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Introduction: Feedback and reinforcement signals in the brain act as natures

sophisticated teaching tools, guiding neural circuits to self-organization,

adaptation, and the encoding of complex patterns. This study investigates

the impact of two feedback mechanisms within a deep liquid state machine

architecture designed for spiking neural networks.

Methods: The Reinforced Liquid State Machine architecture integrates liquid

layers, a winner-takes-all mechanism, a linear readout layer, and a novel reward-

based reinforcement system to enhance learning e�cacy. While traditional

Liquid State Machines often employ unsupervised approaches, we introduce

strict feedback to improve network performance by not only reinforcing correct

predictions but also penalizing wrong ones.

Results: Strict feedback is compared to another strategy known as forgiving

feedback, excluding punishment, using evaluations on the Spiking Heidelberg

data. Experimental results demonstrate that both feedback mechanisms

significantly outperform the baseline unsupervised approach, achieving superior

accuracy and adaptability in response to dynamic input patterns.

Discussion: This comparative analysis highlights the potential of feedback

integration in deepened Liquid State Machines, o�ering insights into optimizing

spiking neural networks through reinforcement-driven architectures.

KEYWORDS

spiking neural networks, bio-inspired learning, reinforced-spike-timing-dependent

plasticity (R-STDP), speech recognition, adaptive neural architectures, neuromorphic

computing, temporal learning

1 Introduction

Neuromorphic computing (Schuman et al., 2022) aims to replicate the principles of

information processing found in the brain, a system known for its remarkable efficiency

and adaptability. The human brain can deal with vast amounts of sensory data, perform

complex tasks like pattern recognition, decision making, and motor control, all while

continuously learning and adapting. This efficiency is driven by the brains architecture,

where billions of neurons communicate via discrete electrical impulses or spikes (Gerstner,

2001). These spikes are sparse in time, event-driven, and highly energy-efficient, making

the brain’s approach to computation vastly different from traditional digital processors or

even Artificial Neural Networks (ANNs).

Inspired by the brains architecture, Spiking Neural Networks (SNNs) have emerged

as a promising approach for neuromorphic information processing (Gerstner and Kistler,

2002). In contrast to conventional ANNs, which rely mainly on continuous activations,
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SNNs operate using binary, spike-based communication between

neurons. This enables more biologically realistic computations

(Maass, 1997), where neurons remain mostly inactive and only

fire in response to significant changes in their input. Such event-

driven behavior can conserve energy especially in combination with

neuromorphic hardware implementations (Young et al., 2019).

SNNs, in theory, can replicate the temporal dynamics and adaptive

capabilities of the brain, making them an ideal candidate for

low-power, high-performance architectures designed to handle

complex, real-world data (Yamazaki et al., 2022).

One of the main challenges limiting the widespread adoption

of SNNs is their difficulty in training (Tavanaei et al., 2019). In

traditional ANNs, gradient-based methods like backpropagation

have proven extreme effectiveness, allowing models to optimize

complex objective functions across multiple layers. However, SNNs

present unique challenges for gradient-based training. The discrete,

non-differentiable nature of the spike events makes it difficult to

directly apply backpropagation in the same way as ANNs (Neftci

et al., 2019).

This has provoked research into how feedback might operate

in SNNs and in the brain more broadly (Ororbia, 2023). One

promising approach to training SNNs is e-prop (Bellec et al., 2020),

a biologically plausible alternative to traditional backpropagation

through time (BPTT). This framework leverages biologically

realistic mechanisms, like eligibility traces and feedback signals to

train recurrent SNNs. Recurrent SNNs are highly promising due to

their ability to retain memory and context, making them uniquely

suited for tasks involving sequential data, temporal dependencies,

and contextual understanding. This capability mirrors biological

neural circuits, where recurrency is fundamental for processing.

However, training reccurent SNNs remains challenging due to to

vanishing or exploding gradients, which hinder the learning of

long-range dependencies.

