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Modeling autonomous shifts
between focus state and
mind-wandering using a
predictive-coding-inspired
variational recurrent neural
network

Henrique Oyama, Takazumi Matsumoto and Jun Tani*

Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate

University, Okinawa, Onna, Japan

Mind-wandering reflects a dynamic interplay between focused attention and o�-

task mental states. Despite its relevance in understanding fundamental cognitive

processes, such as attention regulation, decision-making, and creativity, previous

models have not yet provided an account of the neural mechanisms for

autonomous shifts between focus state (FS) and mind-wandering (MW). To

address this, we conduct model simulation experiments employing predictive

coding as a theoretical framework of perception to investigate possible neural

mechanisms underlying these autonomous shifts between the two states. In

particular, we modeled perception processes of continuous sensory sequences

using our previously proposed variational RNN model under free energy

minimization. The current study extends this model by introducing an online

adaptation mechanism of a meta-level parameter, referred to as the meta-

prior w, which regulates the complexity term in the free energy minimization.

Our simulation experiments demonstrated that autonomous shifts between FS

and MW take place when w switches between low and high values responding

to a decrease and increase of the average reconstruction error over a past

time window. Particularly, high w prioritized top-down predictions while low

w emphasized bottom-up sensations. In this work, we speculate that self-

awareness of MW may occur when the error signal accumulated over time

exceeds a certain threshold. Finally, this paper explores how our experiment

results alignwith existing studies and highlights their potential for future research.

KEYWORDS

mind-wandering, predictive coding, free energy principle, variational RNN, brain-

inspired modeling

1 Introduction

During mindfulness practice, such as focusing on sensations like breathing, our

attention sometimes spontaneously deviates to mental imagery or thoughts about the past

and future, a phenomenon known as mind-wandering (Smallwood and Schooler, 2015;

Christoff et al., 2016; Seli et al., 2016). This shift from a focused state to mind-wandering

can occur not only during meditation but also in everyday activities, such as driving,

listening to music, or tasting food. Mind-wandering tends to occur more frequently during
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tasks that are either too easy or too difficult. When tasks are less

demanding, such as simply attending to breathing, instances of

mind-wandering increase. Conversely, during more challenging

tasks, such as reading complex material, our minds are more prone

to wander because maintaining focus becomes difficult over long

periods (Seli et al., 2018; Peral-Fuster et al., 2023).

An interesting aspect is that the transition from the

focused state (FS) to the mind-wandering state (MW) often

happens without conscious awareness, whereas the shift from

MW back to FS involves recognizing the mind-wandering

episode consciously (Smallwood and Andrews-Hanna, 2013).

Various studies have investigated the psychological and systematic

mechanisms underlying these shifts. For example, Henríquez et al.

(2016) argued that the transition from FS to MW is gradual, as

evidenced by increasing response times during focused tasks. In

contrast, Vago and Zeidan (2016) suggested that the shift is abrupt,

triggered by sudden internal or external stimuli.

Voss et al. (2018) proposed a model where mental states

alternate between FS and MW, with MW episodes ending

when individuals consciously recognize their mind-wandering and

return to the task. This “two-stage model” assumes that the

probability of being in FS is higher at the beginning of an episode

and decreases over time. However, contrary to this prediction,

Zukosky andWang (2021) found that the probability of FS does not

decline within an FS-MW episode in a subject study introducing

a probe at a random time during the episode. To address this

discrepancy, the authors proposed the “multiple sub-event model,”

which hypothesizes that unconscious alternations between FS and

MW occur multiple times before an individual becomes aware of

being in MW. Their simulation study suggested that as the number

of sub-sequences increases, the decline in the probability of FS

becomes less pronounced.

Although the studies mentioned above clarified some

phenomena in the shift from FS to MW from psychological

observation, they have not provided sufficient accounts for

the underlying neuronal mechanisms. Recently, some studies

(Sandved-Smith et al., 2021; Idei et al., 2024) suggested system

level neuroscience models incorporated with the concept of the

free energy principle (FEP) (Friston, 2005). Here, FEP is briefly

explained for better understanding of the readers. The FEP is

a neuroscience theory that has attracted large attention. The

FEP posits that humans and animals execute various functions

such as learning, perception, and action generation to maximize

their chances of survival by minimizing surprises they encounter

during interaction with the environment. According to the FEP,

these functions are achieved by optimizing generative models for

predicting the sensation, whereby a common statistical quantity

called free energy is minimized. The FEP supports two frameworks,

one is predictive coding and the other is active inference. Predictive

coding provides a formalism accounting for how agents perceive

sensations. It suggests that the brain predicts sensory observations

in the top-down pathway, while at the same time updating

posterior beliefs about those sensations in the bottom-up pathway

whenever errors arise between predictions and observations

(Rao and Ballard, 1999; Friston, 2005; Clark, 2015). By updating

posterior beliefs in the direction of minimizing errors, perceptual

inference for the observed sensation can be achieved. On the other

hand, active inference (AIF) provides a theory for action generation

by assuming that the brain is embodied deeply and embedded in

the environment, such that acting on it changes future sensory

observation. Then, AIF considers that actions should be selected

such that the error between the desired and predicted sensations

can be minimized (Friston et al., 2010, 2011).

