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CNN-BiLSTM and DC-IGN fusion 
model and piecewise exponential 
attenuation optimization: an 
innovative approach to improve 
EEG emotion recognition 
performance
Shaohua Zhang , Yan Feng *, Ruzhen Chen , Song Huang  and 
Qianchu Wang 
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EEG emotion recognition has important applications in human-computer interaction 
and mental health assessment, but existing models have limitations in capturing the 
complex spatial and temporal features of EEG signals. To overcome this problem, 
we propose an innovative model that combines CNN-BiLSTM and DC-IGN and 
fused both outputs for sentiment classification via a fully connected layer. In 
addition, we use a piecewise exponential decay strategy to optimize the training 
process. We conducted a comprehensive comparative experiment on the SEED 
and DEAP datasets, it includes traditional models, existing advanced models, and 
different combination models (such as CNN + LSTM, CNN + LSTM+DC-IGN). 
The results show that our model achieves 94.35% accuracy on SEED dataset, 
89.84% on DEAP-valence, 90.31% on DEAP-arousal, which is significantly better 
than other models. In addition, we further verified the superiority of the model 
through subject independent experiment and learning rate scheduling strategy 
comparison experiment. These results not only improve the performance of 
EEG emotion recognition, but also provide new ideas and methods for research 
in related fields, and prove the significant advantages of our model in capturing 
complex features and improving classification accuracy.
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1 Introduction

In recent years, affective computing, as an important research direction in the field of 
artificial intelligence, has been widely concerned (Li et al., 2023). Emotion are an important 
part of human cognition and interaction, playing a key role in decision making, perception, 
and interpersonal interaction (Alarcao et al., 2019). However, in traditional computer 
interaction, it is often difficult for machines to understand human emotional states, resulting 
in a lack of human interaction experience. To remedy this shortcoming, affective computing 
has emerged, aiming to identify a user’s emotional state by measuring their physiological 
signals, thus enabling more natural and intelligent human-computer interaction. Traditional 
psychophysiological signals, such as voice (Khalil et al., 2019), facial expression (Li and Deng, 
2022) and text (Alswaidan et al., 2020), can provide emotional information, but these signals 
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are easily interfered by external factors, such as voice changes, facial 
camouflage, cultural differences, etc., resulting in low accuracy and 
reliability of emotion recognition. In contrast, electroencephalography 
(EEG), as a non-invasive, portable and easy-to-use physiological 
signal acquisition technology, is able to directly reflect the neural 
activity of the cerebral cortex, which is closely involved in the 
production and regulation of emotions. Therefore, by analyzing EEG 
signals, the intrinsic changes of human emotions can be captured 
more accurately, with higher recognition accuracy and reliability. EEG 
emotion recognition technology has shown wide application prospect 
and important research significance in many fields. First, in terms of 
emotional health care, the technology can not only help diagnose and 
treat emotional disorders such as depression and anxiety by identifying 
emotional states, but also assist in monitoring and evaluating 
treatment effects and guiding personalized treatment programs. 
Second, in the field of personalized human-computer interaction, 
EEG emotion recognition makes intelligent assistants, games, and 
virtual reality experiences more human, capable of providing 
customized services and interactive experiences based on the user’s 
emotional state. In addition, in multimedia content recommendation, 
the technology can recommend content that is more in line with the 
needs of users according to their emotional states, and improve the 
user experience. In neuroscience research, EEG emotion recognition 
provides a new perspective to explore the cognitive mechanism of 
human emotion. Finally, in other fields such as education and 
transportation, EEG emotion recognition can also help optimize 
teaching strategies and prevent traffic accidents, bringing more 
convenience and well-being to human life. To sum up, EEG emotion 
health care and personalized human-computer interaction, but also 
has extensive application potential in multimedia content 
recommendation, neuroscience research and many other fields.

