calcium ion dysregulation, and gene expression. A

study by Ménard et al. (2015) identified a correlation between the

presynaptic and postsynaptic glutamatergic component expression

in the hippocampus and spatial memory capacity, indicating that

changes in receptor density in older brains may limit synaptic

connectivity. A study by Lu et al. (2024) which aims to identify

the differences in LTP-like plasticity between younger and older

individuals discovered that LTP is reduced in older adults aged 60–

80 resulting in lower performance in episodic memory, language

function and global cognitive function. Additionally, theoretical

models suggest that the number of memories that can be stored

depends on the complexity of synaptic connections and the

structure of representations stored in a neural network (Fusi,

2021). Findings from such models can be translated into biological

systems, offering insights into the decline of memory in ageing

brains.

Aziz et al. (2019) have looked at learning from a biological

perspective in young and old mice and have found that the

mechanism that seemed to lead to learning in old mice was

not synaptic strength (LTP) but rather the increase in multi-

innervated dendritic spines (MIS). This means that a dendritic

spine with typically two excitatory inputs from different neurons

is generated leading to the connection of three neurons (two

presynaptic neurons and one postynaptic neuron). Studies with

LTP-deficient mutant mice suggest that MIS generation requires

more training trials than LTP, thus slowing down the speed

of learning (Radwanska et al., 2011). Therefore, an age-related

switch in learning mechanisms from LTP to MIS generation may

explain in part the differences between learning in younger and

older individuals.

To better understand biological systems, it is useful to

view them through mathematical models. There are numerous

different parameters to consider in biological brains, many

that have not even been discovered yet; but in these models

one usually tries to simplify them and select only a few

that are relevant to the investigation. Therefore, they enable

exploration of the complex biological mechanisms in a more

controlled and isolated environment due to their simplified nature,

offering insights that can be challenging to obtain by directly

experimenting with living beings. For neurological experiments,

a commonly used model of the brain is the artificial neural

network (ANN), which is designed to simulate the structure

and function of the brain’s neural network. ANNs attempt to

mimic the brain’s ability to learn through mechanisms similar to

synaptic plasticity to strengthen and weaken neural connections

based on activity. Artificial neurons adjust the weights of their

connections during learning which enables the network to

recognize patterns and make predictions (Basheer and Hajmeer,

2000).

Structurally, ANNs consist of interconnected nodes arranged

in layers. While there are ANNs that do not include hidden layers,

many, such as multilayer perceptron (MLPs) and convolutional

neural networks (CNNs) are feed-forward with hidden layers

connoting that information only passes through the network in

a single direction (Goodfellow et al., 2016). In such networks,

connections between nodes are represented as weighted edges,

and they determine how signals propagate through the network.

Examples of ANNs used biologically can be seen in various studies,

including (Shine et al., 2021), where models were used to link

cellular mechanisms of neuromodulation to large-scale neural

dynamics. They have created a model of the brain that represents

cortical regions (boxes) that are thought to be organized into

a functional hierarchy. A similar study has produced a model

of the neurodegeneration from Alzheimer’s disease (Jones et al.,

2022).

Various other biologically inspired models have also been

developed that specialize in specific computational learning tasks.

Contrastive Hebbian learning (Xie and Seung, 2003) provides a

biologically plausible mechanism for training energy-based neural

networks by adjusting synaptic weights based on differences in

network states. Hopfield networks (Hopfield, 1982) serve as classic

models of associative memory, using recurrent connections to store

and retrieve patterns. Restricted Boltzmannmachines (RBMs) have

also been widely used to model probabilistic representations of

neural activity and learning dynamics (Hinton and Salakhutdinov,

2006). Although originally simple and abstract representations

of basic neural function, brain-inspired models have evolved

into highly sophisticated systems capable of deep learning and

have shown success in tasks such as image-recognition, speech

processing and autonomous decision-making (Schmidhuber, 2015;

LeCun et al., 2015).
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FIGURE 1

The structure of the artificial neural network represented by a

bipartite graph with N vertices as input nodes, N vertices as output

nodes, and N2 edges connecting each pair of input and output

nodes.

Research into modeling age-related changes in the brain using

artificial neural networks and other computational approaches is

still in relatively early stages. Although computational models have

been used to model general brain processes, their application to

age-related neural degeneration remains limited. However, it is

a highly significant area of research for understanding the more

intricate details of age-related decline of brain function particularly

related to learning and memory consolidation. There remains a

gap in research that is explicitly focused on modeling age-related

changes in the brain, and it presents a critical opportunity for

further research. In this paper, we present a computational model

to mimic the learning and memory consolidation process of the

brain.Wemodel the learning process of young and old brains using

a simple neural network with appropriate learning functions to

simulate their behaviors. Through this model, we analyse the key

differences as well as similarities between the function of young and

old brains during learning.