Sandved-Smith et al. (2021) postures the underlying

mechanism of the shift from FS to MW using active inference of

“mental action” in terms of attention changes. The proposed model

assumes a hierarchical probabilistic generative model wherein the

hidden meta-awareness states in the higher level account for “how

aware am I of where my attention is?,” the hidden mental states in

the middle level dealing with focus of attention account for “what

am I paying attention to?,” and the sensorimotor hidden states

in the lowest level do for “what am I perceiving or trying to do?”

according to the authors. The states at each level condition the ones

in the next lower level by controlling their precisions or beliefs.

Agent’s perceptual and attentional states are inferred at each time

step by means of active inference in minimizing the expected free

energy. The results of simulation experiments show that when

the meta-awareness state is manually shifted from high to low,

distracted or MW state is developed more frequently. Under this

condition, redirection back to FS by consciously being aware of the

current MW state tends to take more time because of less precision

in the attention toward distracted state.

Idei et al. (2024) investigated mind-wandering mechanism

by conducting a model simulation study on allostasis using a

hierarchically organized variational recurrent neural network, so-

called the PV-RNN (Ahmadi and Tani, 2019). Dynamic behavior of

PV-RNN can be characterized by a meta-level parameter, referred

to as meta-prior w, that regulates the complexity term against the

accuracy term in free energy which is minimized in the inference of

the posterior probability distribution of the latent variables. It was

shown that a high setting of meta-prior w enhances the generation

of the top-down imagery while a low setting of it enhances the

bottom-up sensory perception (Ohata and Tani, 2020; Chame et al.,

2020; Wirkuttis et al., 2023). Analogous to this, Idei et al. (2024)

showed that a low setting of w generates stronger sensory bottom-

up which leads to FS wherein less change in movement as well as

neural activity are observed. On the other hand, high setting of

w generates weak attention to sensation and stronger top-down

processing which leads to MW wherein more movement as well as

neural activity.

The aforementioned FEP-based studies provide valuable

insights into macroscopic neural mechanisms, such as redirecting

attention to focused states by inferring one’s attentional state, or

generating mind-wandering by balancing top-down and bottom-

up information flows. However, these studies do not provide

systematic explanations for how the shifts between FS and MW

could be autonomously generated, since the shift from FS to MW

in Sandved-Smith et al. (2021) is caused by manual change of the

meta-aware state from high to low and the one in Idei et al. (2024)

does this by resetting meta-prior w from low to high value.

In this regard, the current study speculates that autonomous

transition between FS and MW could be generated by introducing

an online adaptation mechanism of meta-prior w to PV-RNN

in which w is modulated with response to some macroscopic
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variables such as an average reconstruction error. In our study, PV-

RNN learns to predict a target sequence of continuously changing

sensory patterns which is generated by means of predetermined

probabilistic transitions among a set of cyclic patterns. In the test

phase after the training, given one of the pre-trained cyclic patterns

as the target inputs, the PV-RNN predicts encountering sensory

inputs by simultaneously inferring the approximated posterior of

the latent state at each time step by minimizing the free energy

while adapting w. Analogous to studies (Ohata and Tani, 2020;

Chame et al., 2020; Wirkuttis et al., 2023; Idei et al., 2024), when

w modulates to a lower value by reflecting the surge of the average

reconstruction error, the inference process may improve by placing

greater emphasis on bottom-up sensations. This situation may

correspond to FS. On the other hand, whenwmodulates to a higher

value by responding to the decline of the average reconstruction

error, the PV-RNN may generate top-down imagery by following

the learned probabilistic transitions of the patterns while ignoring

the target sensory inputs. This may correspond to MW. Our

simulation study with PV-RNN under various parameter settings

will evaluate this hypothesis. The following section introduces

the proposed model, followed by a detailed description of the

simulation experiment setup, the presentation of the results, and a

discussion that includes proposals for extensions to future research

work.

2 Materials and methods

2.1 Overview

This study investigates autonomous shifts between the focused

state (FS) and mind-wandering (MW) during a perception task

using sequential sensory input patterns. The predictive coding

framework is employed tomodel this perception process. Predictive

coding assumes a generative model that predicts sensory sequences

by learning both the latent state transition function and the

likelihood mapping from latent states to sensory observations.

Additionally, this generative model infers the current latent state

through continuous sensory sequence observations.

Both learning and inference processes are achieved by

minimizing reconstruction error, or more specifically, free energy.

We hypothesize that FS is enhanced by strengthening bottom-up

inference, while MW becomes more likely by emphasizing top-

down sensory pattern generation. It is also hypothesized that shifts

between FS and MW take place autonomously by incorporating

an online adaptation of meta-level states in response to particular

system variables. To test this, we propose an extended version of

a variational recurrent neural network model, referred to as the

Predictive Coding Inspired Variational RNN (PV-RNN) (Ahmadi

and Tani, 2019). Details of the original PV-RNN and its extensions

are provided in the following sections.