Traditional EEG emotion recognition methods mainly include 
time domain analysis, frequency domain analysis (such as power 
spectral density analysis and frequency band energy calculation), time 
frequency analysis (such as short-time Fourier transform and wavelet 
transform), and machine learning algorithms (such as support vector 
machines, artificial neural networks, etc.). These methods identify 
emotional states by extracting specific features of EEG signals, such as 
amplitude, frequency, and time-related distributions of brain waves. 
However, the limitations of these methods are that they tend to rely 
on specific frequency bands and brain regions, are difficult to capture 
complex emotional changes, and are susceptible to noise interference, 
resulting in poor recognition accuracy. In addition, these methods 
usually require a large amount of training data and computational 
resources, and lack adaptability to individual differences, limiting their 
widespread popularization in practical applications.

With the development of deep learning techniques, researchers 
began to explore the use of deep neural networks to improve the 
accuracy and efficiency of EEG emotion recognition. Zhong et al. 
(2020) proposed a regularized graph neural network (RGNN) model 
to address three challenges in EEG emotion recognition tasks: 
underutilization of EEG signal topology, cross-subject EEG variation, 
and label noise. The model used a biologically-supported adjacency 
matrix to capture the channel relationships in EEG signals, and 
improved the robustness of the model through two regularization 
methods, NodeDAT and EmotionDL. A large number of experiments 
on SEED and SEED-IV datasets showed that RGNN model 
outperformed the existing baseline model in both agent-related and 

agent-free classification setting, and revealed the relationships 
between key brain regions and channels related to emotion recognition 
through neuronal activity analysis. Tao et al. (2023) studied how to use 
EEG signals for emotion recognition. In order to solve the problem 
that traditional methods needed to manually design features and it 
was difficult to extract more discriminative features, this paper 
proposed an ACRNN model, which integrated channel attention and 
extended self-attention mechanism, and could effectively extract 
spatial and temporal features from original EEG signals, and achieved 
better recognition accuracy than other methods. Cheng et al. (2020) 
studied how to use multi-channel electroencephalogram (EEG) data 
for emotion recognition. Traditional sentiment recognition methods 
required manual feature extraction, while deep neural networks, 
although better, required a large amount of training data and complex 
hyperparameter settings. In order to overcome these shortcomings, 
this paper proposed a deep forest (gcForest) based emotion 
recognition method. In this method, the original EEG signals were 
first preprocessed by baseline removal, then the data was mapped to 
a two-dimensional frame sequence, and the spatial and temporal 
information was extracted by the scanning module of gcForest and the 
cascade forest module, respectively, and finally the emotion 
classification was performed. The experimental results showed that 
the proposed method was more accurate than the existing method on 
two open databases DEAP and DREAMER, and it was not sensitive 
to parameter setting, and could also achieve good performance on 
small-scale training data. Yin et al. (2020) studied how to use EEG 
signals for emotion recognition. This paper proposed a deep learning-
based emotion recognition method, which combined graph 
convolutional neural network (GCNN) and long short-term memory 
network (LSTM). GCNN was used to extract graph domain features 
from EEG signals, and LSTM was used to extract temporal features. 
Experimental results showed that the proposed method achieved high 
emotion recognition accuracy on DEAP dataset, which was superior 
to other traditional machine learning models and deep learning 
models. Li et  al. (2021) proposed the BiDANN model, which 
combined left and right hemisphere information and domain 
adversarial learning techniques to improve the accuracy of EEG 
emotion recognition. In addition, in order to solve the problem of 
emotion recognition across EEG of subjects, a BiDANN-S model was 
proposed to reduce the influence of individual differences on 
recognition results by introducing a discriminator. Experimental 
results on SEED database showed that BiDANN and BiDANN-S 
model achieved better accuracy than existing methods in EEG 
emotion recognition tasks.