2 Method

Our approach involves a simplified model of learning using an

artificial neural network representing the neural connections (i.e.,

synapses) in the brain. The primary objective of our simulation

is to model the number of learning iterations required by young

and old brains to consolidate a memory. This section details

the network structure and how we designed the learning task of

the network.

2.1 Model structure

Our model mimics the fundamental neural connectivity of the

brain using an artificial neural network (ANN) designed to capture

the biological learning mechanisms and memory consolidation

techniques observed in neuroscientific studies. The model is

structured as a fully connected ANN consisting of N binary input

nodes (I) and N output nodes (O) connected by weighted edges

(E) forming a bipartite graph as represented by Equation 1 and

Figure 1. Similarly to conventional ANNs, the weights of our

network activate and deactivate depending on the state of the

inputs, and the signals reaching the output layer are adjusted

accordingly. A firing threshold (T) selected based on the learning

objective of the network determines the activation state of the

output nodes.

G(V ,E)

V = I ∪ O

I ∩ O = ∅

I = {Ii : Ii ∈ {0, 1}}

O = {Oj : Oj ∈ R}

E = {(Ii, Oj, wij) : Ii ∈ I, Oj ∈ O, wij ∈ R)}

∀i, j ∈ {1, 2, ...,N}

(1)

The model we designed for our experiments consists ofN = 30

input and output nodes. We initialized the weights of the model

considering the baseline condition where all input nodes are active

(Ii = 1 , ∀i ∈ {1, 2, ...,N}) resulting in a fully engaged network

where signals flow through all edges. We initialized the weights for

the edges by sampling from a normal distribution N (µ = 1, σ =

0.2) and rescaled the weights such that the sum of outgoing weights

of each input node was equal to 1 corresponding to the activation

status of the input (Equation 2).

wij ∼ N (1, 0.2)

wij ←
wij

∑N
j=1 wij

, ∀i ∈ {1, 2, ...,N}
(2)

Each output node accumulates the signals from all its incoming

active edges as given by Equation 3, and under the initial model

configuration where all input nodes are active, the weights of all

incoming edges contribute to the output signal.

Oj =

N
∑

i=1

Iiwij , ∀j ∈ {1, 2, ...,N} (3)

2.2 Input patterns and threshold
generation

For our model, we considered input patterns where only six

of the 30 input nodes are activated. This ratio was chosen as an

appropriate one between activated and non-activated nodes based

on the animal model in Tayler et al. (2013) where about 20% of

the CA1 hippocampal neurons are involved in learning. Taking into

account the possible combinations to activate six out of 30 nodes,
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there are
(30
6

)

= 593,775 possible patterns that can be used for the

experiments.

The activation of an input node indicates that all 30 outgoing

edges of that specific node are activated and carry signal to the

output nodes. To determine the overall signal reaching an output

node, the weight of the six active incoming edges are summed

for each node (Equation 3) and considering that the remaining 24

edges are from inactive input nodes, they are disregarded.

We determined the firing threshold (T) for the output signal

in order to set up the model state before learning and reduce the

total number of valid input patterns determined beforehand. We

define the model state before the learning process as the input

patterns where none of the output nodes are activated. That is,

the signal reaching all output nodes are below the firing threshold.

For our model, we determined T such that approximately only

25% of all input patterns are valid considering the model state

before learning. Threshold values were hypothesized based on

the range of maximum signal reaching an output node for the

input patterns. The threshold found for the initial set of input

patterns was 0.2405, which resulted in 137,017 valid input patterns,

characterizing patterns before the learning process.1 Since valid

input patterns are those with a maximum sum below the threshold,

our model simulates a brain prior to a learning experience and will

be further utilized to simulate different types of learning in young

and old brains.

2.3 Learning process modeling

We modeled the learning process using two distinct learning

rules for young and old brains which update the weights of edges

corresponding to a chosen output node at each iteration or time

step. We select output nodes to be updated using the roulette

wheel selection to allow output nodes with higher signals more

chance to activate. This procedure follows the fitness proportionate

selection whereby a fitness is assigned to all output nodes based on

its signal and the probability of each node j being selected is given

by Equation 4. Therefore, the higher the signal of an output node,

the higher its probability of undergoing the weight update.

P(j) =
Oj

∑N
k=1 Ok

, ∀j ∈ {1, 2, ...,N} (4)

In each iteration we amend the sum of the signal reaching the

selected output node based on the result of the weight updating

rule, demonstrating the strengthening of the connections between

input and output nodes. An output node is activated when the sum

of its incoming activated edges surpasses the threshold T (Oj ≥ T).