2.2 Predictive coding inspired variational
RNN model

The PV-RNN is based on the free energy principle

(Friston, 2005), where learning and inference are achieved

by minimizing free energy (Equation 1) in accordance with

Bayes’ theorem:

F = DKL[qφ(z|X)‖pθ (z)]
︸ ︷︷ ︸

complexity

−Eqφ (z|X)[log pθ (X|z)]
︸ ︷︷ ︸

accuracy

(1)

Here, pθ (X) is the marginal likelihood of the sensory

observation X, given the generative model pθ parameterized by θ .

The latent variables z and inference model qφ , parameterized by φ,

allow for posterior inference through minimization of free energy.

Free energy consists of two terms: the complexity term (a measure

of divergence between prior and posterior distributions) and the

accuracy term (log-likelihood of sensory observations) (Friston,

2010). PV-RNN serves as both a generative model and an inference

model. The generative model predicts future sensory inputs via

top-down processes, while the inference model estimates the

approximate posterior from observed sensory sequences through

free energy minimization as bottom-up processes.

The following subsections describe the PV-RNN

implementation and the use of the meta-prior w.

2.2.1 Model implementation
The free energy F for PV-RNN predicting a time series of T

steps is given by:

F =w

T
∑

t=1

Eqφ (z1 : t−1|dt−1 ,Xt−1 :T )

[

DKL[qφ (zt |dt−1,Xt :T )‖pθ (zt |dt−1)]
]

︸ ︷︷ ︸

complexity

−

T
∑

t=1

Eqφ (z1 : t−1|dt−1 ,Xt :T )
[log pθ (Xt |dt)]

︸ ︷︷ ︸

accuracy

(2)

PV-RNN introduces two types of latent variables: probabilistic

latent variables (z) governed by Gaussian distributions, and

deterministic latent variables (d). Their relationships are shown

in Figure 1. In Equation 2, a meta-level parameter, named meta-

priorw, is introduced to balance the complexity and accuracy terms

during this process. This regulation is particularly important when

the limited amount of training data prevents reliable estimation of

latent variable distributions. Also, dynamic behavior of PV-RNN is

largely affected by the setting of the meta-prior. It was shown that

high setting of meta-prior w enhances generation of the top-down

imagery while low setting of it enhances the bottom-up sensory

perception (Ohata and Tani, 2020; Chame et al., 2020; Wirkuttis

et al., 2023; Idei et al., 2024).

Next, the forward computation of each variable used in PVRNN

is described. At each time step t, the internal states of the l-th layer

(hlt) are recursively computed:

hlt =

(

1−
1

τ l

)

hlt−1

+
1

τ l

(

Wll
ddd

l
t−1 +Wll

zdz
l
t +Wll+1

dd
dl+1t−1 +Wll−1

dd
dl−1t−1 + blh

)

dlt = tanh(hlt) (3)
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FIGURE 1

A hierarchical two-layer PV-RNN architecture. Solid blue lines represent the generative process, while dotted red lines indicate the inference process.

The shaded area shows an inference window of length 3.

The PV-RNN structure supports hierarchical information

processing using time constants τ l, enabling the differentiation

of temporal dynamics across layers (Yamashita and Tani, 2008;

Schillaci et al., 2020).

The generative model computes prior distributions (z
p
t ) as

Gaussian variables parameterized by mean (µ
p
t ) and standard

deviation (σ
p
t ):

µ
p
t = tanh(Wll

dµdt−1 + b
p
µ)

σ
p
t = exp(Wll

dσdt−1 + b
p
σ )

z
p
t = µ

p
t + σ

p
t ∗ ǫt with ǫt ∼ N(0, I)

(4)

b
p
µ and b

p
σ are bias terms for µ

p
t and σ

p
t , respectively. ǫ represents a

noise sampled from a standard normal distribution for usage of the

reparameterization trick (Kingma and Welling, 2014). Analogous

to the computation of the prior distribution, the inference model

qφ approximates the posterior z
q
t as a Gaussian distribution with

mean µ
q
t and standard deviation σ

q
t .

µ
q
t = tanh(Wll

dµdt−1 + A
µ
t + b

q
µ)

σ
q
t = exp(Wll

dσdt−1 + Aσ
t + b

q
σ )

z
q
t = µ

q
t + σ

q
t ∗ ǫt with ǫt ∼ N(0, I)

(5)

where b
q
µ and b

q
σ are bias terms for computing µ

q
t and σ

q
t ,

respectively. A
µ
t and Aσ

t are adaptive variables to be optimized for

inferring the posterior distribution which is parameterized by µ
q
t

and σ
q
t .

Intuitively, the random variable zp can be regarded as a time-

dependent prior/top-down expectation about the encountering

sensation. The adaptive vector A (i.e., zq) can be regarded as the

approximate posterior distribution that may or may not be close to

the prior distribution, depending on the setting of meta-prior. zp

and zq are used by the generative and inference model, respectively

to compute the latent variable d.

