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Mounting experimental evidence suggests the hypothesis that brain-state-

specific neural mechanisms, supported by the connectome shaped by evolution,

could play a crucial role in integrating past and contextual knowledge

with the current, incoming flow of evidence (e.g., from sensory systems).

These mechanisms would operate across multiple spatial and temporal

scales, necessitating dedicated support at the levels of individual neurons

and synapses. A notable feature within the neocortex is the structure

of large, deep pyramidal neurons, which exhibit a distinctive separation

between an apical dendritic compartment and a basal dendritic/perisomatic

compartment. This separation is characterized by distinct patterns of incoming

connections and three brain-state-specific activation mechanisms, namely,

apical-amplification, -isolation, and drive, which have been proposed to be

associated - with wakefulness, deeper NREM sleep stages, and REM sleep,

respectively. The cognitive roles of apical mechanisms have been supported

by experiments in behaving animals. In contrast, classical models of learning

in spiking networks are based on single-compartment neurons, lacking the

ability to describe the integration of apical and basal/somatic information. This

work provides the computational community with a two-compartment spiking

neuron model that supports the proposed forms of brain-state-specific activity.

A machine learning evolutionary algorithm, guided by a set of fitness functions,

selected parameters defining neurons that express the desired apical dendritic

mechanisms. The resulting spiking model can be further approximated by a

piece-wise linear transfer function (ThetaPlanes) for use in large-scale bio-

inspired artificial intelligence systems.
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1 Introduction

Thanks to an evolutionary history spanning hundreds of

millions of years and selecting from countless individuals, the

structural connectome and cellular mechanisms have become adept

at supporting the integration of multi-modal sensory evidence

with internal hypotheses about the world and the self (Papale

et al., 2023; Muckli et al., 2015; Sporns et al., 2005; Hagmann

et al., 2008). Additionally, specialized solutions have emerged

at the macro-, meso-, and micro-scales, enabling the expression

of dynamic repertoires of functional connectivity (Cabral et al.,

2017). At the cellular level, within at least some types of large,

cortical pyramidal cells of the mammalian neo-cortex (in layer

5: L5 PCs, see Figure 1), specific feed-forward sensory input can

be amplified by contextual and feed-back information by the so-

called apical-amplification (AA) principle (Phillips et al., 2016).

In particular, Phillips (2023) and Phillips et al. (2025), building

on previous studies (Larkum et al., 1999, 2009; Larkum, 2013),

have proposed that AA and related apical dendritic mechanisms

are among the cellular foundations of mental life. AA is thought

to play an important role during wakefulness (Larkum, 2013;

Phillips et al., 2016), by inducing high-frequency bursts in a subset

of neurons that detect temporal coincidences between internal

priors and the flow of external information. This makes them

ideal candidates for the neural correlate of conscious perception

and supports advantageous cognitive functions, including faster

classification/recognition and more rapid, reliable learning of

new patterns.

Evidence suggests that AA is replaced by distinct principles

and mechanisms during transitions to other brain states (Aru

et al., 2020a,b)—specifically, apical isolation (AI) during the deepest

stages of NREM sleep (as in anesthesia; Suzuki and Larkum,

2020), and apical drive (AD) during REM sleep dreaming (Aru

et al., 2020b)—and possibly during daydreaming, when attention

to sensory inputs is reduced. The roles of AI and AD can be related

to the functions of deep sleep and (day-)dreaming, respectively.

Sleep has evolved and been maintained across all animal species

studied, despite its apparent lack of productivity. There is

increasing evidence that it promotes memory consolidation and

integration, as well as preparation for anticipated tasks (Tononi

and Cirelli, 2014; Buzsáki, 2015; Sejnowski and Destexhe, 2000),

and returns the network to optimal functional state after periods

of awake learning (Watson et al., 2016; Tononi and Cirelli,

2020). Mammals devote a significant portion of their time

to sleep, especially at young age, when the overall learning

rate is highest (Frank et al., 2001), whereas sleep deprivation

negatively impacts cognitive performance (Killgore, 2010). These

considerations underscore the importance of adequate modeling

of sleep, including the underlying cellular mechanisms, and their

impact on cognitive functions. In deep sleep, AI induces neurons

to ignore inter-areal signaling, enabling local optimizations of

the synaptic matrix, e.g., homeostasis and associations, with

beneficial cognitive and energetic effects during post-sleep

wakefulness like those demonstrated in Capone et al. (2019) and

Golosio et al. (2021).

Here, we propose a method to transition from the

classical modeling approach of networks, which relies on

single-compartment point-like spiking neurons, toward

incorporating simple apical dendritic mechanisms, in particular

dendritic Ca2+-dynamics, specifically in an exemplary model

configuration we named Ca-AdEx. This inclusion supports the

expression of intriguing brain-state-specific learning capabilities.

Also, it enables more efficient simulations to investigate the

possible impact of dendritic mechanisms on conscious processing

in the cortex, as proposed by the Dendritic Integration Theory (Aru

et al., 2020a). Recently, Storm et al. (2024) have proposed that such

subcellular mechanisms may provide a unifying principle that may

help bridging gaps between different theories of consciousness,

toward a more integrative, multi-scale view.

Single-compartment models with spike frequency adaptation,

such as the Adaptive Exponential Integrate and Fire neuron (AdEx)

(Brette and Gerstner, 2005), have enabled the construction of

networks capable of entering both wakefulness-like asynchronous

irregular regimes and deep-sleep-like synchronous slow oscillation

regimes (e.g., Pastorelli et al., 2019; Capone et al., 2017). For

such networks, mean-field models have been developed (di Volo

et al., 2019). These mean-field descriptions of the behavior of

spiking networks composed of AdEx neurons have supported

the development of models based on connectomes at the scale

of the whole mammalian/human brain (di Volo et al., 2019;

Aquilué-Llorens et al., 2023), also capable of expressing both the

asynchronous and synchronous regimes. However, these models

do not capture the activity of individual neurons and synapses in

engram coding, nor do they support the simulation of the temporal

evolution of engrams (Josselyn et al., 2015).

Targeting the simulation of intrinsic and network

rhythmogenesis of the CA3 region (Pinsky and Rinzel, 1994)

have introduced a two-compartment model of hippocampal

pyramidal neurons. Even if this model includes a superset of the

intrinsic currents of the distal compartment of Ca-AdEx, it is

missing what needed to detect the temporal coincidence of apical

and (peri-)somatic signals, later experimentally demonstrated by

Larkum et al. (1999), and does not consider the later AD and AI

hypotheses. Notably, we have used as starting point for the distal

compartment of the novel Ca-AdEx the (Larkum et al., 2004)

model, that demonstrates how a dendritic input can increase the

gain of layer 5 pyramidal neurons, to which we have added the

Ca2+dependent K current (essential to terminate Ca2+spikes),

a more accurate modeling of the somatic compartment, and

what necessary to address the emerging AI and AD experimental

hypotheses. In a seminal study of the effect of Sleep Slow

Oscillations on memory consolidation, Wei et al. (2016) have

proposed a two-compartment model that, also including a similar

set of intrinsic current, have been conceived to simulate only

deep sleep oscillations, therefore not targeting wakeful AA and

dreaming AD mechanisms.

The cognitive and energetic functions specific to different brain

states, enabled by AA and AI mechanism, have been explored

in spiking models engaged in learning and sleep cycles. These

models aim to simulate the activity and contribution of individual

neurons and monitor synaptic changes over time (Capone et al.,

2019; Golosio et al., 2021; De Luca et al., 2023). Although

these models utilize the temporal coincidence between contextual

and perceptual information emulating AA mechanism during
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FIGURE 1

Brain-state specific apical mechanisms in pyramidal neurons. (A) Cortical pyramidal cell. Green: soma and (peri)somatic dendrites. Orange: apical

dendritic tuft. Gray: apical dendrite. Black: axon. Inputs from other areas, representing internally generated priors and top-down signals from areas

higher in the hierarchy are segregated to touch the apical tuft (light red arrow). Sensorial evidence and input from areas at lower hierarchical levels

(light blue arrow) target the somatic/perisomatic zone together with local signaling (green arrow). (B) During wakefulness, the AA mechanism signals

the temporal coincidence of (peri-)somatic and apical inputs by emitting high-frequency burst. (C) In deep-sleep, AI induces the soma to ignore

apical signals. (D) When dreaming, AD induces a multi-areal integration driven by internal imagery in absence of sensorial inputs.

wakeful learning, and AI like mechanisms during deep-sleep,

they are still based on single-compartment neurons. Therefore,

they necessitate precise calibration of currents carrying contextual

priors and novel evidence. Such modeling approaches cannot

fully leverage the capabilities of apical mechanisms, for example,

the transition to much higher frequencies associated with apical-

amplification during wakefulness, apical-drive during dreaming, or

apical-isolation during deep, slow-wave sleep.

