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Introduction:Major Depressive Disorder (MDD) remains a critical mental health
concern, necessitating accurate detection. Traditional approaches to diagnosing
MDD often rely on manual Electroencephalography (EEG) analysis to identify
potential disorders. However, the inherent complexity of EEG signals along with
the human error in interpreting these readings requires the need for more
reliable, automated methods of detection.

Methods: This study utilizes EEG signals to classify MDD and healthy individuals
through a combination of machine learning, deep learning, and split learning
approaches. State of the art machine learning models i.e., Random Forest,
Support Vector Machine, and Gradient Boosting are utilized, while deep learning
models such as Transformers and Autoencoders are selected for their robust
feature-extraction capabilities. Traditional methods for trainingmachine learning
and deep learning models raises data privacy concerns and require significant
computational resources. To address these issues, the study applies a split
learning framework. In this framework, an ensemble learning technique has been
utilized that combines the best performing machine and deep learning models.

Results: Results demonstrate a commendable classification performance with
certain ensemble methods, and a Transformer-Random Forest combination
achieved 99% accuracy. In addition, to address data-sharing constraints, a split
learning framework is implemented across three clients, yielding high accuracy
(over 95%) while preserving privacy. The best client recorded 96.23% accuracy,
underscoring the robustness of combining Transformers with Random Forest
under resource-constrained conditions.

Discussion: These findings demonstrate that distributed deep learning pipelines
can deliver precise MDD detection from EEG data without compromising
data security. Proposed framework keeps data on local nodes and only
exchanges intermediate representations. This approach meets institutional
privacy requirements while providing robust classification outcomes.
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split learning, transformers, autoencoder, EEG, major depressive disorder, smart
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1 Introduction

The human body possess remarkable complexity, and the
brain plays a pivotal role in cognitive and behavioral functions
(Vohryzek et al., 2025). Maintaining a healthy brain is essential
for optimal decision-making (Hagan et al., 2025). The human
brain contains billions of neuron, which coordinate various
neurological activities (Herculano-Houzel, 2009). Nonetheless,
a range of disorders impact brain function, including Major
Depressive Disorder (MDD) i.e., leading contributor to mental
health challenges (Kreivinienė et al., 2025).

Early diagnosis of MDD is important for mentaining mental
well-being, but current diagnostic methods rely on subjective
clinical evaluations and self-reported symptoms prone to human
error and inefficiency (Hagan et al., 2025; Kreivinienė et al., 2025).
This underscores the need for a reliable diagnostic tool that assists
clinicians in making accurate and timely decisions.

Electroencephalography (EEG) offers a promising approach
for examining the neurophysiological underpinnings of mental
health conditions (Perrottelli et al., 2021). It measures electrical
brain activity with high temporal resolution and is non-invasive,
cost-effective, and portable (Perrottelli et al., 2021). Previous
studies have revealed changes in EEG patterns, such as power
spectral density shifts and alterations in brain wavebands, among
individuals with MDD (Liang et al., 2021). Although EEG signals
contain valuable diagnostic information, extracting meaningful
insights from these high-dimensional and noisy data remains a
challenge.

Machine learning (ML) and deep learning (DL) techniques
demonstrate potential for analyzing EEG signals (Subhani et al.,
2017; Rahul et al., 2024; Umair et al., 2021; Diehl and Cook, 2015).
DL models can automatically extract relevant patterns, aiding in
differentiating healthy individuals from those affected by MDD
(Subhani et al., 2017). However, traditional ML and DL training
often occurs in centralized systems, which raises privacy risks and
demand costly computational infrastructure (Umair et al., 2024;
Rahul et al., 2024). Healthcare institutions also hesitate to share
sensitive data, highlighting the need for decentralized methods that
safeguard patient privacy (Umair et al., 2023).

Federated Learning (FL) has emerged as a key approach to
decentralized training by enabling local model updates on client
devices while aggregating models at a central server (McMahan
et al., 2017). Although FL preserves data privacy, some clients
may face resource constraints that hinder local training (Umair
et al., 2023). However, a similar concept as FL i.e., split learning
(SL) addresses this challenge by splitting the model architecture
between clients and a central server, transferring only intermediate
representations instead of raw data (Gupta and Raskar, 2018). This
structure reduces the computational burden on resource-limited
devices having on device training as well (Jia et al., 2024). In the
context of EEG-based MDD diagnosis, SL can integrate distributed
data from multiple healthcare providers without centralizing
sensitive information, offering a scalable and reliable framework for
developing effective diagnostic models.

This study explores the concept of SL in conjunction with
various ML and DL models to classify MDD patients using an
EEG dataset. Model selection is critical for robust classification, so

multipleML classifiers including Logistic Regression (LR), Random
Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),
K-Nearest Neighbors (KNN), and Gradient Boosting (GB) are
utilized for their proven performance. In addition, advanced
DL architectures such as Transformers and Autoencoders are
employed to capture the complex, high-dimensional characteristics
of EEG data. An ensemble learning principles is then implemented
in a SL framework, with three clients chosen for comparative
evaluation. Classification reports and confusion matrices serve as
the primary metrics to assess the performance of these models.
Thus, key contribution of this study is as follows:

1. Split learning framework tailored for EEG-based MDD
classification. And within this SL approach ML and DL models
are utilized for EEG features extractions and classification.

2. Proposed a ensemble model tailored for MDD disorder
classification through comprehensive performance metrics
across three clients in SL settings.