2.2.2 Learning and inference
The free energy F of PV-RNN can be computed as follows by

adapting the original (Equation 2). Given a PV-RNN with L layers,

predicting a T time series sensory inputs, F can be written as

F =

T
∑

t=1

[
L

∑

l=1

wlDKL[qφ(z
l
t|d

l
t−1,Xt :T)‖pθ (z

l
t|d

l
t−1)]

]

−

T
∑

t=1

‖Xt − X̄t‖
2
2 (6)

where wl is meta-prior specific to l-th layer, and X̄ denotes

the prediction output of the PV-RNN. In Equation 6, we

approximate the expectation with respect to the approximate

posterior by iterative sampling. Also, the accuracy term
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is replaced by the squared error, which can be regarded

a special case of computation of log-likelihood wherein

each dimension of X and X̄ is independent and follows a

Gaussian distribution with standard deviation 1. Since the

Kullback-Leibler (KL) divergence between two one-dimensional

Gaussian distributions takes a simple expression, Equation 6 is

reduced to

F =

T
∑

t=1

[
L

∑

l=1

wl

Rlz∑

r=1

δ(l, r, t)

]

−

T
∑

t=1

‖Xt − X̄t‖
2
2 (7)

where

δ(l, r, t) = log
σ
p,l,r
t

σ
q,l,r
t

+
(µ

q,l,r
t − µ

p,l,r
t )2 + (σ

q,l,r
t )2

2(σ
p,l,r
t )2

−
1

2
(8)

µ
p,l,r
t represents rth element of µ

l
t of the prior, and the same

notation is applied to µ
q,l,r
t , σ

p,l,r
t , and σ

q,l,r
t . Rlz denotes the

dimension of zlt . Given that the complexity term is summed over

all the dimension of z, which is arbitrary to the network design,

and the accuracy term is to all the data dimension, which varies

among data, the free energy is normalized with respect to the

dimension of z and the data dimension. Therefore, introducing

such normalization, the free energy of PV-RNN in the study is

computed by

F =

T
∑

t=1

[
L

∑

l

wl

Rlz
δ(l, r, t)

]

︸ ︷︷ ︸

complexity

−
1

RX

[
T

∑

t=1

‖Xt − X̄t‖
2
2

]

︸ ︷︷ ︸

accuracy

(9)

where RX is the data dimension, Rlz is the number of z

variables in each layer, and wl = Rlzw
l. These normalization

constants ensure scale-invariant learning across layers and

datasets. Dividing the KL divergence by the z dimensionality

Rlz prevents layers with more z units from disproportionately

affecting the free energy. Likewise, dividing the prediction error

by the data dimension RX accounts for variability in sensory

data size, which helps avoid overfitting to high-dimensional

outputs. This practice aligns with stability improvements shown

in variational inference literature, including our prior work

(Ohata and Tani, 2020).

In our implementation, the meta-prior w initially introduced

as a global parameter (Equation 2) is extended to layer-

specific versions wl for flexibility (Equation 9). This allows

for layer-wise precision modulation, which mirrors the

hierarchical structure of cortical processing. While all wl

can be set equal to a global w, we allow them to vary to

reflect biologically inspired architectures (e.g., Idei et al.,

2024), where layers may exhibit different time constants and

confidence levels.

Byminimizing Equation 9, the posterior inference is performed

during network learning and during the perception task. Figure 1

shows a schematic illustration of the posterior inference process of

a two-layer PV-RNN model used in the current simulation with

an optimization window of three time steps. At every sensory

step, an adaptive variable A in the window is optimized through

multiple epochs of stochastic gradient descent. In the network

1: Initialize meta-prior w (either w
L or w

H)

2: if w == w
L then

3: Compute transition probability from FS to MW:

P(FS→ MW) = sigmoid

(
−(ersum − ThrL)

Temp

)

(10)

4: Generate random number r ∼ G(0,1)

5: if r < P(FS→ MW) then

6: Set meta-prior to w←w
H

7: end if

8: else if w == w
H then

9: Compute transition probability from MW to FS:

P(MW→ FS) = sigmoid

(
ersum − ThrH

Temp

)

(11)

10: Generate random number r ∼ G(0,1)

11: if r < P(MW→ FS) then

12: Set meta-prior to w←w
L

13: end if

14: end if

Algorithm 1. Autonomous meta-prior switching between focus state (FS)

and mind-wandering (MW).

learning phase, weights and bias parameters θ and φ of the

generative and inference models, including an adaptive variable

A for the approximate posterior zq are jointly optimized. In the

perception task phase, network parameters θ and φ are fixed, and

free energy is minimized at each time step within a dedicated

inference window by optimizing only A parameterizing the

approximate posterior.

2.2.3 Adaptation of meta-prior
The meta-prior w is dynamically adapted based on the average

prediction error (ersum) over a fixed length timewindow in the past.

When the error decreases below a predefined threshold (ThrL), w

transitions to a high value (wH), prioritizing top-down generation,

which leads to generating MW. This can be intuitively understood

from analogy that continuing easy or predictable tasks tends to

initiate MW (Peral-Fuster et al., 2023; Seli et al., 2018). Conversely,

when the average prediction error exceeds an upper threshold

(ThrH), w transitions to a low value (wL), enhancing bottom-

up inference. The implementation strategy for autonomous meta-

prior switching between FS and MW is described in Algorithm 1.