Within the framework of bio-inspired artificial intelligence,

a few studies (e.g., Capone et al., 2023b, 2022) have begun to

explore the specific advantages of apical-amplification-like bursting

mechanisms for fast learning in spiking networks engaged in

complex temporal tasks. However, these models have taken as

working hypotheses the existence of transfer functions that enter

a bursting regime when a temporal coincidence between perceptual

and sensorial signals is detected. Here, we demonstrate how to

construct a two-compartment neuron model based on cellular

biophysical evidence, capable of supporting an apical-amplification

bursting mechanism.

Furthermore, bio-inspired artificial intelligence algorithms

would benefit from neural models characterized by a simple

transfer function, simplifying the definition of training rules. A

classic transfer function adopted in artificial intelligence is the

ReLU (rectified linear unit) rule, which approximates the transfer

function of single-compartment neurons. We will show how

to introduce a transfer function suitable for approximating the

response of the two-compartment neuron to the combination

(Is, Id) of somatic and distal signals, capable of describing the apical-

amplification, -isolation, and -drive regimes. We have named this

transfer function ThetaPlanes (Is, Id).

The extension of the AdEx model to include an apical

compartment with simplified Ca2+-dynamics (the Ca-hotzone,

here abbreviated to Ca-HZ) requires a few tens of parameters,

implying a search in a high-dimensional space for fine-tuning.

For any mathematical model, understanding the sensitivity of

the model output to perturbations and correlations among the

parameters defining it is crucial. This need becomes even more

apparent when dealing with high-dimensional parameter spaces,

where the dependency of outputs on underlying parameters

becomes less intuitive for the modeler. As in many other

research fields, neuroscience demands a thorough understanding

of these relationships to draw meaningful conclusions about the

simulated behavior of the modeled phenomena (Nowke et al., 2018;

Yegenoglu et al., 2022). Population-based optimization techniques

offer a more efficient approach to exploring large parameter spaces

than brute-force testing of all possible parameter combinations.

Depending on the shape of the manifolds, different algorithms

may be more or less effective in navigating the parameter space

and identifying areas of interest to the modeler. While, for

example, gradient-based methods typically identify local minima

and converge very quickly, not all fitness evaluation measures and

parameter spaces are suitable for such algorithms (Yegenoglu et al.,

2020). Simulated annealing and cross-entropy methods provide

suitable gradient-free exploration techniques but also require fine-

tuning of hyperparameters. In contrast, evolutionary strategies and

similar population-based methods can effectively navigate complex

parameter spaces and quickly adapt to the manifolds if the level of

noise or stochasticity is maintained at a suitable level, depending

on the variations induced by the parameters with respect to the

fitness. Several such algorithms can be tested and even combined
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to achieve a comprehensive understanding of parameter sensitivity

and interdependencies. The tools and methodology adopted in this

work to explore the parameter space defining the two-compartment

model we named Ca-AdEx are detailed in dedicated Section 2.

Multi-compartment (MC) models have been successful in

reproducing experimentally observed dendritic processes and

computations (Segev, 2000), particularly the interaction between

apical Ca2+-spikes and somatic action potentials (Larkum et al.,

2004; Hay et al., 2011; Shai et al., 2015). Most often, MC models

are paired with Hodgkin-Huxley (HH) type ionic channels. The

spatially extended nature of the dendritic tree, requiring many

compartments, leads to models that are expensive to simulate. Past

simplification efforts have focused on two largely orthogonal axes

of advance: either condensing the HH channels into a simpler

effective spike generationmechanism (Kistler et al., 1997; Pozzorini

et al., 2015) or reducing the number of compartments needed in a

simulation while maintaining desired response properties (Wybo

et al., 2021). To ultimately arrive at the most efficient formulation

of a neuron model, a simplified description of dendritic non-

linearities needs to be combined with a reduction in the number

of compartments, in such a way that the model architecture is

flexible and can admit a range of dendritic computations. Previous

work on this topic used a hybrid combination of compartment

dynamics and kernel convolutions (Naud et al., 2014), the former

to model Ca2+-activation and the latter to capture the somato-

dendritic interactions. While the use of convolutions is a general

way to capture the linear component of intra-dendritic interactions

(Wybo et al., 2013, 2015), it is computationally inefficient compared

to the use of normal coupling terms between compartments

(Wybo et al., 2021). For this reason, we propose an approach that

solely relies on normal compartmental dynamics, which has the

added advantage of potentially integrating any type of non-linear

conductance. By design, this approach can thus also implement

other dendritic non-linearities, such as N-Methyl-D-Aspartate

(NMDA) spikes (Schiller et al., 2000; Major et al., 2008, 2013).

We demonstrate this potential by extending the two-compartment

Ca-AdEx model to a multi-compartment description, which, next

to the Ca-HZ and soma compartments, features apical and basal

compartments suited for NMDA-spike generation. Furthermore,

we have implemented a compartmental modeling framework in

NEST (Gewaltig and Diesmann, 2007; Spreizer et al., 2022) that

supports the aforementioned Ca2+-, AdEx-, and NMDA dynamics.

Combined, our work facilitates the study of dendritic dynamics

with simplified neuron models at the network level.

2 Materials and methods

2.1 The two-compartment Ca-AdEx model
supporting calcium spike firing

One of the focal points of this endeavor has been the creation

of a neuronmodel able to express properties of apical-amplification

during awake states, to aid with the formation of memories inside

the synaptic matrix during incremental learning cycles. Also, recent

studies (Aru et al., 2020a,b) have supported the idea that apical-

amplification in layer 5 pyramidal neurons (L5PC) plays a critical

role for conscious sensory processing during the awake state, in

contrast to the mechanisms of apical-drive and apical-isolation that

are predominant in REM and NREM sleep, respectively (Aru et al.,

2020a). To replicate these states in a model, it is essential to have a

Ca-HZ in the apical compartment that is able to support Ca2+spike,

(Larkum et al., 1999; Larkum, 2013), which is assumed to be the

cellular mechanism underpinning apical-amplification.

2.1.1 Dynamics of the two-compartment
Ca-AdEx neuron

The inter-spike dynamics of the two compartment model

(outside the refractory period, if specified) is summarized by the

following equations:
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∑
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(1)

where Vd represents the membrane potential of the distal

compartment, [Ca] the concentration of Ca2+ions in the distal

compartment, Vs is the somatic membrane potential and w

accounts for the Spike Frequency Adaptation. A somatic spike

event is triggered when Vs ≥ Vth, which defines the tk spike

time. Vs is set to the constant value Vreset during tk < t ≤

tk + tref , while the distal compartment continues to integrate the

dynamics defined by Equation 1 during this period. Figure 2 is the

schematic representation of the Ca-AdEx neuronmodel in terms of

an electronic circuit.

In principle, any kind of leaky integrate and fire with

supporting spike frequency adaptation could be used for the

somatic compartment. In our model, the soma follows the

dynamics of an adaptive exponential integrate and fire neuron

(AdEx, Gerstner et al., 2014) as described by the second set of

equations in Equation 1. The parameters are described in detail in

Supplementary Table S1.

The backpropagation-activated calcium spike (BAC firing,

Larkum, 2013) is induced by the coincidental occurrence of a

synaptic input to the apical dendrite and a Na+ spike triggered

in the axon initial segment (AIS). This Na+ spike backpropagates

via the soma to the Ca-HZ within the distal apical dendrite (BAP),

where its depolarizing current adds to the local, subthreshold

excitatory postsynaptic signal, thus triggering a dendritic Ca2+-

spike in the Ca-HZ. Thus, the backpropagating Na+ spike
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FIGURE 2

Schematic of the Ca-AdEx neuron. The model consists of two

compartments: a basal compartment (i.e.,

somatic/perisomatic/basal dendritic) and a distal compartment

(apical dendritic), coupled through a conductance gC (roughly

representing the axial conductance of the main apical dendritic

trunk). In the distal compartment, the ionic channels for the ICa and

IKCa currents contribute to the Ca-HZ and to the dynamics of the

calcium concentration [Ca]. The “Backpropagating Action Potential”

from the somatic to the distal compartment is represented by the

“BAP” channel. In the soma, the terms of the AdEx approximations in

Equation 1 are represented by the “AdEx” channel. The ge and gi in

each compartment represent ligand-gated ion channel

conductances for excitatory/inhibitory input synapses. The

membrane capacitance Cm, the leakage conductance gL, the

reversal potential EL, the input current I, and the membrane voltage

V are indicated for each compartment. The model is also equipped

with GABA, AMPA, NMDA, and AMPA+NMDA conductances and of a

“synaptic input channel” for injecting a beta-shaped current (utilized

in the pulse stimuli task to simulate EPSP-shaped input currents to

the distal compartment), not reported in this schematic.

effectively lowers the threshold for a local excitatory postsynaptic

potential to trigger dendritic Ca2+-spike. The inward current

of the dendritic Ca2+-spike is electrotonically conducted to the

soma and AIS, where it causes a depolarizing wave that can

trigger a high frequency burst of multiple action potentials, even

if the apical excitatory postsynaptic potential (EPSP) alone would

be subthreshold.