This article is organized into five main sections. Section 1
provides the background and context of the study. Section 2 reviews
related work and relevant literature. Section 3 details the methods
and materials used in the experiments. Section 4 presents the
obtained results and offers a comprehensive discussion. Finally,
Section 5 concludes the study by summarizing the key findings.

2 Related work

Researchers have recently explored a range of ML and DL
models for medical applications (Gour et al., 2023; Sultan et al.,
2023; Owais et al., 2022) yielding promising results. However,
as discussed in Section 1, the majority of these algorithms rely
on centralized architectures that raise privacy concerns and limit
their practical applicability. This section reviews recent studies that
utilize ML and DL approaches for EEG-based analysis, as well
as decentralized solutions aimed at safeguarding data privacy and
promoting scalability.

Park et al. (2021) employed multiple ML models SVM, RF,
and elastic net regression to classify six major psychiatric disorders
and healthy controls using EEG features such as power spectrum
density (PSD) and functional connectivity (FC). Their elastic net
model achieved the highest accuracy across disorders, notably
identifying schizophrenia with 93.83% accuracy using alpha PSD,
anxiety disorders with 91.03% accuracy via whole-band PSD, and
trauma and stress-related disorders with 91.21% accuracy from
beta FC features. Rafiei et al. (2022) proposed a DL model based
on a customized InceptionTime architecture for MDD detection,
achieving 91.67% accuracy with full-channel EEG data and 87.5%
after channel reduction. Rivera et al. (2022) conducted a systematic
mapping of 46 primary studies that leveraged DL for EEG-based
mental disorder diagnoses, revealing CNNs as the most common
approach and epilepsy as the most frequently studied disorder.
Wang et al. (2024) developed DiffMDD, a diffusion-based DL
framework for diagnosing MDD, incorporating Forward Diffusion
Noisy Training and Reverse Diffusion Data Augmentation to
mitigate noise and data scarcity. Anik et al. (2024) introduced an
11-layer 1D-CNN forMDD classification, focusing on gamma band
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FIGURE 1

Overview of the utilized methodology for major depressive disorder classification using EEG signals.

EEG segments of 15-second epochs, and attained 99.60% accuracy,
100% sensitivity, and 99.21% specificity.

Earl et al. (2024) used an RF model on resting-state
and emotionally charged EEG-based FC features, achieving
classification accuracies of 92.3%, 94.9%, and 89.7%. Metin
et al. (2024) combined 1D-CNN with LSTM and 2D-CNN to
classify bipolar disorder, reporting a higher accuracy (95.91%)
with the 2D-CNN compared to the 1D-CNN+LSTM (93%).
de et al. (2024) proposed SLiTRANet, a transformer-based DL
framework for MDD detection, achieving 99.92% accuracy, 99.90%
sensitivity, and 99.95% specificity. Zhu et al. (2025) introduced
MTNet, a transformer network integrating EEG and eye-tracking
data for depression detection, obtaining 91.79% accuracy and
highlighting the benefits of intermediate fusion. Ahmed et al.
(2024) utilized an ensemble of transformer based models (vanilla
BERT, BERTweet, ALBERT) to classify depression severity from
social media posts, while Ilias et al. (2024) employed BERT and
MentalBERT with extra-linguistic information for depression and
stress detection. Sun et al. (2023) introduced TensorFormer, a
multimodal transformer framework for sentiment analysis and
depression detection, demonstrating performance enhancements
on multiple datasets.

Decentralized learning approaches such as FL have also
garnered attention. Zhang et al. (2023) proposed FedBrain for
diagnosing brain disorders, integrating data augmentation, domain
alignment, and personalized predictors to handle high-dimensional
features and variable data distributions. FedBrain achieved 79%
accuracy with privacy preservation through differential privacy
and homomorphic encryption. Li et al. (2023) introduced CAFed,

an asynchronous federated CNN-based optimizer for detecting
depression from social media data, improving communication
efficiency, convergence rates, and privacy protection while
surpassing FedAvg in non-convex problem settings.

Although these studies demonstrate promising performance,
their reliance on traditional ML and DL methods often involves
centralized or FL-based architectures that either risk privacy or
suffer from resource constraints. Therefore, this work adopts SL as a
resource-sharingmethodology to address these concerns, balancing
privacy preservation with computational feasibility.

3 Materials and methods

This section describes the experimental procedures and
methods employed in this study. Figure 1 presents an overview
of the methodology, which comprises five key components: EEG
data collection, data preprocessing, model selection, SL, and
evaluation. Each component is discussed in detail in the subsequent
subsections.

3.1 Data collection

A publicly available EEG dataset (Mumtaz, 2016) is used in
this study, comprising of two groups: 33 MDD patients (mean age
40.33 ± 12.86) and 30 age-matched healthy controls (mean age
38.23 ± 15.64), recruited from the outpatient clinic at Hospital
Universiti Sains Malaysia (HUSM) (Mumtaz et al., 2017). EEG data
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FIGURE 2

EEG Data collection using electrodes across various locations.