Although various models for EEG emotion recognition have 
been proposed in the literature, they have some limitations. For 
example, the RGNN model in Zhong et al. (2020), while taking 
into account the topology and cross-subject variation of EEG 
signals, could be computationally expensive when dealing with 
large-scale data. The ACRNN model in Tao et al. (2023) improved 
feature extraction by introducing attention mechanisms, but might 
be  sensitive to specific EEG bands, thus limiting its ability to 
generalize in different emotional states. Although the gcForest 
method in Cheng et al. (2020) did not require large amounts of 
training data and complex hyperparameter setting, it might be less 
efficient in processing high-dimensional EEG data. The GCNN-
LSTM model in Yin et al. (2020) combines spatial and temporal 
features, but might not be efficient enough at fusing information 
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from different modes. The BiDANN model in Li et  al. (2021), 
although considering left and right hemisphere information and 
domain adversarial learning, might have some limitations in 
processing EEG sequences with multiple time steps. In contrast, 
out model is able to process EEG data from six time steps 
simultaneously, which helps to capture the dynamic process of 
emotional change, thus improving the accuracy of classification. 
With the CNN-BiLSTM structure, we can effectively extract the 
spatial and temporal features of EEG signals, while DC-IGN 
further enhances the ability to learn the underlying emotional 
features. The full connection layer fuses the output of 
CNN-BiLSTM and DC-IGN. This integrated learning method can 
synthesize the advantages of the two models and improve the 
overall classification performance. The piecewise exponential 
decline helps balance the convergence rate and model stability 
during training, ensuring that the model can still be optimized in 
the later stages of training.

Our main contributions are as follows:

 1 In data processing, the model uses six input tensors of shape (8, 
9, 4) to represent EEG data at different time steps, replacing the 
traditional single-time-step processing. After feature extraction 
by CNN-BiLSTM and DC-IGN respectively, the outputs of 
these two features are fused by a fully connected layer for 
emotion classification. This approach can better capture the 
dynamic process of emotional changes, combine the spatio-
temporal feature extraction capabilities of CNN-BiLSTM and 
the probabilistic modeling capabilities of DC-IGN, and 
enhance the diversity of features and the accuracy 
of classification.

 2 The model introduces a Deep Convolutional Inverse Graph 
Network (DC-IGN) based on the Variational Autoencoder 
(VAE). During the encoding process, it performs probabilistic 
modeling on features, using CNN and DNN for encoding and 
decoding, respectively. This generates more robust feature 
representations, enhances the model’s ability to handle complex 
EEG signals, improves the classification accuracy and 
generalization ability, and breaks through the limitations of 
traditional single-feature extraction methods.

 3 When training the model, a piecewise exponential decay 
strategy is used to adjust the learning rate. Different from 
the traditional fixed learning rate or single-decay strategies, 
this strategy dynamically adjusts the learning rate 
according to the training process. It ensures that the model 
converges quickly in the early training stage and maintains 
stable and accurate optimization in the later stage, avoiding 
premature convergence and overfitting, and effectively 
improving the training efficiency and the final 
classification performance.

 4 Multiple sets of experiments were conducted on the SEED and 
DEAP datasets, including model comparisons, learning rate 
strategy comparisons, and subject-independent experiments. 
These experiments fully demonstrate the superiority of our 
model and provide valuable references for future research on 
emotion classification.

The chapters are distributed as follows. Chapter 1 gives a brief 
background and related introduction. Chapter 2 introduces feature 

extraction. Chapter 3 introduces the model structure. Chapter 4 
makes experimental analysis. Chapter 5 provides a brief summary.

2 Feature extraction

Electroencephalogram (EEG) signals contain a wealth of 
information, which can reflect the activity pattern of the brain in 
different states. Emotion is a complex brain state, and its 
characteristics are also reflected in EEG signals. Traditional emotion 
recognition methods tend to focus on the characteristics of EEG 
signals in time domain or frequency domain, ignoring the 
information in space and time dimension. In order to capture 
emotion features more comprehensively, this paper adopts an EEG 
emotion recognition method based on 4D feature organization 
(Figure 1) (Fangyao et al., 2020).

The 4D feature organization method extracts the frequency, 
spatial and temporal information of EEG signals through the 
following steps:

Segmentation: The original EEG signal is divided into multiple 
segments of fixed length, each segment corresponds to an 
emotion label.

Filtering: Bandpass filtering is performed on each segment to 
extract information in specific frequency bands, such as the Theta, 
Alpha, Beta and Gamma bands.