The activation of the calcium spike in the dendrite is the critical

element for the BAC firing. To support this activation, we modeled

a neuron implementing a voltage dependent Ca2+current and the

[Ca2+] concentration dynamics within the apical dendritic hot-

zone compartment. Additionally, a Ca2+-activated K+ current is

included to re-polarize the dendritic membrane and thus terminate

the Ca2+-spike.

The dendritic intracellular [Ca2+] dynamics has been modeled,

as described in Gerstner et al. (2014), using the following equation:

d[Ca]

dt
= φCaICa +

[Ca]− [Ca]0

τCa
, (2)

where [Ca]0 represents the baseline of the intracellular

Ca2+concentration in mM, τCa is the time constant of calcium

extrusion in ms, ICa is the high voltage activated Ca2+current in

the dendrite in pA and φCa is a scaling factor.

Dendritic ionic currents are modeled using the Hodgkin-

Huxley formalism. The high voltage activated Ca2+current (ICa)

has been modeled as in Larkum et al. (2004):

ICa = gCamh(ECa − V), (3)

where gCa is the maximal calcium conductance in nS, ECa is the

calcium reversal potential and V the membrane voltage, both in

mV. The activation and inactivation variables,m and h respectively,

are characterized by first-order kinetics:

dm

dt
=

m∞ −m

τm
and

dh

dt
=

h∞ − h

τh
, (4)

wherem∞ and h∞ are the corresponding steady state functions and

τm and τh are their time constants in ms. The steady state functions

are given by:

m∞ =
1

1+ exp(mslope(V − (mhalf )))
and

h∞ =
1

1+ exp(hslope(V − (hhalf )))
, (5)

with mslope and hslope representing the slope of the two functions

and mhalf and hhalf representing the half activation/deactivation

values in mV.

The Ca2+activatedK current (IKCa ) has beenmodeled as in Hay

et al. (2011):

IKCa = gKm(EK − V), (6)

where gK is the maximal potassium conductance in nS, EK is the

potassium reversal potential and V is the membrane voltage, both

in mV. m represents the activation variable described by the first

order kinetics:

dm

dt
=

m∞ −m

τm
. (7)

Here τm is the activation time constant of the Ca2+-activated

K+ current in ms and m∞ is its activation steady state variable

described by:

m∞ =
1

1+ (
Cath
[Ca] )

constKCa
, (8)

where Cath represents the Ca2+concentration threshold (in

mM) for the Ca2+-activated K+ current and constKCa is an
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exponential factor. The AdEx mechanism and the ionic currents

are implemented within the NEST compartmental modeling

framework (Section 2.4), allowing their incorporation in the

somatic and Ca-HZ compartment, respectively.

In summary, a simple two-compartment Ca-AdEx neuron

is described by Figure 2 and Equation 1. Supplementary Table S1

presents the complete set of parameters of the Ca-AdEx neuron

identified in this work using the evolutionary approach described

in the following sections.

2.2 Fitting the neuron model

An evolutionary algorithm has been used to fit the two-

compartment Ca-AdEx neuron model within a multidimensional

parameter space. More than 30 parameters have been fitted to

ensure the desired behavior of the apical mechanism in the

amplification regime. The search, optimized by the use of the L2L

framework (see Section 2.2.2), is grounded in the definition of

specific fitness functions that are used to constrain the evolution

of the model during specific tasks (see Section 2.2.1).

Since the parameter set is identified using an evolutionary

algorithm, we refer to it as the genome of the Ca-AdEx neuron

model. At the initial time, a set of individuals (i.e., model

configurations) is created, randomly extracting each parameter

from a uniform distribution, carefully bounded to biologically

plausible values. This set enters the evolutionary tool that, thanks

to mate, mutation, and genetic modification, produces the next

generation of individuals. The convergence of this mechanism is

driven by the essential constraints of the fitness functions.

FIGURE 3

Convergence of the global fitness value within the Learning-to-learn (L2L) optimization framework. The global fitness, representing the sum of all

single fitness functions return value, is plotted through all the 100 generations (including 100 individuals per generation) for 30 trials. (A) Plot of global

fitness for each of the 30 single trials. (B) Median (purple), first and third quartile (purple shadow), within the [min-max] range (blue shadow) of the

global fitness values over the 30 trials shown in (A). (C) Two-loop scheme of Learning-to-learn (L2L): in the inner loop, a model is trained or

simulated on a task from a family of tasks; a fitness function evaluates the performance of the model; the model parameters are optimized in the

outer loop. Image provided by Yegenoglu et al. (2022).
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Figures 3A, B illustrate the convergence of the evolution

algorithm used for fitting the neural parameters. The convergence

has been estimated over 30 trials, each one starting with

a population of 100 random individuals and running for

100 generations.

2.2.1 Fitness functions
Specific fitness functions have been devised to constrain the

model. These functions aim to guide the evolutionary search within

the parameter space toward optimal configurations, focusing on the

identification of neurons that embody both the spiking frequency–

stimuli relationships characteristic of apical mechanisms and a

response to somatic-only stimulus that mirrors the behavior of a

single-compartment AdEx neuron.

In our work, the model fitness is assessed considering two

different optimization tasks based on the response of the Ca-AdEx

neuron to different stimulation protocols: the response to pulse

stimuli of a few milliseconds in duration and the response to

prolonged stimuli lasting few seconds.

In the pulse stimuli task, the Ca-AdEx neuronmodel is designed

to replicate the kind of experiment presented in Larkum et al.

(1999), demonstrating the apical-amplification effects through the

activation of BAC firing in response to a coincidence of basal and

apical short-duration current injections. The goal is to emulate the

experimental observations illustrated in Figure 1 of Larkum et al.

(1999), that depicts the responses of a pyramidal neuron to four

combinations of short duration current injections delivered to the

distal apical dendrite and to the soma: 1- a subthreshold distal

depolarizing current injection produces a minimal deflection of the

somatic membrane voltage, without eliciting any spike; 2- a supra-

threshold somatic current injection evokes a single action potential;

3- the combination of current injections as in 1- and 2-, separated

by an interval of 5 ms, evokes a burst of action potentials; 4- to

evoke a burst similar to the one produced in 3- using only dendritic

input, a current larger than the one used in 1- and 3- is needed. Our

pulse stimuli task is conceived to replicate these four cases.

Notably, the most interesting scenario, case 3-, involves

injecting a brief (5 ms) rectangular current at just supra-

threshold intensity into the somatic compartment, accompanied

by a sub-threshold depolarizing current, shaped like an excitatory

postsynaptic potential in the apical compartment (modeled with

a beta-shaped current in our simulations) with a 5 ms delay (see

Section 3.1). The threshold somatic current amplitude is calibrated

to elicit a single spike in isolation, both in the experiments by

Larkum et al. (1999) and in our simulations. Conversely, the

injection of the subthreshold distal current alone does not produce

any spike. The combination of these two currents activated the

BAC firing mechanism, leading to a high-frequency burst of three

spikes. To guide the model toward accurately responding to the

four combinations of short-duration pulses, four fitness functions

are employed. These functions aim to generate the correct number

of spikes in short-duration bursts (see the Pulse stimuli section of

Supplementary Table S3).

The second optimization task, the prolonged stimuli task, is

motivated by the aim of supporting fast classification, recognition

(and learning) of individual experiences. For example, considering

images presented at video rate (i.e., more than 20 frames/s),

neuron should react to individual perceptions lasting less than

50 ms. Firing at several tens of Hz is required to support

classification/recognition capabilities at this rate. Learning can pose

even stronger requirements. Indeed, a typical choice in spiking

networks is to use Spike-Timing Dependent Plasticity (STDP).

STDP models depend on the temporal relation between the spikes

of presynaptic (pre) and postsynaptic (post) neurons (e.g., see

Song et al., 2000; Gütig et al., 2003). A common choice, rooted

on experimental evidence that started from the seminal works of

Markram et al. (1997) and Bi and Poo (1998), is to model the

amplitude of synaptic changes as proportional to exp(−|(tpost −

tpre|/τSTDP), where tpost and tpre are the pre-synaptic and post-

synaptic spike times. τSTDP = 20 ms is the typical choice.