To better understand and leverage recurrent SNNs, it is

essential to separate the effects of recurrency in maintaining

memory and temporal dynamics from the learning signals that

guide weight updates (Evanusa et al., 2024). Inherent recurrency

enables networks to process and store information over time,

forming the basis of their memory capabilities. On the other

hand, learning signals, which drive synaptic changes, should be

treated as distinct mechanisms that influence how memory is

updated or retained based on task-relevant feedback. Decoupling

these functions can simplify network design and allow for more

effective and scalable training methods that preserve the temporal

processing power of recurrent SNNs.

To address the issue of how feedback operates in that

kind of setting, we use a novel approach that introduces a

non-backpropagation-based method for incorporating feedback

in SNNs, called the Reinforced Liquid State Machine (RLSM)

(Krenzer and Bogdan, 2025). The method leverages the idea of

predictive coding (Rao and Ballard, 1999) to incorporate feedback

in a multilayer Liquid State Machine (LSM) architecture (Maass,

2011). The RLSM is a computational framework where the

system generates predictions about incoming sensory input and

continually compares these predictions with actual sensory data.

When predictions do not match the input, prediction errors are

generated and sent back up the hierarchy to adjust and refine the

predictions. This iterative process of minimizing prediction errors

allows the architecture to update its internal models and improve

sensory interpretation over time.

The primary focus of this study is to compare two types of

feedbackmechanisms in the RLSM. The first utilizes feedback solely

based on a positive reward signal to modulate synaptic plasticity,

reinforcing correct predictions like in Krenzer and Bogdan (2025).

The second, new introduced strict feedback, combines both reward

and punishment, where synapses are strengthened for correct

predictions and weakened for incorrect ones, providing a more

refined mechanism for synaptic adjustment. A statistical analysis

is conducted to evaluate the performance of these feedback

systems in a series of experiments using the Spiking Heidelberg

Digits dataset (SHD) (Cramer et al., 2022) for spoken digit

recognition, highlighting the effects of each approach on learning

and accuracy.

2 Related work

2.1 Liquid state machines

The LSM is a computational model that represents a class of

SNNs designed to process data in a neurological plausible way.

Introduced by Maass et al. (2002), LSMs are particularly noted for

their ability to handle real-time processing tasks, such as speech

recognition (Deckers et al., 2022), dynamic pattern recognition

(Woo et al., 2024), and robotic control (de Azambuja et al., 2017).

They operate on the principle of transforming a time-varying

input signal into a high-dimensional, dynamic state space, often

referred to as the liquid state. This state is generated by a recurrent

neural network composed of spiking neurons. The behavior of the

liquid is characterized by its sensitivity to input variations and its

ability to retain a fading memory of past inputs. In essence, the

liquid functions as a complex filter (El-Laithy and Bogdan, 2012),

mapping the input stream into a rich, nonlinear representation.

Unlike traditional feedforward neural networks, LSMs do not

require extensive training of the reservoir component, as the liquids

intrinsic recurent dynamics are naturally suited to capture the

temporal correlations in the input data. Instead, only the readout

layer requires training, which can be efficiently achieved using

relatively simple learning algorithms, such as linear regression in

our case. This separation of computation into a dynamic reservoir

and a trainable readout layer is a defining characteristic of LSMs

and underpins their versatility and efficiency. However, a single

reservoir in reservoir computing can struggle to capture the layered

dependencies present in hierarchical data structures (Ma et al.,

2017). In speech data like in the Heidelberg Dataset (Cramer

et al., 2022), for example, sounds combine to form phonemes,

which in turn form words, phrases, and sentences, each with its

own temporal dependencies. This hierarchical organization means

that critical patterns exist at multiple levels, from micro-level

sound features to macro-level semantic structures. Using multiple

reservoirs allows the model to separately handle these layers,

capturing both fine-grained acoustic features and broader linguistic

patterns, which improves the accuracy and robustness of speech

recognition tasks (Ma et al., 2017).
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2.2 Deep liquid state machines