were recorded under controlled conditions, with 5-min eyes-closed
(EC) and eyes-open (EO) sessions, using a 19-channel system
aligned with the international 10–20 standard and a linked-ear
reference (Figure 2). The system applied a 0.5–70 Hz bandpass
filter, a 50 Hz notch filter, and a sampling rate of 256 Hz, followed
by referencing to an infinity reference for subsequent analyses
(Mumtaz et al., 2017). Participants were instructed to avoid caffeine
and other substances because caffeine intake can alter arousal
states by inhibiting adenosine, thus introducing variability and
potential noise into EEG recordings (Lesar et al., 2025; Zhu et al.,
2024). MDD severity was assessed using the Beck Depression
Inventory-II (BDI-II) and the Hospital Anxiety and Depression
Scale (HADS) (Mumtaz et al., 2017). A sample shown in Figure 3
of a raw EEG signal recorded over 19 channels in a 10-second
window, demonstrates the time-domain structure of brain activity.
Accessed dataset (Mumtaz et al., 2017) contains the files structure
in pdf format, thus, we utilized python library [i.e., mne (Gramfort
et al., 2013)] in order to preprocess these EEG recording for our
case, Figure 3 is basically the recordings of EEG sample that is
preprocessed via MNE library. Each channel corresponds to a
specific scalp location following the international 10–20 system
(e.g., Fp1, F3, P3), allowing for regional analysis of cortical
oscillations. Notable fluctuations in amplitude can be seen across
channels, which may reflect ongoing cognitive or physiological
processes, as well as potential artifacts (e.g., eye blinks or muscle
movements). Similarly, in Figure 4, the power spectral density of
the EEG signal, color-coded to highlight the standard frequency
bands: Delta (0.5–4Hz), Theta (4–8Hz), Alpha (8–13Hz), Beta
(13–30Hz), and Gamma (>30Hz). The PSD curve represents the
distribution of signal power across frequencies, with characteristic

peaks often observed in the Delta and Alpha ranges. Identifying
the relative power in these frequency bands can reveal important
information about the participant’s mental state and the presence
of any abnormal patterns indicative of neurological or psychiatric
conditions.

3.2 Data preprocessing

3.2.1 Data loading
All EEG recordings were loaded in a standardized manner to

ensure uniform data handling. A common input of 10 seconds of
EEG recording was used from each sample was then applied across
all channels to facilitate consistent inter-subject comparisons.

3.2.2 Filtering
Filtering is an essential step in EEG signal processing because

raw signals often contain noise and artifacts in frequency ranges
that are not relevant for subsequent analysis. To address this, we
employed a bandpass filter to removes unwanted noise and keeping
frequency components as well. A bandpass filter in the 0.5–60Hz
range was employed to suppress low-frequency drifts and high-
frequency noise. Mathematically, it shown in Equation 1, where
x(t) denotes the raw EEG signal and filtered signal is denoted as x̃(t)

x̃(t) = F
−1

{

F{x(t)} ·H(ω)
}

(1)

Here, F denotes the Fourier transform, and H(ω) is the ideal
passband response for the specified frequency range.
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FIGURE 3

Raw EEG data, recorded over 19 channels in a 10-second window, demonstrates the time-domain structure of brain activity.

3.2.3 Epoch segmentation
We segmented the continuous EEG into fixed-length epochs

of 5 seconds each, with a 1 second overlap between consecutive
segments. This specific window length strikes a practical balance
between capturing relevant EEG frequency components (e.g.,
alpha, beta, and gamma bands) andmaintaining adequate temporal
resolution for classification. Shorter windows (2–3 seconds) often
fail to capture stable patterns, while substantially longer windows
(e.g., 8–10 seconds) risk smoothing out important transient
features. The 1 second overlap ensures continuity across segment
boundaries and mitigates the loss of transitional information that
can occur at strict epoch boundaries. Mathematically it is given in
Equation 2.

Ei =
{

x(t)
∣

∣ t ∈ [i · 1, (i · 1 + τ )]
}

(2)

where τ = 5 seconds is the epoch length, and 1 = τ − 1
seconds denotes the shift applied between consecutive segments.

3.2.4 Feature extraction
Each epoch was transformed into a feature vector by computing

a set of statistical descriptors that capture both amplitude variations
and higher-order properties of the signal distribution. If xn denotes
the amplitude of the signal at time index n, and N is the number of

samples per epoch, the following examples (using Equations 3–eq6)
illustrate key feature computations. Whereas, P2P in Equation 5
refers the peak to peak amplitude of the recorded EEG signal.

µ =
1

N

N
∑

n=1

xn (3)

σ =

√

√

√

√

1

N

N
∑

n=1

(xn − µ)2 (4)

P2P = max{xn} −min{xn} (5)

RMS =

√

√

√

√

1

N

N
∑

n=1

x2n (6)

Higher-order moments, including skewness and kurtosis, were
also evaluated to account for asymmetry in the signal distribution.

3.2.5 Labeling
Each epoch was then assigned a class label based on the

participant’s diagnostic status (0 for healthy controls, 1 for MDD).
The final output of this preprocessing pipeline was a feature matrix
of size along with a corresponding label vector. This structured
dataset was then used for the model training and evaluation.
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FIGURE 4

The power spectral density of the EEG signal, color-coded to highlight the standard frequency bands: Delta (0.5–4Hz), Theta (4–8Hz), Alpha
(8–13Hz), Beta (13–30Hz), and Gamma (>30Hz).

FIGURE 5

ML and DL models architectural overview.

3.3 ML and DL models

In this section, the architectures of utilized ML and DL models
has been discussed. An overview of their architecture has been
shown in Figure 5.

3.3.1 Machine learning classifiers
Model selection plays a pivotal role in achieving robust

classification performance. Consequently, the following tree-based
and other conventionalML classifiers were employed: LR, RF, SVM,

DT, KNN, and GB. Each classifier offers distinct inductive biases
and learning strategies that are used to capture diverse patterns in
EEG-based features for distinguishing MDD patients from healthy
controls.