In the prolonged stimuli task the neuron model is subjected

to pairs of long-lasting (2 s duration) DC current injections in

the somatic basal compartment (Is) and in the dendritic apical

compartment (Id). Combinations of somatic and distal dendritic

current injections are kept constant for 2 s, followed by a 3 s period

of zero input. The corresponding set of fitness functions is detailed

in the Prolonged stimuli section of Supplementary Table S3. In this

scenario, the computation of fitness functions relies on several

different measures.

A first set of fitness functions is are set to ensure the

correct behavior of the BAC firing. Initially, evaluations are made

concerning the activation of Ca2+channels and their closure after

the stimulus ends. Two additional fitness functions are used to

discard neurons in which the calcium spike is activated with purely

somatic currents and those showing calcium activation for very

high currents.

An additional goal is to develop a two-compartment neuron

that, when somatically stimulated, mimics an equivalent single-

compartment AdEx. Therefore, we have introduced the AdEx

matching fitness functions dedicated to this purpose. These

functions are measured on a Ca-AdEx stimulated with increasing

somatic currents Is while keeping Id = 0 and matched against

the corresponding measures on single-compartment AdEx (see

Supplementary Table S2 for the target AdEx parameters). The first

function employs the Earth Mover’s Distance (EMD) algorithm to

compare the firing rate values of the two neurons. Additionally, we

compare the first (rheobase) and the last firing rate values expressed

by the single-compartment and two-compartment neurons within

the observation range. Also, ameasure of the coefficient of variation

of inter spike intervals (ISIs) in response to somatic current is used

to select neurons similar to the single-compartment AdEx neuron.

Finally, a check on the neuron capacitance is performed, to drive

the evolution toward a value as near as possible to the capacitance

of the single-compartment AdEx model.

The set of fitness functions, Gain & linearity of apical

mechanism, aims to ensure that the model exhibits a high,

linear gain associated with the apical mechanism. Specifically,

for the ν(Is, Id) transfer function, evaluations include: the firing

rate following Ca2+opening for a distal-only stimulus (Is =

0, Id), and the linearity in the increment of firing rate linked

to calcium channel activation for increasing somatic and distal

currents. Moreover, particular fitness functions focus on ensuring

the monotonicity of the ν(Is, Id = const) curves and the presence
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of the apical gain mechanism across the desired input domain:

Is = 0, .., IMax
s , Id = 0, .., IMax

d
.

A fitness function is dedicated to the Exclusion of pathological

configurations for neurons exhibiting excessively high firing rates

when stimulated within the predefined range of currents. Finally,

an additional set of Cautionary checks is introduced to further

constrain the neurons: the minimum value of the somatic

membrane potential reached during stimulation, the value of the

distal rheobase for Is = 0, the occurrence of jumps in firing rate

after calcium opening.

2.2.2 The learning to learn framework
Learning-to-learn, or meta-learning (Thrun and Pratt, 2012,

1998), is an approach in machine learning aimed at enhancing

learning performance through generalization. In a conventional

learning setting, a program or algorithm is trained to perform

a single task, evaluated by a specific performance metric. The

algorithm performance improves as it is exposed to more training

samples. After sufficient training, the algorithm or model can

achieve high performance on new samples of the same task that

it did not encounter during the training phase. This paradigm can

be implemented as a two-loop structure, as shown in Figure 3C.

In the inner loop, the program, also known as the optimizee, can

adapt to learn a specific task from a family of tasks. These tasks

may range from classification and inference to training multi-

agents for complex problem-solving. A fitness function assesses

the performance of the optimizee and yields a fitness value.

This function is tailor-made for the task and must be precisely

defined to effectively evaluate the optimizee. In the outer loop,

the algorithm overall performance is enhanced by optimizing

the hyper-parameters or parameters across a spectrum of tasks,

facilitating the evolution of the entire system.

Yegenoglu et al. (2022) introduces an implementation

of the learning-to-learn concept within a framework

named L2L. In L2L, the outer loop is composed of various

gradient-free optimization techniques based on meta-

heuristics, including evolutionary algorithms or filtering

strategies. In our case (see Supplementary Section 5), the

GeneticAlgorithmOptimizer produces a set of

optimizees for each generation using the strategies defined

by the GeneticAlgorithmParameters function. All the

optimizees are then evaluated on a task that includes the measure

of fitnesses evaluated on a set of different stimulation scenarios, as

described in Section 2.2.1.

The framework versatility allows for the execution of any

algorithm or simulation, which can then be operated on anything

from local machines to high-performance computing systems

(HPCs). Thanks to the framework inherently parallel structure,

multiple instances of the inner loop can be efficiently deployed

on HPC systems. L2L necessitates only a performance measure

and a set of parameters for optimization targets. It is developed

in Python, is available as open-source, and adheres to an open

development model.

For more information about the specific deployment used in

this work please see the Supplementary material.

2.3 Modulating the apical-amplification,
-isolation, and -drive regimes

A few parameters serve as simulation proxies for the

effects of neuromodulation, facilitating transitions to apical-

isolation-like and apical-drive-like regimes or modulating

the apical-amplification behavior. Conceptual guidelines that

have inspired the approach described here, summarizing

experimental evidence, are Aru et al. (2020b) (about awake

apical-amplification), Suzuki and Larkum (2020) (apical-isolation

in anesthesia), and Aru et al. (2020a) (apical-drive and dreaming).

As a proxy for neuromodulation (e.g., by cholinergic and

noradrenergic neuromodulatory inputs), we propose to consider

three contributions: 1- in the extreme apical-isolation case,

we set to 0 the coupling conductance (gC) between the two

compartments, to mimic the isolation of the distal apical dendrite

demonstrated by Suzuki and Larkum (2020); 2- we change

the Spike Frequency Adaptation coefficient b in Equation 1 (a

classic modeling choice associated to cholinergic modulation,

Destexhe, 2009); 3- we introduce a brain-state dependent shift

of the leakage reversal potential, a crude approximation of: (3.1)

the change of excitability of pyramidal layer V cells induced by

noradrenaline on α1-noradrenergic receptors, that modulate

potassium currents (Wang and McCormick, 1993) and, (3.2) the

action of muscarinic ACh receptors that also change the amount

of potassium current in layer V cortical neurons (Wang and

McCormick, 1993).

Following these conceptual guidelines, we have performed an

exploration in terms of neuromodulation in the three different

brain states. The results are reported in Figure 4. Figures 4A–C

represent a situation of apical-amplification. Starting from the

neural parameters fitted using the L2L tool, we have investigated

the effects of the changes in the adaptation parameter: b = 40

(Figure 4A), b = 50 (Figure 4B), and b = 60 (Figure 4C).

While the behavior of the model remains substantially the same

in the three cases, a global lowering of the firing rate is evident

for growing values of the adaptation parameter, as well as a less

evident firing rate jump in correspondence of the Ca2+activation.

The apical-drive is obtained, as described above, by lowering

of 2mV the somatic and distal reversal potentials and setting

the adaptation parameter to b = 10 (Figure 4D), b = 15

(Figure 4E), and b = 20 (Figure 4F). Note that the firing rate

in the apical-drive state is well higher than the one in the

apical-amplification state.

Finally, Figures 4G, H describe two possible situations in

apical-isolation. One of the goals of this work is the set-

up of two-compartment neurons that, when stimulated only

on the somatic compartment, behave like the AdEx single

compartment reference neuron. This simplifies the replacement

of single-compartment neurons in reference network simulations.

Therefore, when considering the apical-isolation case, and the

simulation of deep-sleep or anesthesia, a possible choice is to

change all the parameters of the somatic compartment exactly

at the value of the reference AdEx, because for gC = 0 the

spikes emitted by Equation 1 analytically reduce to those emitted

by the soma for any distal stimulus, as prescribed by Suzuki and

Larkum (2020) (see Figure 4H). Another plausible choice, when
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the primary interest is not a seamless replacement in existing

single-spike simulations entering deep-sleep or anesthesia, is to

maintain the somatic parameters at their nominal values (see

Figure 4G).

2.4 Support for multi-compartment
neurons in NEST

To leverage existing technology for the efficient simulation of

recurrently connected spiking neural networks, we have integrated

a general multi-compartment (MC) modeling framework into

NEST. Generally, MC models can be represented as

Ci dV
i

dt
= giL(E

i
L − V i)+

∑

c∈Ci

Iic(y
i
c,V

i)+
∑

r∈Ri

Iir(y
i
r ,V

i, Sir)

+
∑

j∈N i

g
ij
C(V

j − V i), (9)

where V i denotes the membrane potential in compartment i, Ci

its capacitance, giL its leak conductance and EiL the leak reversal

potential. An arbitrary set Ci of ionic channels may be present

in compartment i. Their current Iic(y
i
c,V

i) depends on the local

membrane potential and a set of channel state variables yic.