The differential entropy (DE) feature extraction for each band of 
EEG signals can quantify the complexity and randomness of EEG 
signals, and its calculation formula is (Equation 1)

 ( ) ( )( )= −∑ ∗ logDE p x p x  (1)

Spatial representation: The DE feature vector of each frequency 
band is converted into a two-dimensional distribution map, where 
each pixel corresponds to the DE feature value of one electrode.

The two dimensional maps of different frequency bands are 
stacked together to form a three dimensional feature map, which is 
expanded in the time dimension to form a four dimensional feature 
structure. The structure contains four dimensions, namely frequency, 
space, time and fragment, which can describe emotional characteristics 
more fully.

4D feature structure can effectively integrate the frequency, space 
and time information of EEG signals, and provide richer feature 
representation for emotion recognition tasks, thus improving the 
accuracy of emotion recognition. In addition, the 4D feature structure 
is also well interpretable and can help researchers better understand 
the neural mechanisms of emotions.

3 Model structure

The model accepts six input tensors, each representing one time 
step of EEG data in the shape of (8,9,4).

In the context of electroencephalogram (EEG) data analysis, the 
use of six input tensors can be  theoretically grounded in the 
understanding of the temporal and spatial characteristics of EEG 
signals. EEG signals are dynamic and reflect the electrical activity of 
the brain over time. The brain’s neural activity changes continuously, 
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and different time steps capture different states of this activity. By 
using six input tensors, each corresponding to a distinct time step, the 
model can analyze the evolution of the EEG signal across 
multiple moments.

Temporally, the six-time-step approach allows the model to 
account for short-term and medium-term changes in the brain’s 
electrical patterns. For example, certain cognitive processes or 
emotional states may manifest as transient changes in the EEG signal 
that occur over a few milliseconds to seconds. Each time step captures 
a snapshot of these changes, and by considering multiple time steps 
together, the model can better understand the temporal dynamics 
underlying the EEG data. Spatially, the shape of each tensor (8,9,4) 
implies that the EEG data is being represented in a multi-dimensional 
space. The three dimensions can represent different aspects of the EEG 
recording, such as different electrode locations on the scalp, frequency 
bands of the EEG signal, and other physiological or mathematical 
features. The combination of multiple time steps with this spatial 
representation enables the model to analyze how the spatial patterns 
of EEG activity change over time.

During pre-processing to mitigate inter-subject variability in signal 
amplitude and baseline noise. Each subject’s EEG data is normalized 
using their own mean and standard deviation, reducing bias introduced 
by individual physiological differences (e.g., skull thickness or electrode 
impedance). Second, we integrate adaptive feature recalibration within 
the CNN-BiLSTM framework. This involves dynamically adjusting 
feature importance weights based on subject-derived metrics (e.g., 
spectral power distribution or connectivity patterns) during training. 
The DC-IGN module further augments this by modeling 

subject-invariant latent representations through probabilistic 
disentanglement, separating shared emotional features from 
idiosyncratic noise. Additionally, we evaluate the model on a stratified 
subject-independent split, ensuring that each fold in cross-validation 
contains mutually exclusive subjects. This rigorously tests the model’s 
ability to generalize to unseen individuals. To quantify individual 
variability, we analyze per-subject performance metrics.

The process of deriving these six input tensors from EEG data 
typically involves several pre-processing steps:

EEG data is collected using an EEG recording device, which 
consists of multiple electrodes placed on the scalp. These electrodes 
detect the electrical activity of the brain and convert it into voltage 
signals. The signals are then amplified and digitized at a certain 
sampling rate (e.g., 256 Hz or 512 Hz), resulting in a time-series of 
voltage values for each electrode.

The continuous EEG time-series data is segmented into 
non-overlapping or overlapping time windows. Each time window 
corresponds to a single time step. For example, if the sampling rate is 
256 Hz and we want to have time steps of 1 s, each time step will contain 
256 data points for each electrode. In the case of six input tensors, six 
consecutive time windows are selected from the segmented data.