We consider the learning process to be complete when six output

nodes from each input pattern cross the threshold after undergoing

the weight update process. The source code implementing the two

learning approaches is publicly available on Github.2

1 The datasets generated for this study can be found in the King’s

College London research data repository, KORDS at https://doi.org/10.

18742/28143317.

2 https://github.com/JayaniH/ageing-brains-learning-models/tree/main

In young learning, we update all incoming edges of the chosen

output node in each iteration. We defined the weight updating rule

for young learning as shown by Equation 5 where wij is the set of

weights for all incoming active edges for the chosen output node j.

Following the biological process of long-term potentiation (LTP),

the function increases the strength of the weights at a constant

learning rate α in each time step. In our experiments we used

α = 1.5.

wij ← α wij , ∀i ∈ {1, 2, ...,N} (5)

We repeat the weight updating process by selecting output

nodes using the roulette wheel selection until the signal of six

output nodes surpass the threshold. Figure 2 (top) demonstrates

one iteration of the young learning process using a simplified neural

network with six nodes. If node with signal O1 is chosen by the

roulette wheel selection, all its incoming edges are updated by 1
2 of

their previous weights which also increments the signal O1 by
1
2 its

previous value.

In old learning, we update only one edge in a single iteration.

We defined the weight update function for old learning as shown

by Equation 6 where wij is the weight of the edge to be updated and

wik being an active outgoing edge of the same input node i.

wij ← wij + wik

wik ← 0
(6)

Old learning is modeled based on the concept of multi-

innervated dendritic spines (MIS) where synaptic connections are

strengthened by attracting additional synapses. Once an output

node is chosen to be updated using roulette wheel selection, two

edges are selected to perform MIS. The first edge (wij) is chosen

using roulette wheel selection similarly to Equation 4, however,

using the magnitude of the weights rather than output signals. It is

reinforced with the weight of the second edge (wik), selected using

anatomical proximity with coin tossing simulation to determine

the direction in which it would be chosen relative to the input

node. The second edge (wik) is chosen from the same input node

i where the first edge (wij) originates. This is to represent the

MIS process, which is formed of two presynaptic neurons and

one postsynaptic neuron. We remove the existing connection of

the second edge (wik) and add its weight to the first edge (wij)

simulating the behavior of re-wiring connections. If the weight

updating procedure does not push the output signal over the

threshold in the current iteration, we select the next edge based on

proximity as wik and add its weight to the updated first edge wij

in the next iteration. We repeat the process until the signal crosses

the threshold or all possible edges are added to the first edge. In

the latter scenario, we select the next output node according to the

roulette wheel selection to continue the learning process from the

next iteration. Figure 2 (bottom) represents one iteration of the old

learning process using a simplified network of six nodes. When O1

and w11 are chosen using the roulette wheel selection as the output

node and its edge to be updated, a second edge is selected from

the remaining outgoing edges of the same input node with signal

I1 based on proximity. Assuming that the selected second edge is

w12, it is re-wired to O1 by removing its original connection from

O2 and adding its weight to O1.
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FIGURE 2

Young and old learning processes. (Top) One iteration of the young learning process represented using a 6-node network. The chosen output node

is O1 and all its incoming edges are incremented by 0.5 of their initial weights resulting in the signal reaching the selected node being increased by

0.5 of its previous value. (Bottom) One iteration of the old learning process represented using a 6-node network. If the chosen output node is O1 and

w11 is selected as the edge for the weight update, the second edge w12 is selected based on proximity from the same input node and its connection

is re-wired from O2 to O1 by removing the edge and adding its weight to w11.

3 Results

This section presents an analysis of the learning processes

and output patterns generated by our model under young and

old learning conditions, highlighting differences in learning speed,

output similarity and memory specificity.

Considering that both young and old learning update the

weights corresponding to one output node at any given time

step, a minimum of six iterations are required for any input

pattern to complete learning for both methods. As shown in

Figure 3, the young learning process completes in the minimum

number of required iterations for ∼85% of input patterns.

This indicates that for these patterns each selected output node

underwent the weight update process only once for its signal to

surpass the firing threshold. The remaining patterns completed

learning in under 10 iterations. In contrast, only 0.2% of the

patterns complete the old learning process in six iterations, with

the remaining patterns taking up to 22 iterations to complete.

These results indicate that the model along with the biologically

inspired weight update rules effectively simulates the learning

speed of young and older brains with young learning being

considerably faster.

In addition to the comparison of learning speeds, we analyzed

the similarity of output patterns obtained via young and old

learning for the same inputs. We define the similarity between two

patterns Pa and Pb as the number of common active nodes.
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FIGURE 3

The graph represents the comparison of speed of the learning processes in young and old brains. The x-axis shows the number of iterations and the

y-axis shows the number of patterns that completed learning at each iteration, with percentages highlighted as data tips.