Similarly, there may be an arbitrary set Ri of synaptic receptors,

whose current may depend on state variables yir , the membrane

FIGURE 4

Proxies for ACh and NE modulation inducing a range of apical-amplification -isolation and -drive. Transfer functions showing di�erent firing rates

obtained with parameter tuning. Note that the values of maximum firing rates in color bars depend on the brain-state. Apical-amplification: starting

from the Ca-AdEx parameters identified by the evolutionary search, the adaptation parameter has been set to: b = 40 (A), b = 50 (B), b = 60 (C).

Apical-drive: starting from the Ca-AdEx parameters, the somatic and distal reversal potentials are lowered of 2 mV and the adaptation parameter has

been set to b = 10 (D), b = 15 (E), b = 20 (F). (G) Apical-isolation: obtained using the Ca-AdEx parameters with b = 200, g = 0 and lowering somatic

and distal reversal potentials of 5 mV. (H) Apical-isolation obtained using target AdEx parameters for the somatic compartment and Ca-AdEx

parameters for the distal compartment, with b = 200, g = 0 and lowering somatic and distal reversal potentials of 5 mV.
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potential and the presynaptic input spike train Sir . Finally, the

compartment i is coupled to its neighbors N i through a coupling

conductance g
ij
C . Due to the conservation of current, the coupling

is symmetric, i.e., g
ij
C = g

ji
C . By identifying the compartments with

the nodes of a graph and the neighbor couplings with the edges, the

MC model is always a tree graph.

In simulation tools for detailed biophysical models, the

continuous cable model of neuronal morphology is discretized

spatially using the second order finite difference approximation

(Carnevale and Hines, 2006), and the resulting system of equations

takes the form of Equation 9. The number of compartments, or

inversely their separation, is often chosen based on the electrotonic

length constant. At a more abstract level, simplified multi-

compartment (MC) models with two or three compartments are

frequently utilized to represent elementary aspects of dendritic

computation, with the parameters of Equation 9 being tuned by ad-

hocmethods for the specific scientific problem under investigation

(Pinsky and Rinzel, 1994; Clopath et al., 2007; Naud et al., 2014).

Between these levels of detail, compartmental parameters can be

derived from full morphologies through matrix algebra to simulate

local computations (Wybo et al., 2021), or they can be explicitly

tuned to replicate these computations (Pagkalos et al., 2023).

The compartmental model architecture in NEST

accommodates all these use cases by offering API functionality that

enables end users to directly set compartmental parameters and

arrange them in a user-specified tree graph layout. Furthermore, it

is designed to be straightforwardly extendable with ionic channels

and receptor currents at the C++ level.

The system is discretized in time using the Crank-Nicolson

scheme:

CiV
i(t + h)− V i(t)

h
=

Fi(V i(t))+ Fi(V i(t + h))

2
, (10)

where Fi represents right-hand side of Equation 9. It is important to

note that thismethod is implicit in the voltage: Fi(V i(t+h)) needs to

be Taylor expanded so that all terms containingV i(t+h) (∀i ∈ MC)

can be moved to the left-hand side. The resulting matrix equation is

then solved efficiently through the Hines algorithm (Hines, 1984).

For the state variables of ionic channels and receptor currents, we

use the widely used leap-frog scheme: a state variable y is computed

at t+ h
2 , and thus has this value in both Fi(V i(t)) and Fi(V i(t+ h)).

Conversely, to compute the time evolution of a state variables from

t + h
2 to t + 3h

2 , the voltage V
i(t + h) is taken to be constant over

this time-step.

If the state variable follows the general Hodgkin-Huxley

formalism, i.e.,

dy

dt
=

y∞(V)− y

τy(V)
, (11)

the value at time t+ 3h
2 follows from integrating this equation as an

initial value problem starting from y(t+ h
2 ), which has the analytical

solution:

y(t +
3h

2
) = P y(t +

h

2
)+ (1− P) y∞(V(t + h)),

with

P = exp

(

−
h

τy(V(t + h))

)

.

(12)

For state variables that do not depend on the voltage, as is often

the case for those governing the synaptic conductance after spike

arrival, efficiency is enhanced by pre-computing the propagator P.

2.5 Semi-simplified morphological neuron
model with NMDA spikes

To demonstrate the potential of the MC modeling framework,

we have integrated Ca-AdEx into a neuronmodel that also includes

dendritic compartments with NMDA-driven non-linearities, based

on an L5PC morphology. This morphology is taken from Hay

et al. (2011) and implemented in NEAT (Wybo et al., 2021).

We have opted for a passive dendritic membrane, i.e., without

any voltage-gated ionic channels (i.e., no voltage-gated Na+,

K+, Ca2+, or HCN channels), as those channels only weakly

influence NMDA-spike generation (Major et al., 2008). Also,

somatic channels have not been added, as spike generation is

implemented by the AdEx mechanism anyway. The physiological

parameters recommended by Major et al. (2008) are adopted to

replicate the amplitudes of glutamate-uncaging evoked NMDA-

spikes in L5PC dendrites and somata, combined with a spine

correction as in Rhodes (2006). Specifically, we use a membrane

capacitance of 0.8 µF/cm2, which is increased by a factor 1.92 to

account for spine surface in dendrites with a radius smaller than 0.6

µm. The axial resistance is set at 100 �× cm for smooth dendrites,

and 120 � × cm for spiny dendrites, while the specific membrane

conductance is 100 µS/cm2, and the leak reversal potential is

fixed at−75 mV.

This model is then further simplified into a version with 6

distal apical and 8 distal basal compartments, using a previously

developed systematic morphological simplification methodology

(Wybo et al., 2021). These compartments receive glutamatergic

(AMPA+NMDA) as well as GABAergic synapses, in addition to

the soma and a Ca-HZ compartment located where the main

apical trunk splits into an apical tuft of multiple branches.

For technical reasons, all bifurcation sites in between any of

those compartments are added automatically by the simplification

procedure (see Section 3.5, Wybo et al., 2021). The parameters of

the reduced model that also featured in the Ca-AdEx optimization

procedure (such as the leak and capacitance of the soma and

Ca-HZ compartments, as well as their coupling) are overwritten

by those obtained through the optimization, and the other

optimized parameters of the Ca- and AdEx-mechanisms are added

as well.

The resulting model is then stimulated with input current steps,

the BAC-firing protocol and Poisson distributed synaptic inputs

(see Section 3.5). For the BAC-firing protocol, we use a somatic

current step amplitude of 750 pA and a double exponential input

current at the Ca-HZ compartment with τr = 1ms and τd = 10ms,

and a maximal amplitude of 1500 pA. For the Poisson synaptic

inputs, AMPA and GABA receptors are simulated as the product of

a double exponential conductance window (Rotter and Diesmann,

1999) g and a driving force:

isyn = g (er−v), with g = wn(τr , τd)
(

e−t/τd − e−t/τr
)

. (13)
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FIGURE 5

Search for approximating planes. (A) Representation of the firing rate ν(Is, Id) of the Ca-AdEx spiking neuron in response to combinations of somatic

(Is) and distal (Id) currents. (B) Algorithmic identification of M+ and M− regions from spiking simulation results.

Here, er is the synaptic reversal potential, τr and τd are the

synaptic rise and decay time constants, and n a normalization

constant that depends on τr and τd and normalizes conductance

window g, so that its peak value is equal to the synaptic weight

w. AMPA rise and decay times are τr = 0.2 ms, τd = 3 ms and

AMPA reversal potential is er = 0 mV, whereas for GABA, we have

τr = 0.2 ms, τd = 10 ms and er = −80 mV. NMDA currents (Jahr

and Stevens, 1990) are implemented as:

isyn = g σ (v) (er − v), (14)

with τr = 0.2 ms, τd = 43 ms, and er = 0 mV, while σ (v)—the

channel magnesium block—has the form (Behabadi and Mel,

2014):

σ (v) =
1

1+ 0.3 e−0.1 v
. (15)

The synaptic weight (i.e., maximum value of the conductance

window) for the AMPA component of AMPA + NMDA synapses is

set at 1 nS, and the maximal value of the NMDA window is twice

that of the AMPA window (NMDA ratio of 2). GABA synapses also

have a weight of 1 nS. While for the AMPA+NMDA synapses a

multitude of Poisson input rates are probed as part of the scan, the

Poisson input rate to the GABA synapses is fixed at 20 Hz.

2.6 Fitting the transfer function

Figure 5A illustrates ν(Is, Id), the firing rate of the exemplary

two-compartment Ca-AdEx neuron identified by the evolutionary

search algorithm in response to various combinations of constant

somatic and distal currents. The regularity observed in the

contour lines of equal firing rate suggests the potential for

simplified approximate representations of the transfer function.