Moreover, all hyperparameter settings (e.g., n_estimators =
100 for RF, max_depth = 10 for DT, n_neighbors = 7 for KNN)
were determined via a grid search procedure. This involved
systematically varying key parameters within predefined ranges
and evaluating model performance through cross-validation on the
training set. The final configurations were selected based on their
classification report.
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3.3.1.1 Decision tree

A DT recursively partitions the feature space by selecting
optimal split points that maximize homogeneity in the resulting
subsets. As given in Equation 7,D represent the training dataset and
j be the index of a potential split on feature xj. The split criterion can
be based on information gain or the Gini index. For instance, using
the Gini index G, the split s on feature xj is chosen to minimize.

s∗ = argmin
s

[nL

n
G(DL) +

nR

n
G(DR)

]

, (7)

whereDL andDR are the left and right child partitions ofD after
the split s, nL and nR are the respective sizes of these partitions, and
n is the total number of samples in D.

3.3.1.2 Random forest

RF constructs an ensemble of decision trees, each trained on
a bootstrap sample of the original dataset. At each split node, a
random subset of features is considered to enhance diversity among
the trees. The model’s prediction is obtained via majority voting
(for classification) across all trees. Mathematically it is given in
Equation 8.

ŷ = mode
(

{ ht(x) | t = 1, . . . , T}
)

, (8)

where ht(x) denotes the prediction from the t-th tree and T is
the total number of trees in the forest.

3.3.1.3 Gradient boosting

GB sequentially fits new weak learners (often decision trees)
to the negative gradient of a specified loss function. As given in
Equation 9, yi denotes the true label of instance i, and let Fm−1

be the ensemble model at iteration (m − 1). A new base learner
hm is trained to approximate the negative gradient of the loss
ℓ(yi, Fm−1(xi)). The ensemble is then updated as:

Fm(x) = Fm−1(x)+ η · hm(x), (9)

where η is the learning rate. This iterative procedure allows
optimizer to correct the residual errors from the previous step,
leading to improved performance over single-tree methods.

3.3.1.4 Logistic Regression

LR estimates the probability that a sample x belongs to the
positive class (denoted by y = 1) using the sigmoid function. As
given in Equation 10:

p(x) = σ (β⊤x + β0) =
1

1+ exp(−(β⊤x + β0))
, (10)

where β is the weight vector, β0 is the intercept, and σ (·)
represents the sigmoid. A threshold (i.e., 0.5) is applied to p(x) to
determine class of the given input.

3.3.1.5 Support vector machine

SVM is a widely used supervised learning technique renowned
for its effectiveness in high-dimensional spaces and robust
generalization capabilities. The key principle of SVM lies in finding
an optimal decision boundary (hyperplane) that maximizes the

margin between different classes, thus improving classification
performance. In its linear form, SVM is given in Equation 11,

minimize
w,b

1

2
‖w‖2 subject to yi(w

⊤xi + b) ≥ 1, ∀i, (11)

where w and b define the hyperplane, and yi ∈ {−1,+1} denotes
class labels. Nonlinear decision boundaries can be learned via
kernel functions.

3.3.1.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple yet effective non-
parametric, instance-based learning method. It assigns a class to a
query point xq by considering the classes of its k nearest neighbors.
The distance metric often used is the Euclidean distance (as given
in Equation 12).

d(xq, xi) =

√

√

√

√

M
∑

j=1

(xqj − xij)2, (12)

where M is the number of features. The predicted class is
determined by a majority vote among these k neighbors.

3.4 DL models

3.4.1 Transformer models
Transformer architectures have gained prominence for their

capacity to capture long-range dependencies and context within
sequential data, making them particularly appealing for EEG-based
analysis. Unlike traditional recurrent networks, Transformers
dispense with explicit recurrence and convolutional operations,
relying instead on an attention mechanism. Mathematically (as
shown in Equation 13), Q, K, and V denote the query, key, and
value matrices, respectively, then a single-head attention module
can be written as:

Attention(Q,K,V) = softmax
(QK⊤

√

dk

)

V , (13)

where dk is the dimension of the key vectors, and softmax
function normalizes the attention scores. Multi-head attention
extends this formulation by employing several parallel attention
mechanisms and concatenating their outputs to enrich the
representational capacity (as given in Equation 14).

MultiHead(Q,K,V) =
∥

∥

H

h=1Attention(QW
Q
h
, KWK

h , VW
V
h )W

O,
(14)

where
∥

∥ denotes concatenation across H attention heads, and
W

Q
h
,WK

h
,WV

h
, andWO are learned projection matrices.

In EEG analysis, input sequences can be framed as embeddings
of multi-channel signals over time, enabling the transformer
to learn context-dependent patterns relevant for mental health
classification. Positional encodings are commonly added to the
input embeddings to preserve temporal order. This attention-based
approach often yields superior performance in capturing nuanced
dependencies within EEG signals, especially for tasks such as MDD
detection.
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3.4.2 Autoencoders
Autoencoders are a family of neural network models designed

to learn compressed representations (encodings) of the input data
by minimizing reconstruction error. They consist of two main
components i.e., Encoder and Decoder. Encoder, maps an input
x ∈ R

D to a latent code z ∈ R
d (with d < D) as given in

Equation 15,

z = fenc(x). (15)

Whereas, decoder reconstructs the original input from
z, producing x̂ ∈ R

D as when in Equation 16:

x̂ = fdec(z). (16)

The model is typically optimized to minimize:

L = ‖x− x̂‖2, (17)

another suitable measure of reconstruction fidelity. By
constraining the latent dimension d, autoencoders learn salient
features that represent the most informative aspects of the data. In
EEG-based MDD detection, autoencoders can help denoise signals
or extract meaningful representations that capture underlying
neural patterns. These learned representations may then serve as
inputs for downstream classifiers or be integrated into end-to-end
DL pipelines for improved diagnostic accuracy.