For each time step, the data is further processed to extract relevant 
features. This may involve operations such as filtering to remove noise 
and artifacts, and transforming the data into different frequency 
domains (e.g., using the Fast Fourier Transform). The shape (8,9,4) of 
the tensor may be  obtained by grouping electrodes into subsets, 
calculating different frequency - band features, and applying other 
feature-engineering techniques. For example, the 8 might represent 
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FIGURE 1

4D feature organization.

https://doi.org/10.3389/fncom.2025.1589247
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2025.1589247

Frontiers in Computational Neuroscience 05 frontiersin.org

different groups of electrodes, the 9 could correspond to different 
frequency bands, and the 4 could represent other statistical or 
physiological features calculated from the EEG data within each 
electrode - frequency - band combination.

After feature extraction, the data for each time step is organized into 
a tensor of shape (8,9,4). Each element in the tensor represents a specific 
feature value corresponding to a particular spatial and frequency 
combination within that time step. Finally, the six tensors corresponding 
to six consecutive time steps are fed into the model as input.

These input tensors capture changes in the EEG signal over 
different time and spatial dimensions. The model structure diagram is 
shown in Figure 2. For each input tensor, spatial features are first 
extracted by convolutional neural network, and then temporal 
dynamic features are captured by bidirectional long short-term 
memory network. CNN is able to extract local spatial features 
efficiently, while BiLSTM is able to capture temporal dependencies in 
the sequence. DC-IGN is used for probabilistic modeling of features 
so that complex transformations and generation of data can 
be  learned. After the CNN-BiLSTM and DC-IGN modules, the 
respective output results are fed into the full connection layer for 
further feature fusion and processing. These fully connected layers are 
responsible for integrating features from different modules to generate 
a final representation for sentiment classification. The fused features 
are fed into a fully connected layer, and the results of emotion 
classification are output through a softmax layer. This part is 
responsible for predicting the corresponding emotional categories 
based on the extracted and fused features. In the training process, the 
learning rate strategy of piecewise exponential decay is adopted to 
help the model adjust the learning rate in different periods of training, 
so as to better converge and optimize. CNNs (Lecun et al., 1998), or 
Convolutional Neural networks, are a popular deep learning model 
that is particularly good at processing data with grid-like structures, 
such as images and videos. By learning the spatial hierarchical 
representation of the input data, CNN can automatically extract the 

features in the data, thus achieving remarkable success in image 
recognition, target detection, speech recognition and other fields. The 
core idea of CNN is to automatically extract the features of the input 
data through the convolutional layer, then reduce the dimension of 
the features through the pooling layer, and finally through the full 
connection layer for classification or other tasks. The main 
components of CNN include convolution layer, activation function, 
pooling layer and fully connected layer (Figure 3).

The convolutional layer is the basis of the CNN, which simulates 
the sensitivity of neurons to specific regions in biological visual 
systems. The convolution operation computes the features of a local 
region by sliding a small learnable filter (also known as a kernel or 
convolution kernel) over the input data.

Assuming that the input is a two-dimensional matrix X and the 
filter is a small two-dimensional matrix W, the convolution operation 
can be expressed as (Equation 2):

 
( )( ) ( ) ( )

− −

= =
∗ = + +∑ ∑

1 1

0 0
, , ,

k k

m n
X W i j X i m j n W m n

 
(2)

Where, k is the size of the filter, usually 3 × 3 or 5 × 5.
For color images, the input is usually three channels (RGB), so the 

filter also needs to have the corresponding three channels. The 
convolution operation becomes (Equation 3):

 
( )( ) ( ) ( )

− −

= = =
∗ = + +∑ ∑ ∑

2 1 1

0 0 0
, , ,

k k

c c
c m n

X W i j X i m j n W m n
 

(3)

Where, c indicates the channel index.
The result of a convolution operation is usually Rectified Linear 

Unit (ReLU) to increase the nonlinear expressibility of the model 
(Equation 4).

 ( ) ( )=max 0,ReLU x x  (4)

The pooling layer is used to reduce the size of the feature map and 
reduce the amount of computation while preserving the main features. 
The most common is MaxPooling, which slides a window on the 
feature map and takes the maximum value in the window as output 
(Equation 5).