The study of Soures and Kudithipudi (2019) introduces

the Deep Liquid State Machines (D-LSM), which uses multiple

liquid layers inspired by deep learning. The D-LSM mimics

the hierarchical processing observed in cortical structures, where

layers of neurons engage in progressively complex feature

extraction. The architecture consists of multiple liquid layers

that are designed to capture and transform input signals into

progressively more abstract representations. Between these layers

a winner-takes-all network (WTA) (Oster et al., 2009) is encoding

features by transforming the high dimensional code of liquids

into a low dimensional representation. The WTA is driven by

unsupervised competitive learning, meaning that each neuron is

trying to represent certain spatial-temporal features by adapting

its synaptic connection with a local hebbian learning rule. In this

configuration, the WTA and encoding layers act as consecutive

nonlinear filters, potentially leading to challenges where errors in

local learning processes accumulate over time. To address this,

we aim to incorporate neuromodulatory mechanisms into our

work. For example, dopamine neurons, as described by Schultz

(1998), generate predictive reward signals that help the brain

correct errors by reinforcing accurate predictions and suppressing

inaccurate ones. By incorporating such mechanisms, the idea is

to enhance error correction and adaptability in our proposed

learning architecture.

2.3 Neuromodulated
spike-timing-dependent plasticity

Neuromodulated (Reinforced) Spike-Timing-Dependent

Plasticity (R-STDP) (Frémaux and Gerstner, 2016) extends the

classic concept of Spike-Timing-Dependent Plasticity (STDP)

(Markram et al., 2012), a biological mechanism that describes

adjustment of synaptic strength based on the precise timing of

spikes between pre- and postsynaptic neurons. While STDP is

governed by the relative timing of these spikes, leading to either

long-term potentiation (LTP) or long-term depression (LTD)

(Timothy V.P. Bliss, 2011) of the synapse, R-STDP incorporates the

influence of neuromodulators—chemical signals like dopamine,

serotonin, or acetylcholine into the plasticity process. In R-STDP,

the presence of neuromodulators acts as a third factor that

modulates the strength and direction of synaptic changes. This

additional layer of modulation allows for more context-sensitive

and task-specific learning (Juarez-Lora et al., 2022), making the

synaptic updates not only depending on the timing of spikes but

also on the global or local neuromodulatory signals. These signals

reflect the overall state of the system or its environment. This three-

factor framework bridges the gap between synaptic plasticity and

higher-level learning processes, providing a biologically plausible

mechanism for how experiences and environmental factors can

dynamically influence learning. In the RLSM, a neuromodulator

signal is introduced to mitigating error accumulation in the

winner-takes-all layer and therefore improve learning capabilities.

In summary, while the LSM effectively leverages neurological

principles, it lacks an inherent capacity for hierarchical data

representation. A possible enhancement is the D-LSM, which

introduces a way of adding deepness to the LSM paradigm.

However, the information aggregation between this hierarchical

reservoirs is only based local information. Therefore, they may

lack the necessary global guidance to ensure that their adjustments

move in the right direction. To address this, we introduce a novel

reward system with R-STDP synapses that not only reinforces

learning when the networks predictions are correct but also

penalizes connections when they are incorrect.

3 Method

To investigate different feedback mechanisms, the RLSM

learning architecture, shown in Figure 1, is utilized. It features

two liquid layers, each functioning as a distinct reservoir

of spiking neurons with dynamic synapses. These layers

independently transform incoming temporal input streams

into high-dimensional, nonlinear representations. Each liquid

layer is supposed to capture different aspects or features of the

input data, creating a diverse set of dynamic states. Between these

liquid layers is an interposed WTA, which plays a crucial role in

filtering and selecting the most salient features from the outputs

of the liquid layers. A WTA implements a competitive mechanism

where only the most strongly activated neurons are allowed to

propagate their signals at a particular time to the next stage of

the network. Those neurons are representing the most relevant

features or patterns at that moment.