This section outlines the method employed to derive such an

approximation. Two distinct regions of low and high firing rate

are discernible in Figure 5A, seemingly demarcated by a straight

line. Hereafter, we use the index i ∈ {−,+} to denote the

regions of lower or higher firing rates, respectively. In the +

region, contour levels of equal firing rate appear to be linear,

parallel, and evenly spaced, indicating that the transfer function

could be approximated by a plane. For each (Is,Id) pair, the

simulation identifies the activation of the High Voltage dependent

Ca2+channel, resulting in a BooleanmaskM+(Is, Id) that delineates

the activation region associated with high firing rates (refer to

Figure 5B).

Fitting planes ν+ are defined by

ν+(Is, Id) = a+Is + b+Id + d+, (16)

and their parameters (a+, b+, d+) have been identified in this work

using the LinearRegression class from the sklearn.linear_model

Python module (release 1.0.2). The same procedure returns the

plane fitting the region of low activity M− (i.e., the lower part of

Figure 5A), where the contour lines are also approximately linear

and evenly spaced for firing rates above a threshold νlow.

The selection of an appropriate νlow frequency is motivated by

the aim of modeling the learning advantages associated with apical-

amplification mechanisms, particularly in scenarios where external

stimuli change at a fast rate. For instance, detailed memorization

of individual images at video rate (i.e., more than 20 frames/s),

should happen for exposure to individual perceptions lasting less

than 50 ms. τSTDP = 20 ms is the typical choice. In a time

interval of 50 ms, neurons firing at νlow = 10 Hz would induce

in the connecting synapses a single, small amplitude synaptic

modification, due to the time dependent exponential decay of STDP

rules. Apical amplification supports significantly higher firing rates.

Therefore, capturing the regime of lower firing rates with extreme

precision is not critical.

The M−(Is, Id) Boolean mask is defined by the points where

the simulation indicates that M+(Is, Id) == false AND ν(Is, Id) >

νlow. The search for fitting planes can be done in the M− region,
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employing the same algorithm used forM+, producing a ν−(Is, Id)

approximating plane. To mitigate potential non-linearity at the

boundaries of the region of interest, the Booleanmasks excludes the

region Is > Ith, (illustrated as a dashed band in Figure 5B). Errors

(in Hz) between the planar fit and the simulated transfer function

are reported in Supplementary material.

The construction of νF(Is, Id), the simplified description over

the entire range of Is, Id currents of the ν produced by spiking

simulations, requires also a proper definition of the curve IH
d
(Is)

that separates the M+ from the M− regions. IH
d
(Is) is the amount

of distal current required to trigger a high firing regime (H)

given a fixed value of somatic Is current. The linear fit of the

data representing the boundary between M+ and M− leads to the

definition of the parameters θHm , the slope of the fitting line, and θHq ,

its offset. The resulting approximating line is expressed as:

IHd,F(Is) = θHm Is + θHq . (17)

The rheobase of the fitting function is defined by the

combinations of currents that satisfy the condition ν−(Is, Id) = 0,

this results in the line:

I
ρ

d,F
(Is) = θρ

mIs + θρ
q . (18)

In summary, three planes (ν0 = 0, ν−(Is, Id) and ν+(Is, Id))

are identified by the algorithm to approximate the activity in each

region. The active approximated domain is limited/bounded by:

2H(Is, Id) = 2(Id − IHd,F(Is)). (19)

The passive approximated domain is given by the product of

two 2s, namely:

2ρ(Is, Id) = 2(Id − I
ρ

d,F
(Is)) (20)

and

2(−Id + Id,F(Is)) = (1− 2H(Is, Id)). (21)

Finally, the fitting function that spans the entire domain, as

determined by the algorithm, is:

νF(Is, Id; ν) = 2ρ(1− 2H) · ν− + 2H · ν+. (22)

This is referred to as ThetaPlanes in the following.

3 Results

3.1 Response to pulse stimuli

Figure 6 illustrates the behavior of the fitted model in response

to depolarizing current injections of short duration (a few

milliseconds), according to the protocol for the pulse stimuli

task outlined in Section 2.2.1, which replicates the one used in

the experiments by Larkum et al. (1999). A subthreshold distal

depolarizing current injection, modeled as a beta function to

mimic an excitatory postsynaptic potential (EPSP), slightly deflects

the somatic membrane potential but does not trigger any spikes

(Figure 6A). A just supra-threshold somatic current injection

evokes a single action potential (AP) that “back-propagates”

through the apical dendrite: this results in a depolarization of

the apical dendrite but is not sufficient to initiate a calcium

spike (Figure 6B). The concurrent application of the previously

described somatic and dendritic current injections triggers a burst

of two or three spikes at the soma: the single action potential,

induced by the somatic input, back-propagates into the apical

dendrite, thus depolarizing the Ca-HZ. When coupled with the

subthreshold distal input, this facilitates the initiation of the

dendritic calcium spike (Figure 6C). To generate a similar burst

with only a distal input, a higher peak current value must be

supplied, as demonstrated in the example of Figure 6D. When

combining somatic and dendritic currents as in Figure 6C, the

dendritic current is introduced with a delay of 5 ms relative to the

somatic one. Analyzing how the response of the neuron depends on

this delay is not covered in this work, but it will be considered for

further optimization of the neuron.

3.2 Response to prolonged stimuli:
compact geometric description of the
transfer function

Figure 7 summarizes the main characteristics of the selected

neuron in response to the prolonged stimuli task, outlined in

Section 2.2.1. Figure 7A illustrates the neuron dynamics for

specific distal and somatic input currents. The orange line depicts

the firing rate when the neuron is stimulated solely with a

distal current. The activation of the BAC firing mechanism is

indicated by the sharp increase in the firing rate observed at

550 pA in the orange line: beyond this threshold, even without

somatic input, a dendritic calcium spike is initiated, and the

neuron enters into the active regime, wherein the mechanism of

apical-amplification becomes apparent. The other curves illustrate

the neuron responses when stimulated with a combination of

currents injected into both the soma and the apical dendritic

compartment, plotted for increasing dendritic current injections

(Id) at fixed somatic current injections (Is). The visible jump

in these curves corresponds to the neuron entering the active

regime, a state reached when the combined effect of the two

input currents is sufficient to trigger the dendritic calcium spike.

As the value of the constant somatic current increases, the

transition to the active regime occurs at progressively lower

dendritic input currents. The blue line represents the scenario

where Id = 0: neither the calcium spike nor the BAC firing

mechanism is triggered, and within the analyzed range, the neuron

behaves similarly to the pure AdEx model against which the

two-compartment model has been fitted (indicated by the black

dashed line).

Figure 7B displays the firing rate of the neuron when stimulated

with combinations of somatic and distal currents (ν(Is, Id)).

Three distinct regions are identifiable: the area below the red

line, where the firing rate equals 0 for every input current

combination; an area of low firing rates situated between the

red and yellow lines; and an area of high firing rates above

the yellow line, indicating the triggering of the calcium spike

and the activation of the apical-amplification mechanism (active
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FIGURE 6

Responses of the selected neuron model to injected input currents of short duration, according to the pulse stimuli task outlined in Section 2.2.1, to

simulate the experiments by Larkum et al. (1999). All panels share scale bars and legends. Blue: somatic membrane voltage. Red: apical membrane

voltage. Light-blue: somatic step current injection. Orange: beta-shaped distal apical current injection. (A) A beta-shaped current injection of

1,345 pA (peak amplitude) at the apical compartment produces a deflection of only 15 mV at the soma without eliciting any spike (AP). (B) A

threshold somatic current injection (1,150 pA, duration 5ms) evokes only a single AP. (C) The combination of the threshold somatic current as in (B)

followed by the apical current as in (A) activates the BAC firing mechanism and evokes a burst of three APs. (D) To obtain a burst using only distal

injection, a current of at least 1, 830 pA is required.

regime). The red line denotes the neuron rheobase, while the

yellow line signifies the transition from the passive to the active

regime.

As discussed in the Section 2, by examining the firing rate

ν of the multi-compartment neuron in the plane of somatic (Is)

and distal (Id) input currents, we can create a simplified model

at a significantly higher level of abstraction. This is achieved

through the definition of two fitting planes, one for the apical-

amplification zone and another for the lower activity region of the

neuron transfer function. Therefore, ν can be piece-wise by planes

separated by lines, resulting in the ThetaPlanes transfer function:

ThetaPlanes(Is, Id; ν) = 2ρ(1− 2H) · ν− + 2H · ν+. (23)

Figure 7C displays such approximating function, while

Supplementary Table S4 lists the parameters that define the

ThetaPlanes function and their values for the fitted configuration:

the v−(Is, Id) and v+(Is, Id) planes, the transition line to high firing

rates and the rheobase.