 ( )( ) ( )− −
= == × + × +1 1
0 0, max max ,p p

m nMaxPooling X i j X i p m j p n  (5)

Where p is the size of the pooled window, usually 2 × 2.
The fully connected layer flattens the previously extracted features, 

connects them to one or more fully connected neural network layers, 
and finally classifies them through the softmax layer.

A typical CNN consists of multiple convolution layers, activation 
functions, pooling layers, and fully connected layers. The output of 
each layer acts as the input to the next layer, progressively extracting 
more abstract features.

An important feature of CNN is weight sharing. In the convolution 
layer, the same filter is applied to the entire input feature map, which 
means that the parameters of the filter are shared at different locations. 

FIGURE 2

Model structure diagram.
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This greatly reduces the number of parameters in the model and 
reduces the risk of overfitting.

Bidirectional Long Short Term Memory (BiLSTM) (Zhou et al., 
2016) is a neural network model widely used in sequential data 
processing. It inherits the advantages of LSTM and improves the 
understanding of sequence data by considering both forward and 
reverse information of sequence.

The LSTM is the basis for BiLSTM, a special type of recurrent 
neural network (RNN) designed to solve the problem of 
disappearing gradients or exploding gradients that traditional 
RNNs encounter when dealing with long sequences. LSTM 
controls the flow of information by introducing a memory unit 
(cell state) and three gating structures (forget gate, input gate, 
output gate).

Forget gate: determines what information is discarded from the 
cell state (Equation 6).

 ( )σ −= +  1,t f t t ff W h x b  (6)

Input gate: determines what new information is stored in the cell 
state (Equations 7–9).

 ( )σ −= +  1,t i t t ii W h x b  (7)

 
 ( )−= +  1tanh ,t C t t CC W h x b  (8)

 


−= × + ×1t t t t tC f C i C  (9)

Output gate: determines which information in the cell state is 
output as a hidden state (Equations 10, 11).

 ( )σ −= +  1,t o t t oo W h x b  (10)

 ( )= × tanht t th o C  (11)

Where σ represents the sigmoid function, tanh is the hyperbolic 
tangent function, and W and b are the weight matrix and the bias 
term, respectively.

BiLSTM obtains more comprehensive sequence information by 
feeding the sequences forward and backward into two separate LSTM 
networks, and then combining the outputs of the two (Figure 4). In 
BiLSTM, the input sequence is fed into both forward LSTM and 
reverse LSTM. Forward LSTM: The data is processed from the 
beginning to the end of the sequence. Reverse LSTM: Processing data 
from the end of the sequence to the beginning. The output of BiLSTM 
can be combined with the output of forward and reverse LSTM in a 
number of ways.

Concatenation: The stitching together of the hidden states of the 
forward and reverse (Equation 12).

 ( )=
 

,t t th concat h h
 

(12)

Summation: The sum of the forward and reverse hidden states 
(Equation 13).

 = +
 

t t th h h  (13)

Averaging: Averaging forward and backward hidden states 
(Equation 14).

 
+

=

 

2
t t

t
h hh

 
(14)



th  and 


th  indicate the hidden state of forward and reverse LSTM 
in time step t, respectively.

VAE is a powerful generative model that generates new data 
samples by learning the latent representations of data distribution 
(Doersch, 2016). It consists of two parts. The encoder and the decoder. 

FIGURE 3

CNN structure.
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The encoder maps the input data to the latent variable space and 
learns the distribution of the latent variables. The decoder maps the 
latent variables back to the data space and learns to generate the 
data distribution.

The goal of VAE is to maximize the objective function, which 
consists of two parts: reconstruction loss and KL divergence, 
respectively measuring the quality of the input data reconstructed by 
the decoder and the difference between the latent variable distribution 
and the prior distribution learned by the encoder. The formula for 
maximizing the objective function of VAE is as follows (Equation 15):

 ( ) ( ) ( )  = −   zL E ~Q logP X|z D Q z|X P z‖  (15)

The first term ( )  zE ~Q logP X|z  is the reconstruction loss. It 
measures the quality of the input data X reconstructed by the decoder. 
Ideally, the decoder should be able to accurately reconstruct the input 
data, minimizing the reconstruction loss as much as possible. The second 
term, ( ) ( )  D Q z|X P z‖ , is the KL divergence. It measures the difference 
between the latent variable distribution Q(z|X) learned by the encoder 
and the prior distribution P(z). Ideally, the encoder should learn the latent 
variable distribution as similar as possible to the prior distribution, 
making the KL divergence as small as possible.