Specifically, the probabilistic shifting between the two modes is

given by Equations 10, 11, whereTemp is the temperature, a tunable

parameter that can reflect how stochastic or deterministic the

system is (see Section 3.2). This probabilistic switching mechanism

is inspired by neurobiological models of policy selection under

uncertainty. Similar mechanisms, such as the softmax function,

are widely used in computational neuroscience and reinforcement

learning to simulate probabilistic neural state transitions and

action selection (Friston et al., 2014). While the specific threshold

values (ThrL, ThrH) are hyperparameters, they are interpreted

functionally as reflectors of a minimal or excessive prediction error

context, consistent with meta-awareness-triggering mechanisms
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FIGURE 2

Training trajectory over 1,600 time steps (top plot) and its representation in X − Y space (bottom plot). Target− X and Target− Y correspond to the

first and second dimensions of the training trajectory, respectively.

TABLE 1 PV-RNN training parameters.

Parameters #d #z τ wtr

Layer 1 60 6 3 0.001

Layer 2 30 3 5 0.001

proposed in prior models (Sandved-Smith et al., 2021). It is highly

speculated that this dynamic adaptation should enable autonomous

transitions between FS and MW, as will be validated in the

simulation experiments detailed in subsequent sections.

3 Experiments and results

3.1 Model training

First, we trained a PV-RNN with 2-dimensional sensory

sequence data. The training data comprised 200 sequences, each

containing 3,000 time steps. For preparing those trajectories,

we designed 4 different 2-dimensional cyclic patterns, each with

a periodicity of 30 time steps. Each trajectory was made of

probabilistic switching among these 4 cyclic patterns wherein after

one cycle of a particular pattern the same pattern repeats with

a probability of 27.27% and the pattern transits to any other

pattern with a probability of 72.73% equally. Noise has been added

to individual points at randomly spaced intervals. The intervals

between noise points are determined by drawing from a normal

distribution (mean of 1, standard deviation of 10), providing a

variable time step size. At each noise interval, Gaussian noise

(mean of 0, standard deviation of 0.003) is added to the current

data point, slightly perturbing its coordinates to simulate natural

fluctuations without disrupting the cyclic structure. A part of the

training trajectory is shown in Figure 2.

The network parameters used for training PV-RNN are listed in

Table 1. #d, #z, τ ,wtr indicates the number of d neurons, number of

z neurons, time constant, andmeta-prior during the training phase,

respectively.

The PV-RNN was trained over 150, 000 epochs minimizing

free energy in Equation 9 using the Adam optimizer (Kingma and

Ba, 2014) and back-propagation through time (BPTT) (Rumelhart

et al., 1985) with learning rate 0.001 to optimize all network

parameters of θ and φ of the generative and inference model, and

the adaptive variable A corresponding to each training trajectory.

The trained network was evaluated on the basis of how well

probabilistic transitions in the training data were reflected in the

PV-RNN generative process, the so-called prior generation of the

PV-RNN, which is conducted without performing the inference of

the latent variables with sensory observation. In prior generation,

the prior distribution z
p
1 was initialized with a unit Gaussian

(Equation 4) and then latent states were recursively computed to

generate network output sequences. Figure 3 shows an example of

the prior generation outputs over 1,600 time steps. We can see that

the patterns shift from one to another, where the two patterns used

for training appear randomly. In addition, using a categorizer to

discriminate between the two patterns, different prior generation

outputs over 10,000 time steps have shown a probability of 28.92%

of switching to a different pattern and a probability of 71.08%

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2025.1578135
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Oyama et al. 10.3389/fncom.2025.1578135

FIGURE 3

Prior generation over 1,600 time steps under trained model with meta-prior wtr from Table 1 (top plot), selected activities of the d neurons in the

bottom layer of the PV-RNN (middle plot), and a representation in X − Y space (bottom plot). Output− X and Output− Y correspond to the first and

second dimensions of the prior generation output trajectory, respectively.

of staying in the same pattern, which are close to the training

dataset.

3.2 Testing of perception task

The trained PV-RNN was tested by performing the perception

task. In the test, the inference process was performed within the

inference window, while one of the trained patterns was used as

the target sensory sequence for the inference of the latent variables.

The length of the inference window was set to 400 time steps. The

adaptation of meta-prior, w, during inference with the monitoring

of the average reconstruction error over 300 time steps1 was carried

out using the parameters listed in Table 2.

The mechanistic behavior when w adapted to low and

high values are shown in Figures 4, 5, respectively. The plots

show the output trajectory, the target sensory sequence, the

1 For the implementation strategy described in Algorithm 1, the length

of the inference window and time window for computing the average

reconstruction error can be considered design decisions and do not need

to be the same length. This choice may depend on how the high and low

thresholds are defined, which impact the probability of transition from FS

to MW (and vice-versa) and, thus, the expected probabilistic behavior of the

system. For instance, an average reconstruction error computed over a small

time window may not reach or may be too far from a desired threshold. In

this scenario, the probability of staying in the current state (FS or MW) would

remain large over the entire simulation time.

TABLE 2 PV-RNN testing parameters.

Parameters wL wH Temp ThrL ThrH

Layer 1 0.01 100
0.01 0.15 0.40

Layer 2 0.01 100

average reconstruction error, and KL divergence at the PV-

RNN bottom layer for each case. Importantly, no external

triggers are used to impose state transitions. Instead, the model

is trained on probabilistically switching sequences, allowing it

to internalize the statistical structure. During inference, the

switching behavior is driven solely by the internal dynamics

of the average reconstruction error. Here, the autonomous

modulation of meta-prior based on learned internal signals ensures

that transitions reflect endogenous state changes, not artificially

induced behavior.