3.3 Wakefulness, NREM and REM specific
apical mechanisms

Figure 8 illustrates three modulation of the simulation

proxies of colinergic (ACh) and noradrenergic (NE) actions that

alter the transfer function of the exemplary two-compartment

neuron discussed throughout this paper in different brain-states.

Specifically, Figure 8A depicts a representative awake apical-

amplification configuration; Figure 8B presents a configuration

tailored to simulate the NREM sleep apical-isolation regime,

and Figure 8C showcases a setting related to the apical-drive

configuration, which is expected to be associated with a REM sleep

regime. See Section 2.3 for details and refences.

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2025.1566196
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Pastorelli et al. 10.3389/fncom.2025.1566196

3.4 Computational cost of the Ca-AdEx
model

The comparison between the computational cost of the single

compartment AdEx neuron and that of the two compartment

Ca-AdEx neuron is measured by simulating two balanced Brunel-

like networks (Brunel, 2000). Both networks include 10000

excitatory neurons and 2,500 inhibitory neurons, in proportion

4 : 1, with an inh/exc synaptic weight ratio g = 5 and 1,250

input synapses per neuron. The AdEx and Ca-AdEx networks

are both set in an asynchronous regime at about 1.23 Hz (see

Table 1). Wall-clock execution times are measured for a biological

simulation time of 10 seconds of asynchronous activity. Then they

are averaged over eight trials per neuron model (different seeds

for both network building and noise generation). For each trial

(within each configuration), the execution time is normalized to

the mean network activity rate. This results in a comparable time in

terms of execution speed moving from single-compartment to two-

compartment model. This is not surprising, given that the cost of a

neural network simulation is usually dominated by spike exchange

and simulation of synaptic activity -in this case 1,250 synapses per

neuron- and the addition of a single distal compartment implies the

addition of a few arithmetic operations per time-step. Simulations

have been executed using the NEST 3.3 engine, parallelized on 32

threads and run on a dual-socket server equipped with an AMD

EPYC 7302 16-Core Processor per socket, clocked at 3 GHz.

FIGURE 7

Transfer function of selected neuron and its approximation with ThetaPlanes. (A) Current to rate response to DC inputs delivered to di�erent

compartments: pure somatic current (blue), pure distal current (orange), combination of somatic and distal current (other colored lines) plotted for

increasing distal currents at fixed somatic current. The dashed black line represents the transfer function of the AdEx neuron used as the target

reference for the fitness function. (B) Transfer function of the neuron in the 2-D plane defined by somatic and distal input DC currents; in red the

rheobase and in yellow the transition line between passive and active calcium regimes, respectively expressing a lower and an higher firing rate. (C)

ThetaPlanes approximating the transfer function.
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FIGURE 8

Apical-amplification, -isolation, and -drive: exemplary ν(Is, Id) firing rates in the three regimes. (A) Apical-amplification (wakefulness): neuron based

on Ca-AdEx parameters identified by the evolutionary search. (B) Apical-isolation (NREM deep-sleep): obtained using target AdEx parameters for the

somatic compartment and Ca-AdEx parameters for the distal compartment, with the following changes: b = 200, gC = 0, somatic and distal reversal

potentials decreased of 5 mV. (C) Apical-drive (REM sleep): neuron with Ca-AdEx parameters with the following changes: b = 10, somatic and distal

reversal potentials decreased of 2 mV. Note: max ν is very di�erent in the tree regimes: well over 100 Hz in apical-drive, up to 80 Hz in -amplification

and about 10 Hz in -isolation. Also, the jump between the high-firing rate M+ and the M− regions spans from tens of Hz in the apical-drive regime

down to a few Hz in the -isolation regime.

TABLE 1 Comparison of the computational cost: single-compartment

AdEx vs. two-compartment Ca-AdEx.

Metrics AdEx Ca-AdEx

Mean network rate [Hz] 1.23± 0.03 1.23± 0.03

<Exec time/mean rate> [s/Hz] 57.42± 0.56 59.60± 1.12

Balanced Brunel-like network including 12,500 neurons with 1,250 incoming synapses per

neuron, simulated for 10 seconds of biological asynchronous activity.

3.5 Extending the two-compartment
layout

While the Ca2+-spike is a well-known mechanism for coupling

distal apical and peri-somatic inputs, local integration in thin

dendritic branches is shaped by the NMDA-receptor (Figure 9A).

Through the voltage dependent unblocking of the NMDA-receptor

channel (MacDonald and Wojtowicz, 1982; Jahr and Stevens,

1990), coincident inputs to dendritic branches supra-linearly add,

and the resulting events are known as NMDA-spikes (Schiller et al.,

2000;Major et al., 2008, 2013). These NMDA-spikes are the primary

biophysical mechanism that underlies the compartmentalization of

the dendritic tree into semi-independent computational subunits

(Behabadi and Mel, 2014; Wybo et al., 2019; Beniaguev et al.,

2021). Furthermore, NMDA receptor channels possess several

biophysical properties that are of computational relevance. For

instance, through their permeability to Ca2+, NMDA-receptor

channels are thought to drive synaptic plasticity (Cichon and Gan,

2015; Larkum, 2022). Through their long time-scale, they also

are well-suited to modulate feed-forward processing according to

context (Iyer et al., 2022; Wybo et al., 2023). Therefore, extending

the Ca-AdEx model with distal compartments enabling NMDA-

spike generation would be useful to model realistic neuronal

I/O relations and plasticity processes. As our Ca-AdEx model

is embedded in a general compartmental modeling framework,

it is straightforwardly possible to extend the two-compartment

description to one where there are additional dendritic subunits

that can produce NMDA-spikes. We demonstrate the potential

of our approach by deriving the parameters of these subunits

from a realistic L5PC morphology (Figure 9B, Hay et al., 2011),

using the method based on resistance matrix fits proposed by

Wybo et al. (2021). The somatic and Ca-HZ compartment

are then respectively equipped with the AdEx and Ca2+-spike

mechanisms, where we used the same parameters as the two-

compartment model (Supplementary Table S1). It speaks to the

robustness of our approach that we achieve qualitatively similar

behavior as the two-compartmental model, without refitting any of

the parameters (Figure 9C). Furthermore, this extended Ca-AdEx

model also reproduced the BAC-firing protocol (Figure 9D). We

then equip the apical (Figure 9B, orange) and basal (Figure 9B,

blue) compartments with excitatory synapses containing both

AMPA and NMDA receptor channels, as well as with an inhibitory

GABAergic synapse. The latter is stimulated with a fixed Poisson

rate of 20 Hz, whereas for the former we scan a range of firing

rates: for the apical synapses, we deliver Poisson rates between

0 and 400 Hz in 2 Hz increments, while for the basal synapses

Poisson rates between 0 and 200 Hz are probed, in 1 Hz increments

(Figure 9F). Simulations with each set of input rates have been

run for 2000 ms, and the average output rate is measured by

averaging over five such episodes. The dendritic voltage traces

exhibit signatures of the non-linear dynamics associated with

NMDA- and Ca2+-channels (i.e., long up-states, burst firing, etc;

see exemplary traces in Figure 9E). Furthermore, the averaged

voltage responses in the apical and basal subunits follow the

typical sigmoidal response curve (Schiller et al., 2000; Major et al.,

2008; Branco et al., 2010; Poirazi et al., 2003; Singh and Zald,

2015) (Figure 9F, insets). These inset plots show the min-max

envelope of the averaged voltage, i.e., for the apical voltage response

(orange), the minimal values occur for the lowest basal input level,
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FIGURE 9

(A) Canonical view of the interplay between dendritic non-linearities (Larkum et al., 2009). NMDA spikes in distal apical branches (orange) elicit

Ca-spikes (red) that result in somatic burst firing (purple), whereas basal NMDA-spikes (blue) directly influence somatic output generation. (B)

Schematic of the creation process of the multicomp AdEx model. A passive morphology (left) with 16 locations (8 basal sites at ∼200 µm from the

soma [blue triangles], 6 apical tuft sites at ∼1, 000 µm [orange triangles], the Ca-HZ where the apical trunk bifurcates [red square], and the soma

[purple square]) is reduced to a simplified compartmental model (right) using the NEAT toolbox (Wybo et al., 2021). The Ca-hotzone and soma are

then equipped with the Ca-spike generation mechanism and the AdEx mechanisms, respectively, where parameters are identical to the

two-compartment model. Labeled apical and basal sites are those for which traces and mean activations are shown in (E, F). (C) Firing rate response

to input current steps applied to the soma and the Ca-hotzone compartment (same stimulation paradigm as in Figure 7B). (D) Simulation of the

BAC-firing protocol, where a single output is generated in response to a somatic input pulse (top), no output is generated in response to a

Ca-hotzone input (middle), and three output spikes are generated in response to the pairing of inputs (bottom). (E) Exemplary traces for stimulation

of the model with Poisson inputs that impinged on AMPA+NMDA synapses located at the basal and apical sites. Purple dashed lines indicate spike

times. (F) Firing rate response to increasing input rates to the apical and basal dendritic sites. Axes show the input rate to the individual dendritic sites

(input rates equal across apical resp. basal sites). Inset plots show the average membrane potential in two exemplar apical (left) and basal (top)

compartments [same sites as in (B, E)]. The min-max envelope shows the range of values obtained over all activation levels of the other area (i.e.,

apical vs. basal). The white cross marks the input rates shown in (E).

whereas the maximal value occurs for the highest basal input

level. That these min-max envelopes are close together and do not

substantially affect the sigmoidal response curve, demonstrates that

apical and basal areas aremutually independent (Wybo et al., 2019).