The architecture aligns with the framework of predictive coding

(Rao and Ballard, 1999), wherein the WTA generates sensory

predictions based on the input it receives from the preceding liquid

layer. These predictions are encoded in the spiking activity of the

WTA neurons, which represent the most likely interpretation of

the incoming signals. Feedback based on the performance of the

whole system serves as a top-down modulation signal, correcting

discrepancies between the WTAs predictions and the actual input

dynamics. This top-down feedback, coupled by a reward signal,

modulates the synaptic weights of the WTA layer through R-STDP,

adjusting its predictions to better align with the temporal patterns

of the input data. This iterative process, where predictions are

generated by the WTA layer and updated by top-down signals,

reflects the core principle of predictive coding: minimizing the

prediction error through hierarchical feedback loops.

3.1 Liquid configuration

Similar to the setup in Maass et al. (2002) the liquid network

comprises of 135 recurrent connected neurons and dynamic

synapses. The neuronal dynamics are described by a basic Leaky

Integrate and Fire neuron (LIF) modeling the membrane potential

V depending on time t:

τm
dV(t)

dt
= −(V(t)− Vrest)+ RmI(t), (1)

where τm is the membrane time constant, Rm is the membrane

resistance, Vrest the resting potential and I(t) is the synaptic input

current. When V(t) reaches a threshold Vth, the neuron generates
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FIGURE 1

The Reinforced Liquid State Machine (RLSM) architecture. Two liquid layers are connected via a winner-takes-all layer. Trainable red weights Wex link

the first liquid layer to the winner layer. The readout output is compared to the true digit, feeding back into the weight update mechanism for Wex,

driving adaptive learning in the system.

a spike, after which V(t) resets. The liquid layer consists of a

network of excitatory and inhibitory neurons with a 4:1 ratio

(80% excitatory, 20% inhibitory), randomly distributed in a three-

dimensional space. The connectivity probability between neurons i

and j is distance-dependent, given by

P(dij) = Cxx · exp

(

−
dij

λ

)2

, (2)

where dij is the Euclidean distance between neurons, Cxx is

the base connection probability depending on weather the pre-

or post-synaptic neuron is inhibitory (I) or excitatory (E) (see

Table 1), and λ is a scaling factor governing the influence of

distance on connectivity. This construction creates a dynamic

reservoir where input stimuli propagate through the network,

generating complex temporal responses essential for processing

spatiotemporal data.

A crucial factor in achieving a rich representation of the

input signal is the modeling of synaptic behavior. The used liquid

configuration employs the Modified Stochastic Synaptic Model

(EL-Laithy and Bogdan, 2010) that incorporates probabilistic

release mechanisms and neurotransmitter dynamics, as well as

responses at the postsynaptic site. This probabilistic framework,

combined with the dynamics of neurotransmitter release, enables

the system to explore a diverse range of states. Consequently,

this enhances the fading property of the liquid and therefore

the consecutive WTA computation, which can extract more

spatiotemporal features from the liquid state.

TABLE 1 Parameter for the liquid configuration.

Parameter Value

τm 20 ms

Rm 30

Vth 15 mV

Vrest 0 mV

CEE|CEI |CII |CIE 0.3|0.2|0.1|0.4

λ 2

First index in C marks the presynaptic plus second index postsynaptic neuron and (I) if its

inhibitory and (E) if excitatory.

3.2 Winner-takes-all dynamics and
reward-modulated synaptic plasticity

The WTA configuration, depicted in Figure 2, incorporates

both excitatory and inhibitory LIF neurons, each playing a crucial

role in setting a competitive environment among the neurons. This

competitive mechanism is essential for sparse activity, which is a

critical aspect of efficient neural processing (Handrich et al., 2009).

In the WTA layer, the excitatory neurons are primarily tasked

with receiving inputs from the preceding liquid layer through an

all-to-all connection. These excitatory neurons selectively amplify

the most relevant pattern based on their input. Therefore, they

enhance the likelihood that the most important features of the

input data are transmitted forward in the network. This selective

competition ensures that only the most relevant patterns are
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FIGURE 2

Winner-Takes-All layer with R-STDP synapses. Triangle neurons represent the winner neurons, receiving input from the preceding liquid layer. These

neurons inhibit each other via round inhibitory neurons while providing their aggregated spatio temporal information to the next liquid layer. Their

input synapses are governed by R-STDP and the Reward Signal is coming from the overall performance of the network.

considered, which is crucial for tasks requiring high levels of

accuracy in decision-making.