In fact, it can be seen in Figure 4 that when w adapted to wL,

a pattern used for the target sensory sequence is generated well

during inference while the average reconstruction error remains

low (below 0.05) over the entire inference window. This indicates

that adaptation of w to wL enabled the output to accurately

reconstruct the target sensory sequence. This period is analogous

to a situation of FS.

On the other hand, Figure 5 demonstrates a period when w

adapted to wH . In this period, the inference trajectory is generated

similarly to the prior generation shown in Figure 3. In particular,

we can observe in Figure 5 that after a few cycles of one pattern,

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2025.1578135
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Oyama et al. 10.3389/fncom.2025.1578135

FIGURE 4

From top to bottom: inference output trajectory with meta-prior wL from Table 2, selected activities of the d neurons in the bottom layer of the

PV-RNN, average reconstructions error over the inference window at time step 100, and KL divergence at the PV-RNN bottom layer. Inference− X

and Inference− Y correspond to the first and second dimensions of the inference output trajectory, respectively.

the inference trajectory generates one of the other patterns in

the inference window. Specifically, when w changed to wH , KL

divergence between prior and inference is more heavily weighted

in Equation 9 and, thus, it becomes smaller compared to the KL

divergence observed in Figure 4. At the same time, to minimize

the free energy, this increase in the meta-prior value allows the

prediction error signal to become larger compared to the prediction

error computed in Figure 4. As a result, the average reconstruction

error increases once the inference trajectory starts to deviate from

the target sensory sequence. This observation is analogous to a

situation of MW.

Selected d activities of the PV-RNN bottom layer during

prior generation after training, as well as during inference with

adaptation ofw to low and high values, are shown in Figures 3–5. In

both cases of the inference, the correspondence between d activity

patterns and the output patterns is analogous to that observed

during prior generation after training. Specifically, the d activities

follow a single pattern when w adapted to the low value, while the d

activities alternate between different patterns, closely reflecting the

dynamics of the d activities seen in the prior generation when w

adapted to the high value.

Figure 6 shows the overall behavior of autonomous shifts

between two distinct states obtained in the experiments. The

plots show the average reconstruction error during inference and

meta-prior values of the PV-RNN bottom layer over time. It

can be observed that when PV-RNN is under wH , the average

reconstruction error increases as close to the high threshold value,

which makes the probability of switching from wH to wL larger

according to Equation 11. Then, w is switched to the low value

(wL). After this shift, the average reconstruction error continues
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FIGURE 5

From top to bottom: inference output trajectory with meta-prior wH from Table 2, selected activities of the d neurons in the bottom layer of the

PV-RNN, average reconstructions error over the inference window at time step 290, and KL divergence at the PV-RNN bottom layer. Inference− X

and Inference− Y correspond to the first and second dimensions of the inference output trajectory, respectively.

to decline until it becomes close to the low threshold value, which

increases the probability of switching from wL to wH . w is then

switched back to the high value. The former case corresponds to

the shift fromMW to FS and the latter case corresponds to the shift

from FS to MW.

Finally, we investigated the effect of changing temperature

values on the characteristics of the shifts between FS and MW. For

this purpose, we counted the number of transitions that occurred

from FS to MW during 1000 steps in the perception test. The

results are shown in Figure 7. It can be seen that the transition

frequency from FS to MW increases as the temperature increases.

In particular, for larger temperature values, the transitions from

FS to MW become more frequent (i.e., the system becomes more

random) since the probability of switching from FS to MW

becomes closer to 50% due to the argument inside the sigmoid

function being closer to zero in Equation 10. In contrast, when

the temperature is smaller, the transitions from FS to MW become

less frequent (i.e., the system becomes more deterministic), which

primarily happens when the average reconstruction error reaches

the low threshold. For the case study in Figure 6, 0.01 was chosen

to be the temperature with a mean of 1.78 transitions from FS to

MW per 1,000 time steps.

4 Discussion

This study explored the neural mechanisms underlying

autonomous shifts between the focused state and mind-wandering

through simulation experiments using a newly proposed model

based on the free energy principle. The proposed model, an

extension of PV-RNN, introduces an online adaptation mechanism

for a meta-level parameter, the meta-prior w, which is modulated

based on the average reconstruction error over a fixed-size past

window. Specifically, w probabilistically switches to a high value
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FIGURE 6

Reconstruction error over inference window computed at each time step (top plot) and adaptive meta-prior value (w) of the PV-RNN bottom layer

over time (bottom plot).

FIGURE 7

Transition frequency from FS to MW per 1,000 time steps under

di�erent temperature values. The mean and standard deviation are

displayed for three intermediate cases when temperature is 0.01,

0.10, and 0.50.

when the average reconstruction error decreases close to a minimal

threshold and to a low value when the average reconstruction error

increases near a maximal threshold.

In the simulation experiments, the PV-RNN was first trained

to generate probabilistic transitions between four distinct cyclic

patterns. In the perception task phase, latent variables within the

inference window were inferred to minimize the reconstruction

error for a given target sensory sequence while adapting w. Here,

one of the trained cyclic patterns was used as the target sequence.