The structure diagram of the VAE model is shown in the Figure 5. 
The working principle of VAE is to encode the input data into the latent 
variable space, and then sample and decode from the latent variable 
space to generate new data samples. By minimizing the objective 
function, VAE learns a generative model that is capable of generating 
new data samples similar to the training data. VAE has extensive 
applications in fields such as image generation, text generation, audio 
generation, data dimension reduction and anomaly detection.

A deep convolutional inverse graph network (DC-IGN) (Kulkarni 
et al., 2015) is a deep learning model designed to learn interpretable 
and decoupled representations from images. It uses a deep 
convolutional and deconvolution architecture, combined with a 
variational autoencoder (VAE) framework, to break down an image 
into multiple independent potential variables, such as pose, 
illumination, and shape, allowing for flexible control of 
image generation.

Multi-layer convolution layer and pooling layer are used to extract 
image features and map them to potential variable space. The latent 
variable space contains multiple independent latent variables, each 
representing a specific aspect of the image, such as pose, lighting, or 
shape. The output of the encoder is used to parameterize the posterior 
distribution q(z|x) of the latent variable, where q is selected as the 
multivariate normal distribution, expressed as (Equation 16):

 
( ) ( )µ= ∑,| ;e z zq z x N y

 
(16)

Here, ye is output of the encoder, μz and Σz are the mean and 
variance of the underlying variable z, respectively.

The underlying variables are reconstructed into images using 
multiple deconvolution layers and upper sampling layers. The decoder 
can produce an image similar to the original image and is able to 
flexibly edit the image according to changes in the underlying 
variables. The decoder converts the latent variable z to the image x, 
which is (Equation 17):

 ( )′ =x decoder z  (17)

DC-IGN’s underlying variables represent decoupage features of 
the image, such as pose, lighting, and shape. Each latent variable is 
only sensitive to a specific aspect of the image, such as the pose latent 
variable is only sensitive to the pose of the image, and the illumination 
latent variable is only sensitive to the illumination of the image. The 
latent variable space contains multiple independent latent variables, 
each of which represents a specific aspect of the image. The decoupling 
between the underlying variables allows the model to flexibly control 

FIGURE 4

BiLSTM structure.

FIGURE 5

VAE model diagram.
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TABLE 1 Comparison of different models on SEED dataset.

model Accuracy Std

CNN + LSTM 92.07 2.78

CNN + BiLSTM 92.77 1.53

CNN + BiGRU 90.04 3.13

CNN + LSTM+DC-IGN 92.27 2.39

CNN + BiLSTM+DC-IGN 94.26 1.34

CNN + BiGRU+DC-IGN 92.29 2.71

the generation of the image, for example by changing the pose, 
lighting, or shape.

The DC-IGN model in this paper adopts a symmetrical five-layer 
encoder-decoder architecture. The encoder consists of 5 layers of 
convolutional networks (each layer uses 5 × 5 convolutional kernels, 
with a step size of 2, and the number of channels is 64–128–256-512-
1024 in sequence). After compressing the input image into a feature map 
of 7 × 7 × 1,024, the mean μ and variance σ of the 256-dimensional latent 
variables are output through the fully connected layers. The decoder 
corresponds to a 5-layer deconvolution network (with the number of 
channels being 1,024–512–256-128-64), and uses convolution kernels of 
the same size to gradually upsample and reconstruct the image.