Conversely, the inhibitory neurons in the WTA layer are

designed to suppress the activity of less active or irrelevant

excitatory neurons. This suppression is vital for ensuring that

only a small, optimal subset of the most active excitatory neurons

is allowed to win the competition. This winning subset then

plays a significant role in shaping the outputs that contribute to

downstream processing, such as classification or prediction tasks.

The synaptic connections that exist between the liquid layer

and the WTA layer are governed by R-STDP synapses. In this

learning mechanism, the synaptic weights between the liquid layer

and the excitatory neurons in the WTA layer are dynamically

updated. This process is influenced by the correlation between the

spiking activities of the presynaptic neurons from the liquid layer

and the postsynaptic excitatory neurons within the WTA layer.

Additionally, a reward signal plays a pivotal role in this process,

providing feedback that reflects the overall performance of the

network on the designated task.

This reward signal acts as a guiding metric, incentivizing

the network to strengthen synaptic connections that contribute

to successful outcomes while diminishing those that do not. By

leveraging this R-STDP learning rule, the network is able to

adaptively refine its synaptic weights over time, facilitating the

emergence of more robust and efficient neural pathways.

To implement the local component of the learning rule

in an online fashion, each incoming presynaptic spike creates

a presynaptic trace, represented as xpre like in Soures and

Kudithipudi (2019). This trace is mathematically defined by the

following equation:

dxpre

dt
=

xpre

τpre
+

∑

f

δ(t − tf ), (3)

where input spikes f are represented by the Dirac delta function δ.

This presynaptic trace effectively captures the temporal activity of

the presynaptic neuron at the synapse. If no spike is arriving, the

trace is decaying exponentially modulated by the constant τpre. The

continuous nature of the trace allows for a nuanced representation

of the spiking history leading up to any given moment.

When the postsynaptic neuron fires, the weight of the synapse

is updated based on the comparison between xpre and a predefined

target value xtar , as shown in the following equation:

1wlocal = η(xpre − xtar)(wmax · w)
µ. (4)

In this equation, 1wlocal represents the change in the synaptic

weight, η is the learning rate, wmax is the maximum allowable

weight, and µ serves as a control parameter that determines how

much the update depends on the previous weight w. The learning

rate µ is set low, as shown in Table 2, to enable weight updates after

each sample is processed. The parameter xtar can be also considered

as a control mechanism regulating the influence of the previous

liquid to the WTA.

STDP alone can exhibit runaway dynamics which result in

synaptic strengths saturating. In order to stabilize the performance

of STDP, it is necessary to use the same synaptic scaling function

used in the initialization step and intrinsic plasticity. Synaptic

scaling normalizes the sum of pre-synaptic connections to alpha

and is applied after the weight update:

wlocal =
wi,j

6N
j wi,j

· α. (5)

To enable faster learning by crediting actions that contributed

to future rewards, a eligibility trace etrace is introduced. This trace

acts as a bridge linking the local synaptic updates defined by

Equation 5 to global delayed reward signals. The time scale of this

delay is determined by τtrace, and it allows the influence of a global
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reward described in Section 2.3 to be distributed over time and

across the relevant local synapses. This temporal distribution is

vital for ensuring efficient selection of salient activities within the

WTA. The equation governing the evolution of the eligibility trace

is given by:

detrace

dt
=

etrace

τtrace
+ 1wlocal. (6)

After each digit is processed, the eligibility trace is reflecting for

each synapse between the liquid layer and the WTA the correlation

between the presynaptic and postsynaptic neuron. Finally, the

overall weight update for the synapses connecting the liquid layer

to the WTA, incorporating feedback from the global reward signal,

is expressed as follows:

1wfeedback = r · etrace. (7)

Here, the feedback weight update 1wfeedback is a product of the

reward signal r and the value of the eligibility trace etrace after the

processed digit for each synapse. The reward signal r is calculated

within the Reward-System, which compares the prediction made

by the readout layer to the actual label, thereby facilitating learning

based on performance feedback.