We observed that there are no patterns that result in identical

output patterns (i.e., all six active nodes are the same) for young

and old learning. Meanwhile, 36 patterns yield outputs with five

common active nodes which accounts for less than 0.1% of all

patterns. More than 80% of the output patterns have two or fewer

active nodes in common. This outcome indicates the tendency of

young and old learning mechanisms to activate different neuron

patterns when learning the same concepts.

Additionally, we investigated the specificity of the output

patterns generated by young and old learning. We observed that

∼79% of the output patterns are unique in both categories. Among

the remaining patterns, 9–10% of have two copies and ∼0.75%

have three copies. Furthermore, there are 58 and 54 patterns with

four copies for young and old learning respectively, while one

and two patterns have five copies which accounts for ∼0.04% of

all the output patterns. This high specificity indicates that despite

some replication, the output patterns generated by both young

and old learning remain largely distinct. Moreover, the activation

probability of output nodes follows a near-uniform distribution,

with all nodes having a probability of activation within the range

of 17%–21%, and a maximum difference of 1% between young and

old learning.

Although both young and old learning exhibit the same trend

in output pattern specificity, we observed that the two groups of

output patterns are largely disjoint. Only 25,527 output patterns are

common between young and old learning, accounting for ∼21%

of distinct patterns. This indicates that although the specificity of

memory can be preserved in older brains, the formation of memory

varies due to the differences in learning mechanisms.

In our preliminary experiment, we used the clean-slate

assumption for both young and old learning where both started

with a state where no output nodes were activated for each

input pattern assuming that no prior learning has taken place.

However, older brains often benefit from previously accumulated

knowledge for learning new concepts. Therefore, we compared the

speed of old learning with and without prior knowledge using

weights preloaded by young learning for one input pattern and the

initial weights respectively. As demonstrated by Figure 4, there is

significant speed up in learning with prior knowledge. More than

2% of the output patterns are at a learned state from the start

which results in not requiring any iterations to complete learning.

Approximately 27% of the patterns require less than six iterations

indicating that they had at least one active output node prior to

learning.

4 Discussion

In this study our aim was to develop a computational model

that captures the biological mechanisms underlying the learning

processes in young and ageing brains. To achieve this, we

constructed a simple artificial neural network using a bipartite

graph, with nodes and edges representing the neurons and

their synapses, respectively. We generated input patterns where

six out of 30 nodes are activated and established a threshold

to use 25% of patterns as our “before learning” phase. We

simulated the learning process by updating edge weights until

six output nodes received a signal greater than the threshold,
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FIGURE 4

The graph represents the comparison of speed of the learning in old brains with and without prior learning. The x-axis shows the number of

iterations and the y-axis shows the number of patterns that completed learning at each iteration, with percentages highlighted as data tips.

which characterized the completion of learning. We used a

learning rule inspired by long-term potentiation for young

learning and a rule based on multi-innervated synapses for

old learning.

Our results demonstrate that the learning mechanism of

younger brains take less time for learning compared to older brains

when starting with the same initial conditions, which coincides

with the natural biological observations of the human brain

function and behavior. This suggests that our model effectively

mirrors the fundamental aspects of learning speed and memory

consolidation observed in the brain. Additionally, our findings

indicate that young and old learning processes tend to utilise

different spatial locations for memory storage, while maintaining a

high degree of memory specificity that follows similar trends across

age groups. Furthermore, our results demonstrate that old learning

with prior knowledge is considerably quicker compared to learning

with a clean slate which gives insights to the efficiency of building

on previously stored knowledge compared to acquiring completely

new information.

Various biologically inspired models of learning can be found

in previous studies. Particularly, restricted Boltzmann machines

(RBMs) (Hinton and Salakhutdinov, 2006) share architectural

similarities with our bipartite graph-based model, as both use two-

layer structures with weighted connections. However, our approach

differs by incorporating biologically motivated learning rules

inspired by long-term potentiation (LTP) and multi-innervated

synapses (MIS), focusing on synaptic modifications in young

and ageing brains rather than probabilistic inference or energy

minimisation.

A crucial future direction in our research involves the

analysis of memory capacity and the spatial locations of memory

consolidation in young and ageing brains. The hippocampus

and prefrontal cortex are known to play vital roles in memory

formation and retrieval, but these regions undergo significant

changes with age which leads to decline in memory capacity. This

analysis is important because memory is not stored uniformly

across the brain and different types of memory may be affected to

varying degrees by ageing. In neural networks, memory capacity

is bound by the plasticity-stability trade-off where the increase of

the ability to learn new memories leads to faster forgetting of old

ones. By integrating findings on synaptic complexity and memory

representation within neural network models, future studies could

provide deeper insights into howmemory capacity diminishes with

age and how this process might be mitigated.
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