3.5 Ensemble learning

Ensemble learning combines multiple base models to achieve
improved predictive performance relative to any single constituent
model. This approach capitalizes on the principle of “wisdom of the
crowd,” where diverse model outputs are aggregated to form a final
decision. A common strategy for building ensembles include:

3.5.1 Bagging
Bagging (Bootstrap Aggregating) trains each base learner on

a different bootstrap sample (randomly drawn with replacement)
of the original dataset. Let {Db}

B
b=1 be the collection of bootstrap

samples, each used to train a distinct model hb(x). The final
prediction is obtained by averaging or voting across the ensemble:

ŷbagging =

{

majority
{

hb(x)
}B

b=1, classification
1
B

∑B
b=1 hb(x), regression

(18)

Bagging often reduces variance without substantially increasing
bias, making it effective for high-variance models like decision
trees.

Ensemble learning is particularly relevant for EEG-based
MDD classification due to the high dimensionality and variability
inherent in EEG signals. It is because of this reason, ensemble
learning was utilized using best performing ML model and then
best performing DL model. By integrating these models, ensembles
have the potential to yield more reliable and generalizable
predictions for clinical applications.

3.6 Split learning

SL offers a decentralized framework designed to address privacy
and resource constraints, particularly relevant when clinical or EEG
datasets cannot be shared in raw form. Unlike fully centralized
methods, where all data must reside on a single server, SL divides a
neural network into multiple segments to be trained collaboratively
between clients and a central server. In this study, three clients
are assumed, each holding a portion of the EEG data locally
(as shown in Figure 6). After data preprocessing (Section 3.2),
SL is implemented to enable model training without direct data
exchange across clients.

3.6.1 Architectural overview
SL offers a collaborative training framework by partitioning a

neural network between clients and a central server. This approach
helps ensure that sensitive data like EEG signals remain local to
each client, while still enabling the development of robust, shared
models. In the context of MDD classification, SL architecture that
we used is shown in Figure 6 that is particularly beneficial, as it
enable data training while managing resources efficiently.Consider
a neural network f (·) decomposed into two primary segments
(as given in Equation 19. Where: fclient denotes the partial model
residing on the client side, parametrized by θ , which transforms
local data x into an intermediate representation z. fserver denotes
the remaining portion of the model, located on a central server and
parametrized by φ. It processes the intermediate representation z

to produce predictions (e.g., class probabilities). And, ⋄ symbolizes
the functional concatenation of the two segments.

f (x; θ ,φ) = fclient(x; θ) ⋄ fserver(z;φ) (19)

Each client trains only fclient on its local dataset, while fserver is
trained on the server side using the intermediate representations z
received from the clients. This design ensures that raw EEG data
never leaves the client’s local environment. In utilized methodology
for SL, each client i forwards only intermediate activations z

derived from its local data to the server, which handles the
remaining layers and calculates the global loss. The server’s
gradients are backpropagated to the clients, enabling local updates
while preserving data privacy. This division of computational
labor also alleviates resource constraints on client devices, as
the heaviest computations can be offloaded to the server. This
makes SL particularly applicable for MDD classification, where
healthcare institutions typically hold proprietary EEG data. By
sharing only intermediate features, SL mitigates privacy concerns
and fosters collaborative model development, enabling a more
inclusive and robust system for detecting and monitoring mental
health conditions.

3.6.2 Algorithmic workflow for split learning
In this subsection, workflow of the utilized SL methodology

has been described, as it starts with initialization, local processing
and then toward clients processing and propagation, these steps are
given as below:
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FIGURE 6

Split learning concept.

3.6.2.1 Initialization

Each client Ci initializes its local model parameters θ i, while
the central server initializes its parameters φ. Data normalization
or other preliminary setup is performed here.

3.6.2.2 Local preprocessing

Prior to training, each client cleans and preprocesses its local
EEG data (e.g., filtering, artifact removal). This ensures high-quality
input to the client-side model fclient(·; θ i).

3.6.2.3 Client forward pass

The client-side model fclient processes the local EEG data Di to
produce intermediate representations zi. Because only zi is shared,
raw EEG data remains private.

3.6.2.4 Intermediate transmission

Clients transmit zi to the central server. This step preserves data
privacy, as the raw EEG signals never leave the local environment.

3.6.2.5 Server forward pass and loss computation

The central server processes all received activations {zi} using
The server computes a global loss L by aggregating individual losses
(e.g., cross-entropy) for each client’s predictions yi.

3.6.2.6 Backpropagation and parameter updates

Using the global loss L, the server performs backpropagation to
update its parameters φ. By the chain rule, partial gradients are also
computed and sent back to each client.

3.6.2.7 Client-side parameter updates

Upon receiving the relevant gradients, each client updates its
local parameters θ i. This allows clients to learn collaboratively
without ever sharing raw EEG data.

3.6.2.8 Iteration and convergence

All previous steps (from local preprocessing to parameter
updates) are repeated for multiple epochs. Once convergence is

reached, the final model consists of updated client-side parameters
{θ i} and server-side parameters φ.

3.6.2.9 Output

The trained SL model can be deployed for EEG classification.
Each client retains its local model segment θ i, while the server holds
φ, ensuring continual privacy protection.