These learning rules are central to the RLSM, powering the key

processes of adaptation and optimization. Through the integration

of local updates, eligibility traces, and global feedback mechanisms,

the system is capable of refining its synaptic weights to enhance

performance on a specific task, effectively balancing exploration

and exploitation in its learning strategy. All parameters for the

learning process are detailed in Table 2.

3.3 Two approaches to feedback: forgiving
and strict

Two primary approaches to feedback are extensively studied:

positive reinforcement (Forgiving Feedback) and conditional

synaptic decay (Strict Feedback). Positive reinforcement exclusively

rewards positive outcomes, fostering a focus on achieving desired

states. In contrast, conditional synaptic decay involves a gradual

reduction in the strength of synaptic connections only when the

reward system fails to provide a positive signal.

TABLE 2 Parameter for the learning equations.

Parameter Value

τpre 300 ms

η 0.0001

wmax 1

xtar 20

α 15

τtrace 500 ms

The positive feedback is called Forgiving Feedback and reads:

1w =

{

k · etrace, if ŷ = y

0, otherwise,
(8)

where ŷ is the output of the logistic regression, y the desired spoken

digit, k is scaling etrace and w to the same range. That means that

r of Equation 7 either enables learning when set to 1 or disables it

when set to 0 based on the performance of the readout.

Conditional synaptic decay or Strict Feedback offers a more

nuanced approach to learning compared to traditional synaptic

decay, as it allows the model to maintain and strengthen synaptic

connections that contribute to positive outcomes while gradually

weakening connections that do not. This can improve the efficiency

and accuracy of the learning process, as the model can focus on the

most relevant features and patterns in the data.

1w =

{

k · etrace, if ŷ = y

1w = −γw, otherwise,
(9)

Equation 9 specifies that the change in synaptic weight, 1w,

depends on whether the predicted label matches the desired label.

If they match, 1w is equal to the k ∗ etrace. If they do not match,

synaptic decay occurs, and the weight decreases by an amount

proportional to 1w = −γw, where γ is the decay factor with

γ << η.

4 Experiments

4.1 The Spiking Heidelberg Digits dataset

The SHD (Cramer et al., 2022) dataset is a benchmark

specifically designed for evaluating the performance of spiking

neural networks, using an audio classification task. This dataset

comprises recordings of spoken digits, ranging from zero to nine,

in both English and German languages. Therefore the total amount

of classes is 20. The SHD dataset is structured into 8,156 training

samples and 2,264 test samples. To evaluate the effectiveness of our

approaches, we conduct experiments using a downsampled version

of the SHD, where the original set of 700 input neurons was reduced

to 70 by selecting every 10th neuron.

4.2 Results

In our experimental setup, the liquid structure was held

constant at a fixed configuration to maintain consistency across

trials. However, the initial weights of the WTA network were

randomly initialized in each run, and we performed 100

independent experiments to capture the variability and assess the

robustness of the approach.

The feedback mechanisms were introduced halfway through

the training samples to evaluate its impact on network learning

and performance. By delaying feedback activation, we aimed

to examine its influence on the networks adaptability and

capacity for refinement. The initial unsupervised training

phase is required because the readout needs to be a rough
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FIGURE 3

Violin plots performance across 100 experiments for each feedback mechanism. The plots show performance improvement from no feedback to

forgiving and strict feedback. Most configurations converge closer to the median, indicating increased consistency with feedback.

estimator of the data. Then the feedback constantly changes

the representation based on the performance of the readout.

The weights are updated every sample like in stochastic

gradient descent.

Across 100 experimental trials, the system demonstrates a

marked improvement in classification accuracy when feedback

mechanisms are used compared to no feedback (Figure 3).

The forgiving feedback mechanism outperforms the no-feedback

baseline, achieving a maximum increase of 2.7% in performance.

This result is statistically validated by the Mann-Whitney U test,

with a p-value below 0.01%, confirming a significant difference

in mean values and highlighting the effectiveness of forgiving

feedback. The strict feedback mechanism is demonstrating

comparable performance to forgiving feedback, backed by a p-value

of 0.8%. Statistical analysis reveals no significant difference between

the forgiving and strict feedback mechanisms.