When w shifted to a low value, stronger bottom-up sensory

perception dominated, regenerating the observed sensory sequence

in the outputs with minimal reconstruction error while allowing

larger Kullback-Leibler divergence between the prior and the

approximate posterior. This process leads to a state closely aligned

with focused attention. In contrast, when w shifted to a high

value, the approximate posterior is attracted toward the prior by

a stronger mean of minimizing the Kullback-Leibler divergence

between the prior and the approximate posterior. This allowed

stronger top-down processing with less emphasis on sensation,

generating relatively large reconstruction error in the inference

window. This results in a state resembling mind-wandering.

One may argue that a limitation of the current study is that

the proposed model may not account for the phenomenon of

becoming consciously aware of MW, which enables redirection

of attention back to FS. Previous work in our group (Tani and

White, 2022; Tani, 1998) hypothesized that self-consciousness

arises from the interplay of top-down predictions and bottom-

up sensory inputs, specifically during moments of incoherence

between internal predictions and external sensory feedback. In

particular, when the system operates smoothly with minimal

prediction error, the processes of action and perception may

remain unconscious and seamlessly synchronized. However, a large

prediction error may disrupt this synchrony, forcing the system to

adjust its internal states and expectations to re-establish the system’s

coherence. This moment of error-driven model recalibration may

be accompanied by the emergence of conscious awareness, as

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2025.1578135
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Oyama et al. 10.3389/fncom.2025.1578135

the system actively attempts to reconcile conflicting information

and restore its predictive model. In the current study, we could

consider that self-awareness may be triggered by a prediction error

signal accumulated during MW. We, however, speculate that such

a hypothetical idea could be improved further by incorporating

possible meta-cognitive mechanisms in consciousness.

In this regard, Sandved-Smith et al. (2021) proposes an

inference of meta-states from higher levels to lower levels in terms

of attention. Particularly, this framework integrates a three-level

generative model to simulate how meta-awareness emerges and

modulates attention. At the first level, the model represents sensory

or perceptual states, encoding external stimuli. The second level

captures attentional states, such as “focused” or “distracted,” which

condition the precision of sensory observations at the first level.

The third level introduces meta-awareness states, which monitor

and regulate attentional states by dynamically adjusting their

precision and transitions. In Sandved-Smith et al. (2021), although

the meta-awareness state is shifted manually by manipulating

a meta-parameter, by formalizing the hierarchical relationship

between meta-awareness and attention, meta-awareness states can

modulate confidence in attentional states, which, in turn, influence

the precision of sensory observations. This structure allows for

inference and control of attentional processes, enabling the agent

to recognize transitions in attention, detect MW, and refocus.

Drawing from Sandved-Smith et al. (2021), we describe in the

following how the hypothesis proposed by Tani and White (2022)

and Tani (1998) based on prediction error could be extended by

including the process of inference of a meta-state associated with

self-awareness during MW. In particular, a generative model may

be included on top of the highest layer of the proposed PV-RNN

architecture that receives the average reconstruction error (ersum)

as the target signal from the output layer of PV-RNN. This meta-

level generative model predicts the average reconstruction error

over a time window to minimize free energy. In this internal

closed-loop computation, the probabilistic shift between FS and

MW is now controlled by the predicted ersum of the meta-level

generative model using Equations 10, 11. A meta-level state may be

included in this PV-RNNmodel that is inferred when themismatch

between the predicted ersum and the actual ersum exceeds a certain

meta-level threshold at which self-awareness of MW occurs.

In the current proposed work, due to the probabilistic nature

of the threshold mechanism for the average reconstruction error,

the effective threshold for switching from MW to FS varies

dynamically between a lower and higher range. Here, we speculate

that consciousness arises specifically when this switching occurs

at an effective threshold exceeding a certain “consciousness

threshold” (which may be different from the threshold ThrH

defined for Equation 11). This perspective explains both the two-

stage model (Voss et al., 2018) or the multiple sub-event model

(Zukosky and Wang, 2021). In the two-stage model, MW persists

until a single transition back to FS occurs at a relatively low

“consciousness threshold.” In contrast, the multiple sub-event

model allows for repeated, unconscious FS-MW shifts before

reaching a higher “consciousness threshold” that triggers conscious

awareness. By incorporating this into our proposed PV-RNN

framework, we provide a meta-cognitive perspective on how

conscious awareness of MW emerges probabilistically, linking

predictive coding with varying thresholds of self-awareness based

on average reconstruction error.

To enhance the empirical relevance of our model, we now

provide a qualitative comparison between its behavioral signatures

and well-established findings from experimental studies of mind-

wandering (MW). Although our current simulations do not

directly incorporate or validate against human neurophysiological

data, the model successfully captures several key behavioral

characteristics observed in MW literature. These alignments

support the potential of our predictive-coding-inspired framework

to serve as a mechanistic model of spontaneous attentional

dynamics. One robust behavioral marker of MW is increased

response time variability during cognitive tasks, as demonstrated

by both Smallwood et al. (2008) and Henríquez et al. (2016). In our

simulations, this phenomenon emerges naturally during periods

when the meta-prior shifts to a high value. In this state, the model

prioritizes top-down processing, and its output trajectory becomes

less constrained by incoming sensory information. This internal

mode leads to divergence from the task-aligned trajectory, which

would manifest as variability in response behavior if implemented

in a real-time embodied system. Thus, the dynamic increase in

prediction error and loss of sensory fidelity in the MW state

qualitatively parallels the behavioral variability observed in human

studies.