3.7 Evaluation metrics

Classification performance was evaluated using standard
metrics derived from the confusion matrix in a binary classification
setting (Healthy vs. MDD). Let TP (True Positive) be the number
of MDD instances correctly classified, TN (True Negative) the
number of Healthy instances correctly classified, FP (False Positive)
the number of Healthy instances misclassified as MDD, and FN
(False Negative) the number of MDD instances misclassified as
Healthy. These values form the following 2 × 2 confusion matrix,
from this matrix, the evaluation metrics are computed that are
accuracy, precision, recall, and F1-score:

[

TP FP
FN TN

]

3.7.1 Accuracy
Accuracy (Equation 20) measures the overall rate of correct

predictions across all instances. It is the proportion of TP and TN
from all predicted values by the model. It measures the proportion
of instances that are correctly predicted out of the total number of
predictions.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (20)
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3.7.2 Precision
Precision is a crucial metric that quantifies the model’s ability

to correctly identify positive (MDD) cases among all predicted
positives. As given in Equation 21, it is the ratio of TP to the sum of
FP and TN

Precision =
TP

TP+ FP
. (21)

3.7.3 Recall
Recall, sometimes referred to as sensitivity, measures the

model’s effectiveness at identifying all positive (MDD) instances in
a dataset. Mathematically, as given in Equation 22, it is the ratio of
TP to the sum of TN and FN.

Recall =
TP

TP+ FN
. (22)

3.7.4 F1-Score
The F1-Score provides a balanced assessment of a model’s

performance by combining both Precision and Recall into a single
metric. Mathematically expressed in Equation 23, it is the harmonic
mean of Precision and Recall. Unlike a simple arithmetic mean, the
harmonic mean penalizes extreme values, ensuring both Precision
and Recall share comparable significance in the final score.

F1 Score = 2×
Precision× Recall

Precision+ Recall
. (23)

3.7.5 Confusion matrix
Confusion matrix provides a visual overview of classification

performance. It indicates how frequently the classifier confuses
one class for the other, offering deeper insight into errors (FPs
vs. FNs). For binary classification (Healthy vs. MDD), the matrix
aids in diagnosing misclassification patterns and refining model
strategies. All these metrics collectively form the classification
report, enabling a comprehensive assessment of each model’s
performance in detecting MDD from EEG signals.

4 Results and discussion

In this section, we present a comprehensive evaluation of the
proposed classification approaches for MDD detection. We analyze
the performance of both ML and DL models, and additionally
showcase an ensemble method that utilizes the SL framework. By
assessing metrics such as accuracy, precision, recall, and F1-Score,
we gain insight into each model’s strengths and limitations.

4.1 ML models results

As discussed earlier, several ML models i.e., LR, RF, SVM, DT,
KNN, and GB were utilized to classify MDD using EEG data.
Table 1 presents their respective performances on the test set, along
with best cross-validation (CV) scores and optimal hyperparameter
configurations. The key findings for each model are summarized
below.

4.1.1 LR model
Achieved a test accuracy of 92.41%, with F1-Scores of 0.9160

for the Healthy class and 0.9308 for the MDD class. Its best CV
score was 0.8833. These results suggest that LR provides a stable
generalization capability when distinguishing between Healthy
and MDD samples. The best hyperparameter setting at C: 0.1
indicates a preference for regularization to control overfitting in
high-dimensional EEG feature spaces.

4.1.2 RF model
Achieved a test accuracy of 100%, outperforming other ML

models. Its best CV score was 0.9138. The selected hyperparameter
(number of estimators 100) enable an ensemble of sufficiently large
and diverse trees. Due to its strong performance, RF was chosen for
the ensemble approach with Deep Learning models, as shown in
Figure 7.

4.1.3 SVM model
Achieved an accuracy of 98.74%, indicating a clear separation

between the two classes. Its F1-Scores of 0.9865 (Healthy) and
0.9882 (MDD) reflect the model’s effectiveness. The best CV score
was 0.9182, achieved with hyperparameter (C: 10, kernel: rbf). This
shows that SVM is suitable for handling EEG data with potentially
complex class boundaries.

4.1.4 DT model
Achieved an accuracy of 97.75%. Its best CV score was 0.8740.

By employing a moderately deep tree with max depth of 10, the
DT model partitions the EEG feature space effectively. Although
decision trees can overfit, this depth appears to balance training
accuracy and generalization for the MDD classification task.

4.1.5 KNN model
Achieved an accuracy of 100%, similar to the RF model. Its

best CV score was 0.8713. The chosen hyperparameters number
of neighbors: 7, weights: distance uses distance-based weighting
in separable EEG clusters. However, KNN can be computationally
expensive at inference time and typically requires extensive
parameter tuning for integration with DL pipelines, so it was not
selected for the ensemble stage.

4.1.6 GB model
Achieved an accuracy of 99.35%, with a best CV score of 0.9184.

It iteratively refined weak learners using a learning rate of 0.2
and 100 estimators. Its F1-Scores of 0.9931 (Healthy) and 0.9939
(MDD) indicate that boosting rounds improve classification by
reducing both bias and variance.

Table 1 shows that all models attain high classification
performance. RF and KNN reach 100% accuracy on the test set,
while SVM, DT, LR, and GB also present strong results. The
consistent F1-Scores reinforce the effectiveness of EEG features for
detecting MDD.
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TABLE 1 Performance of Various Machine Learning Models for MDD Classification.