To better understand the impact of feedback on specific

classification outcomes, confusion matrices for both forgiving and

strict feedback mechanisms are analyzed as shown in Figures 4,

5. This analysis provides insight into how each feedback type

affects individual class predictions by using the same network

configuration and the same initial weights.

The confusion matrix in Figure 4 reveals that more classes

for example class 0,4 and 17 are benefiting from the additional

forgiving feedback meaning that the new representations can be

better separated in general.

On the other hand, the confusion matrix in Figure 5 shows

a clear improvement on a single class, in this case class 7.

The prediction performance of the other classes remain roughly

the same.

5 Discussion

The comparison of the two kinds of feedback in a RLSM

demonstrate that both forgiving and strict feedback mechanisms

enhance classification performance compared to a no feedback

baseline. Statistical analysis confirms a significant improvement

for both feedback types. These results underscore the importance

of feedback in SNNs, particularly when adapting to complex

classification tasks. Forgiving and strict feedback mechanisms,

while distinct in approach, each show effectiveness in reducing

misclassification rates, suggesting that incorporating tailored

feedback strategies may be valuable for optimizing model accuracy

across varied classification challenges.

The forgiving feedback mechanism provides a balanced

performance improvement across all classes, as evidenced by

the confusion matrix analysis. This widespread reduction in

misclassification rates suggests that forgiving feedback promotes

a robust and generalized adaptation in the model. By allowing

the system to make slight errors without harsh penalties, forgiving

feedback likely facilitates smoother learning and error correction

across classes. This adaptability is advantageous in environments

where accuracy across all classes is essential, making forgiving

feedback particularly suitable for tasks requiring consistency

and generalization.

Conversely, the strict feedback mechanism demonstrates

unique benefits for specific classes. Here, the inclusion of synaptic

decay plays a critical role, allowing the system to effectively

forget prior misclassifications, which reduces repeated errors

and promotes targeted improvement for problematic classes.

This focused adjustment is beneficial for classes prone to
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FIGURE 4

Comparison of confusion matrices for no feedback and forgiving feedback on test data. Each class represents a digit, with values on the diagonal

indicating correct classifications. The diagonal values increase with forgiving feedback, showing improved accuracy for the same initial weights.

FIGURE 5

Comparison of confusion matrices for no feedback and strict feedback on test data. The diagonal values show overall improvement with strict

feedback, particularly benefiting class number 7, along with most other classes.

misclassification, where strict feedback helps to correct persistent

error patterns. Thus, while strict feedback may not provide the

broad improvement seen with forgiving feedback, its utility in

enhancing performance for specific, error-prone classes is apparent.

This mechanism may be particularly useful in applications where

certain classifications are more critical than others and where

targeted accuracy improvements are prioritized.

The absence of a statistically significant difference between

forgiving and strict feedback suggests that each feedback

mechanism holds comparable value in terms of overall

performance enhancement. However, the unique advantages

observed in the confusion matrix analysis highlight that the

selection between strict and forgiving feedback should consider the

specific requirements of the classification task.
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6 Conclusion and future work

This study investigated the role of feedback mechanisms in

a deep liquid state machine for spiking neural networks. We

introduced strict feedback, which reinforced correct predictions

while penalizing incorrect ones. Comparing this approach to

a forgiving feedback strategy, we found that both significantly

outperformed traditional unsupervised methods, achieving

greater accuracy and adaptability. These findings underscore the

importance of feedback-driven learning in optimizing spiking

neural networks and contribute to the broader understanding of

the role of feedback.

Future research could explore the underlying mechanisms of

these feedback approaches further by analyzing the representation

in the WTA. Additionally, the readout could be trained more

frequently during training which might increase adaptability

by forcing greater competition between the readout and the

reward system. Finally, the RLSM can be evaluated across

various tasks such as image recognition and video analysis to

assess its generalizability and compare its performance to other

spiking neural network approaches, including gradient descent-

based methods.
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