Finally, the supra-linear Ca2+-spike mediated interaction between

apical and basal areas is clearly visible in the output firing rates,

where a strong increase occurs above a 100 Hz basal and a 100 Hz

apical input rate (Figure 9F). We also remark that while the input

and output rates seem high when considered as tonic firing rates, it

is reasonable to assume that such rates can and do occur transiently,

through the coincidence of multiple inputs to the apical and/or

basal regions.

4 Discussion

Here, we introduce the Ca-AdEx model, designed to capture

the essential features of the apical-amplification (AA), apical-

drive (AD), and apical-isolation (AI) regimes in cortical pyramidal

neurons, with a negligible increment of the computational cost

compared to classical point-like neuron models. We anticipate that

this advancement will facilitate the development of networkmodels

capable of emulating the cognitive functions of awake, NREM,

and REM-like cortical states, as well as the learning capabilities

associated with brain-state-specific bursting in cortical neurons

that detect coincident apical and somatic signals. In addition, we

hope this will enable more efficient simulations investigating the

impact of dendritic mechanisms on consciousness in line with the

Dendritic Integration Theory (Aru et al., 2020b) that some authors

propose may be a unifying mechanism that can help bridging

different theories of consciousness, toward a more integrative,

multi-scale view (Storm et al., 2024). Apical mechanisms play a

crucial role in optimally combining internal priors and perceptual

evidence within multi-areal, hierarchical, cortical systems featuring

lateral, top-down, and bottom-up connections (Larkum, 2013;

Phillips et al., 2025). A significant observation is the drastic

change in the firing rate of neurons where AA is active. This

facilitates both fast recognition and classification as well as learning

rates that aligns with the sampling rate of world experiences

and are compatible with the typical window of a few tens of

milliseconds adopted by STDP models (like Song et al., 2000;

Gütig et al., 2003) that derive from well consolidated experimental
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evidence (Markram et al., 1997; Bi and Poo, 1998). Notably, an

even more enhanced firing regime may occur during the AD

functional mode, potentially related to the replay and association

of experiences during dreaming (Aru et al., 2020a; Capone et al.,

2022, 2023b), whereas the suppression of integration of inter-areal

signals in apical-isolation mode is suggested to underlie the loss

of consciousness during anesthesia and deeper sleep stages (Suzuki

and Larkum, 2020; Aru et al., 2020a,b).

Also, we can anticipate that the adoption of few-compartment

models will be instrumental for a better modeling of the cognitive

function of learning and sleep in other areas, starting from

the hippocampus.

Furthermore, it is feasible to formulate, at a high level of

abstraction, a compact geometric model capturing the effects

produced by the combination of signals that convey information

about priors and perceptual evidence, segregated into the apical

and somatic compartments. The transfer function of the two-

compartment Ca-AdEx model described here can be approximated

piecewise by low-order polynomials. Specifically, we examined

the case of two approximating planes, giving rise to a class of

transfer functions we have named ThetaPlanes (Is, Id). ThetaPlanes

represents a generalization for two-compartment neurons of

the ReLU function commonly used to approximate single-

compartment neuron models in numerous artificial intelligence

algorithms. ThetaPlanes transfer functions can be implemented as

efficient computational gates for use in large cognitive networks at

a high level of abstraction. In future works, we plan to investigate

the benefits of this computational gate in next-generation bio-

inspired artificial intelligence algorithms. In our view, ThetaPlanes

could influence multiple lines of development. During learning,

a contextual drive applied to a subset of connections may

reduce the risk of forgetting previously acquired knowledge, while

simultaneously supporting the integration of synergistic activity

from neurons not directly targeted by the contextual stimulus. This

may also help reduce the number of required training epochs. As

one moves up the hierarchy of a layered network, contextual signals

are expected to shift from conveying unsupervised information

to supporting more supervised or categorical knowledge. During

inference, priors conveyed by contextual signals could help reduce

classification errors. Proper use of contextual signals may also

enhance the network’s explainability by labeling meaningful subsets

of nodes. This expectation is supported by recent studies about

the utility of brain-state-specific bursting regimes demonstrated

in Capone et al. (2023b, 2022). These studies, while assuming the

existence of such coincidence detection mechanisms as working

hypotheses, lacked a biologically grounded transfer function.

Furthermore, the potential to maintain compatibility with the

transfer function of widely adopted leaky integrate-and-fire models

with adaptation, when AA is not triggered, is promising. In our

case, we aimed for compatibility with the Adaptive Exponential

Integrate-and-Fire model (AdEx), which is extensively used for

simulations at both micro- and meso-scales. It also serves as the

basis for mean-field models for simulations encompassing the

whole cortex (Capone et al., 2023a). We anticipate that during

wakefulness, apical mechanisms and the sparsity of long-range

connections will place a strict minority of neurons in a bursting

regime. This adjustment is unlikely to significantly alter the

average spectral signatures of expressed rhythms but could induce

profound effects on perception and learning ability. Such a balance

is necessary to maintain compatibility with the extensive body of

experimental evidence concerning rhythms, average firing rates,

and their fluctuations. During sleep, we anticipate that a delicate

balance will be maintained to ensure healthy sleep patterns and to

promote its beneficial cognitive and energetic effects.

An additional noteworthy observation is that two-

compartment neurons with significant transfer functions have

been efficiently discovered using the L2L framework within the

majority of replicas of simulations of an evolutionary process that

spanned only a hundred generations, each including no more than

a hundred individuals.

In our view, this suggests that natural evolution could have

readily identified the cognitive advantages of apical mechanisms

through localized variations of membrane and channel parameters,

in ways somewhat analogous to the creation of two compartments.

Thus, evolution might have incrementally given rise to the complex

morphology seen in pyramidal neurons in the cortex.

Another aspect touched by our work is the role of high-

performance computing (HPC) infrastructure, which offers a

platform for conducting increasingly robust, comprehensive, and

extensive explorations of parameter spaces in scientific models.

Coupled with machine learning, HPC emerges as a potent

digital environment for adaptive testing and understanding the

interactions between data and models. HPC allows scientists to

simultaneously test a vast number of hypotheses within short time

frames, delivering crucial information that can be incorporated into

accelerated experimental cycles. Within this framework, L2L serves

as an accessible tool for domain scientists to interface with HPC

and conduct efficient parameter explorations. It allows focusing

on areas of interest while offering a comprehensive overview of

the entire parameter space, including the relationships between

parameters and the selected fitness metrics. In this manuscript, we

demonstrated that L2L is a framework adept at leveraging HPC

infrastructure to assist neuroscientists in optimizing, fitting, and

searching for suitable dynamics in models. Specifically, following

the definition of the genome and the fitness functions for the multi-

compartment neuron, an evolutionary algorithm can identify

suitable candidates that survive the selection process.

This work, based on a customization of the multi-compartment

framework available in NEST (Gewaltig and Diesmann, 2007;

Spreizer et al., 2022), also facilitates the inclusion of two- andmany-

compartments neuron models supporting apical mechanisms in

the ecosystem of other standard simulation engines like Neuron

(Carnevale and Hines, 2006), Brian (Stimberg et al., 2019) and

Arbor (Abi Akar et al., 2019). This work also outlines an

approach grounded in traditional compartmental dynamics, which

is computationally efficient and accurately captures the interplay

between somatic action potentials (APs) and dendritic Ca2+-spikes.

As part of a broader compartmental modeling framework in NEST,

our model can easily be expanded with additional compartments

to represent other dendritic events, such as N-methyl-D-Aspartate

(NMDA) spikes. Finally, due to its implementation in NEST,

the model can be directly integrated into network simulations

modeling incremental learning and sleep cycles (Capone et al.,

2019; Golosio et al., 2021).
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