Model Best score (CV) Best params Accuracy F1 (Healthy) F1 (MDD) TP FP FN TN

Logistic regression 0.8833 {C: 0.1} 0.9241 0.9160 0.9308 9,382 1,022 374 7,609

Random forest 0.9138 {max_depth: None,
n_estimators: 100}

1.0000 1.0000 1.0000 9,756 0 0 8,631

SVM 0.9182 {C: 10, kernel: rbf} 0.9874 0.9865 0.9882 9,699 175 57 8,456

Decision tree 0.8740 {max_depth: 10} 0.9775 0.9759 0.9790 9,606 263 150 8,368

K-Nearest
Neighbors

0.8713 {n_neighbors: 7,
weights: distance}

1.0000 1.0000 1.0000 9,756 0 0 8,631

Gradient Boosting 0.9184 {learning_rate: 0.2,
n_estimators: 100}

0.9935 0.9931 0.9939 9,721 84 35 8,547

FIGURE 7

Accuracies comparison for best performing ML along with ensemble DL model.

TABLE 2 4-Fold cross-validation accuracies for each classifier.

Model Fold
1

Fold
2

Fold
3

Fold 4 Mean

Logistic regression 0.92 0.88 0.93 0.90 0.91

Random forest 1.00 0.99 0.96 1.00 0.98

SVM 0.95 0.94 0.98 0.97 0.96

Decision tree 0.87 0.88 0.90 0.86 0.88

K-Nearest
Neighbors

0.99 0.96 0.95 0.98 0.97

Gradient boosting 0.93 0.94 0.95 0.92 0.93

4.1.7 K Fold cross validation results
Table 2 shows the accuracy for each classifier across four

folds of cross-validation. The Mean column reports the average
accuracy across all folds. By separating the data into distinct
training/validation splits for each fold, we reduce the risk of
overfitting and obtain a more realistic estimate of out-of-sample
performance.

4.2 DL models performances along with
ensemble learning

After training an autoencoder to learn compact EEG
representations, multiple classifiers were evaluated on these
latent features. Table 3 summarizes the results for both a baseline
autoencoder-only ensemble and five conventional ML algorithms
trained on autoencoder outputs. Each row reports the overall
accuracy as well as precision, recall, and F1-scores for both classes
(Healthy and MDD).

4.2.1 Discussion of autoencoder-based results
Table 3 demonstrates that using autoencoder-derived

representations yield competitive performance across multiple
classifiers. The baseline ensemble (first row) provides a moderate
accuracy of 0.6884, indicating that unsupervised feature extraction
alone captures some discriminative patterns.

RF and SVM show the highest accuracies (over 0.82),
suggesting that tree-ensemble and margin-based methods
effectively exploit these latent features. K-Nearest Neighbors and
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TABLE 3 Classification performance on autoencoder and with ensemble autoencoder.

Method Accuracy Healthy MDD

Precision Recall F1 Precision Recall F1

Autoencoder (baseline) 0.6884 0.7031 0.5817 0.6367 0.6791 0.7828 0.7273

Autoencoder + random forest 0.8249 0.9321 0.6761 0.7837 0.7696 0.9565 0.8529

SVM 0.8222 0.9061 0.6929 0.7853 0.7752 0.9365 0.8483

Autoencoder + decision tree 0.6833 0.6947 0.5800 0.6321 0.6759 0.7746 0.7219

Autoencoder + K-Nearest Neighbors 0.7692 0.7627 0.7375 0.7499 0.7745 0.7971 0.7857

Autoencoder + gradient boosting 0.7735 0.8187 0.6645 0.7336 0.7457 0.8699 0.8030

TABLE 4 Classification performance on transformer and ensemble models.

Method Accuracy Healthy MDD

Precision Recall F1 Precision Recall F1

Transformer (baseline) 0.9000 0.9100 0.8800 0.8950 0.9000 0.9200 0.9100

Transformer + decision tree 0.8800 0.8900 0.8600 0.8750 0.8700 0.8900 0.8800

Transformer + K-Nearest Neighbors 0.9200 0.9100 0.9200 0.9150 0.9300 0.9200 0.9250

Transformer + SVM 0.9300 0.9400 0.9200 0.9300 0.9300 0.9400 0.9350

Transformer + gradient boosting 0.9500 0.9500 0.9400 0.9450 0.9400 0.9500 0.9450

Transformer + random forest 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900

Gradient Boosting also achieve an accuracies of approximately
0.77, while the single DT model exhibits lower performance (0.68)
relative to ensemble approaches. RF high precision for Healthy
(0.9321) and recall for MDD (0.9565) underline its balanced
detection capabilities in this context.

4.2.2 Transformer-based classification
As transformer model is utilized to capture long-range

dependencies in EEG signals, several classifiers were applied to
the Transformer outputs for final predictions as well. Table 4
summarizes the results, including a standalone Transformer
baseline and five conventional ML classifiers. The table reports
overall accuracy, alongside precision, recall, and F1-scores for the
two classes (Healthy vs.MDD). Their detailed results discussion has
been given in Section 4.2.3.

4.2.3 Discussion of transformer-based results
In this subsection the results achieved for ensemble learning

has been discussed, as we utilized transformers along with ML
models and these has been given in Table 4 that shows the
classification performance of the baseline Transformer model and
its combinations with different ML classifiers. The standalone
Transformer (Baseline) achieves an accuracy of 0.90, with 0.91
precision, 0.88 recall, and 0.895 F1 for the Healthy class, and 0.90
precision, 0.92 recall, and 0.91 F1 for the MDD class. These results
indicate that the Transformer can extract features from EEG signals
that help differentiate between Healthy and MDD instances.