The model also accounts for spontaneous alternation between

task-focused and mind-wandering states, which has been described

as a core feature of the human attentional stream (Zukosky and

Wang, 2021; Smallwood and Schooler, 2015). In our framework,

transitions between low w (FS) and high w (MW) modes

arise autonomously through probabilistic switching driven by

fluctuations in the average reconstruction error. Crucially, these

shifts are not externally triggered but emerge from the internal

dynamics of prediction error accumulation, reflecting a self-

organizing process akin to that observed in subjective reports of

spontaneous MW episodes.

In addition, our model can reproduce temporal dynamics

associated with MW frequency over extended task performance.

Empirical studies such as Zanesco et al. (2024) have shown that

MW tends to increase with time-on-task, often attributed to

reduced cognitive engagement or habituation. In our simulations,

prolonged accurate predictions lead to a steady decrease in

the average reconstruction error, which in turn increases the

probability of transitioning into the MW state. This behavior

provides a computational account for the time-dependent drift

toward MW observed in attentional tasks, as the internal model

becomes overconfident and sensory information is deprioritized.

Furthermore, the model can reflect the empirically observed

nonlinear dependence of MW on task difficulty (Robison et al.,

2020; Xu and Metcalfe, 2016). When the task is too easy, prediction

error remains low and the model is prone to transition into the

high w mode, corresponding to disengagement or MW. Under

moderately challenging conditions, the model sustains engagement

as prediction error fluctuates within a manageable range. When

the task becomes highly difficult, persistent prediction error may

trigger frequent or prolonged re-entries into MW-like states,

reflecting cognitive overload or motivational disengagement. These

qualitative dynamics are consistent with behavioral studies showing

that MW is minimized at intermediate levels of task challenge and

increases under both underload and overload conditions.

Notably, Shinagawa and Yamada (2025) recently proposed a

homeostatic reinforcement learning (HRL) framework to model
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mind-wandering under structured task conditions, particularly

the Sustained Attention to Response Task (SART). Although our

model differs architecturally (i.e., being grounded in predictive

coding and variational inference), it shares the key objective

of capturing autonomous cognitive state transitions without

external supervision. Both models simulate internal modulation

mechanisms (e.g., prediction error and homeostatic drives) that

regulate attentional shifts between task-focused and internally

guided states.

Although we have not explicitly implemented a SART-like

structure in our simulation setup, our model’s probabilistic state

switching and its sensitivity to internal error dynamics mirror

the mechanisms used in HRL-SART simulations. We believe that

adapting the extended PV-RNN to directly simulate or align with

task-based paradigms like SART represents a valuable direction

for future work. Such an extension would enable quantitative

comparison with behavioral and physiological data, helping bridge

synthetic modeling with empirical paradigms in attention and

mind-wandering research.

Taken together, these qualitative comparisons suggest that our

extended PV-RNN model captures essential properties of MW

dynamics reported in behavioral studies. The internal modulation

of the meta-prior based on reconstruction error not only supports

autonomous shifts between attentional states but also aligns with

empirical observations in timing, variability, and task-context

sensitivity of mind-wandering.

As for neurophysiological validation, we acknowledge that

such comparison remains an open and important direction for

future work. The current study is intended as a principle-

level computational investigation that explores the feasibility

of autonomous attentional modulation via predictive coding

mechanisms. Nevertheless, future extensions of the model could

examine whether its internal state transitions, particularly changes

in themeta-prior, correspond to physiological markers ofMW such

as fluctuations in EEG alpha-band activity, pupil diameter, or large-

scale fMRI network reconfigurations involving the default mode

and salience networks. Such investigations would provide stronger

links between the model’s theoretical mechanisms and observed

neural phenomena.

Moreover, numerous studies have indicated that MW during

the resting state is intricately linked to the functional organization

and dynamics of brain networks, particularly the default network

(DN), central executive network (CEN), and salience network (SN)

(Mason et al., 2007; Godwin et al., 2017; Denkova et al., 2019).

However, the current study does not model interactions between

such distinct networks. Reservoir computing may also be utilized

as a component of the brain network, which has been proposed

to be a neural basis in the cortex (Yonemura and Katori, 2024).

Extending the model to incorporate dynamic interactions among

these networks would provide a tighter connection to established

neuroscientific findings on resting-state phenomena and offer

deeper insights into mind-wandering.

Finally, beyond theoretical modeling, our approach may hold

potential for practical applications. For instance, adaptive learning

systems could use internal signals such as prediction error or meta-

prior shifts to detect mind-wandering episodes and adjust content

delivery in real time. Similarly, our model could be a mental health

or mindfulness support tool to inform computational accounts

of attentional fluctuations, and guide human-AI systems toward

more flexible attentional control. We view these applications

as promising but preliminary, and future work will be needed

to integrate the model into real-world tasks and evaluate its

practical effectiveness.
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