Transformer + DT yields an accuracy of 0.88. For the Healthy
class, it achieves 0.89 precision, 0.86 recall, and 0.875 F1, while for

the MDD class it attains 0.87 precision, 0.89 recall, and 0.88 F1.
Even though this is lower than some other combinations, it still
shows reasonable performance compared to traditional EEG-based
methods.

Transformer + KNN reports an accuracy of 0.92. The Healthy
class has 0.91 precision, 0.92 recall, and 0.915 F1, and the MDD
class has 0.93 precision, 0.92 recall, and 0.925 F1. These numbers
suggest that local distance-based methods can work well when
applied to Transformer outputs.

Transformer + SVM achieves an accuracy of 0.93. For the
Healthy class, precision, recall, and F1 are 0.94, 0.92, and 0.93,
respectively, while for the MDD class they are 0.93, 0.94, and
0.935. This indicates that margin-based classification benefits from
sequence-aware features extracted by the Transformer.

Transformer + GB attains an accuracy of 0.95. Its
Healthy metrics are 0.95 precision, 0.94 recall, and 0.945
F1, and its MDD metrics are 0.94 precision, 0.95 recall,
and 0.945 F1. This suggests that boosting rounds are
effective at refining the latent representations provided by
the Transformer.

Transformer + RF achieves the highest accuracy of 0.99.
Precision, recall, and F1 for both Healthy and MDD classes are all
0.99, showing that the ensemble of decision trees makes good use
of attention-based features.

Thus, combining the Transformer with robust classification
algorithms enhances performance compared to the baseline.
The best results come from pairing the Transformer with
RF, followed by GB, SVM, KNN, and DT. These findings
illustrate that attention-based feature extraction can improve
EEG-based MDD classification when integrated with well-chosen
ML methods.
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TABLE 5 Performance of split learning across three clients.

Client Accuracy Precision Recall F1-Score Healthy MDD

Correct Misclass. Correct Misclass.

Client 1 0.9574 0.9577 0.9574 0.9574 2,744 172 3,124 89

Client 2 0.9623 0.9625 0.9623 0.9623 2,679 148 3,219 83

Client 3 0.9543 0.9549 0.9543 0.9543 2,691 197 3,158 83

FIGURE 8

ROC curves for clients in SL settings.

4.3 Split learning results

SL framework was implemented across three clients,
each training local Transformer-based encoders whose latent
representations were subsequently processed by a RF classifier
on the server side. Table 5 shows the key performance metrics
(Accuracy, Precision, Recall, and F1-Score) for each client,
alongside the main confusion matrix values (correct vs.
misclassified instances of Healthy and MDD). The average
inference time per client was measured at 2.0866 seconds.

To quantify inference time, we define the total inference time
for a single sample on the i-th client as given in Equation 24:

T
(i)
inference = T

(i)
local + T

(i)
transfer + Tserver, (24)

where T
(i)
local is the local forward pass time through the

Transformer on client i, T(i)
transfer is the latency for transmitting the

latent representation to the server, and Tserver is the server-side
classification time using the RF model. The average inference time
Tinference across all k clients mathematically is given in Equation 25.

Tinference =
1

k

k
∑

i=1

T
(i)
inference. (25)

Thus got an average Tinference of 2.0866 seconds. This end-to-
endmetric reflects the time fromwhen an EEG sample arrives at the
client to when the final classification outcome is returned, including
both local and server-side computations.

4.3.1 Discussion of split learning results
Table 5 illustrates that all three clients attain high classification

accuracy, exceeding 95%. Client 2 achieves the best overall accuracy
of 0.9623, closely followed by Client 1 (0.9574) and Client 3
(0.9543). Precision and Recall remain closely aligned for each
client, reflecting a balanced ability to detect both Healthy and
MDD classes. Confusion matrix counts indicate that relatively few
Healthy samples are misclassified as MDD and vice versa. ROC
curve shown in Figure 8 also reflects that each client achieved
higher true positive rate showing their ability and reliability.

These findings shows that a SL approach, utilized with a
transformer architecture for local feature extraction and RF
model for final classification, can maintain robust performance
while preserving data privacy. Additionally, the measured average
inference time of 2.0866 seconds per client suggests that this
collaborative framework is computationally feasible for real-world
EEG based mental health applications.

While these performance metrics are promising, practical
deployment on devices with limited compute capabilities (e.g.,
mobile EEG headsets, embedded healthcare systems) demands
additional optimization. Because SL partitions the model into
client-side and server-side segments, heavier computations—
such as the Transformer’s attention blocks—are executed on
the server, reducing on-device resource usage. Future work will
involve benchmarking these strategies across diverse hardware
platforms to quantify improvements in latency, memory use, and
power efficiency.

5 Conclusion

This work presented an effective methodology for major
depressive disorder classification by integrating advanced EEG
feature extraction, ensemble models, and split learning to
safeguard privacy. In conventional centralized experiments,
RF, KNN, and GB achieved commendable performance, while
a Transformer-RF ensemble model achieved 99% accuracy.
Autoencoder-based feature learning provided notable results,
illustrating that unsupervised approaches can be profitably
combined with supervised classifiers. Crucially, the split learning
implementation validated the feasibility of decentralizing training:
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three distinct clients each achieved over 95% accuracy, with
minimal performance trade-offs relative to centralized schemes. By
maintaining data on local nodes and exchanging only intermediate
representations, the framework supported institutional privacy
requirements while offering robust classification outcomes.
Future investigations may include refining model architectures
for improved efficiency, exploring additional neurophysiological
data modalities, and extending the approach to multi-disorder
classification scenarios, thereby broadening the applicability
of privacy-preserving, high-performance EEG analytics in
clinical settings.
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