4 Experimental analysis

4.1 Dataset

The SEED dataset (Zheng and Lu, 2015) is an EEG emotion 
recognition dataset collected and published by the BCMI Laboratory of 
Shanghai Jiao Tong University. The dataset contained 15 movie clips 
covering positive, negative and neutral emotions, each about 4 min long. 
The dataset recorded EEG signals from 15 subjects, each of whom 
performed two experiments, for a total of 30 experiments. The data set is 
preprocessed, including downsampling, filtering and segmentation, and 
provides a variety of feature extraction methods, such as differential 
entropy, power spectral density, etc. The dataset can be used to study EEG 
based emotion recognition algorithms and models, and promote the 
development of the field of emotion computing.

DEAP (Dataset for Emotion Analysis using Physiological Signals) 
(Koelstra et  al., 2011) is a widely used dataset for studying the 
relationship between physiological signals and human emotions. This 
dataset contains a variety of physiological signals recorded from 32 
subjects while watching video clips, including electroencephalography 
(EEG), electrical skin activity (EDA), heart Rate (HR), and Respiration 
rate (Respiration Rate). They also collected the subjects’ subjective 
emotional ratings of each video, such as valence and arousal. DEAP 
data sets have important application value in the fields of affective 
computing, human-computer interaction and mental health, 
providing researchers with rich multi-modal physiological data and 
corresponding affective labeling, so as to explore and develop more 
accurate emotion recognition algorithms and systems.

4.2 Analysis of experimental results

In this paper, the performance evaluation of EEG emotion 
recognition is usually quantified by classification accuracy (Acc) 
(Equation 18) and its standard deviation (Std) (Equation 19), and the 
calculation formula is:

 
+

=
+ + +
TP TNAcc

TP TN FP FN  
(18)

 =
= −

− ∑ 2

1

1 ( )
1

N

i
i

Std x x
N  

(19)

Where TP, TN, FP, FN represent true positives, true negatives, 
false positives and false negatives respectively, and x  denotes the mean 
accuracy across N = 5 trials (5-fold cross-validation), and ix  is the 
accuracy of the −i th  fold. For deeper model interpretation, 
we  employed t-SNE dimensionality reduction to visualize feature 
distributions and analyzed class-specific performance through 
confusion matrices.

We design a series of experiments to verify the effects of different 
model structures on the emotion classification task. CNN is used to 
extract local features from EEG data, LSTM, BiLSTM, and BiGRU are 
used to capture different time dependencies of time series data, 
respectively, while DC-IGN, as part of variational autoencoders 
(VAE), enhances feature representation through 
probabilistic modeling.

It can be concluded according to Table 1 and Figures 6–11, the 
CNN + BiLSTM+DC-IGN model achieves the highest accuracy 
(94.26%) with the lowest standard deviation (1.34), demonstrating not 
only superior performance but also the most stable predictions among 
all evaluated models in the emotion classification task. This 
exceptional result is attributed to the effective combination and 
complementary advantages among the model’s components. CNNs 
excel at extracting local spatial features from EEG data, where each 
input tensor (shape: 8 × 9 × 4) preserves the spatial and temporal 
structure of brainwave signals. Through convolutional and pooling 
operations, CNNs capture critical local patterns for emotion 
recognition. BiLSTM further enhances temporal modeling by 
processing bidirectional contextual dependencies in the EEG time 
series. Unlike unidirectional LSTM, BiLSTM incorporates both 
historical and future time steps, which is crucial for emotion analysis 
where states are influenced by temporal dynamics. The high accuracy 
(92.77%) and low std. (1.53) of the standalone CNN + BiLSTM model 
already highlight its robustness, but the addition of DC-IGN pushes 
performance even further. DC-IGN probabilistically models EEG 
features through its convolutional encoder-decoder architecture, 
generating richer representations of complex data structures. When 
integrated with CNN + BiLSTM, DC-IGN contributes additional 
feature diversity, enabling the fused model to outperform alternatives 
like CNN + BiGRU+DC-IGN (accuracy: 92.29%, std.: 2.71) or 
CNN + LSTM+DC-IGN (accuracy: 92.27%, std.: 2.39). The fully 
connected layer fuses multi-modal features from CNN-BiLSTM and 
DC-IGN, combining local spatiotemporal patterns with probabilistic 
representations. This hierarchical fusion improves generalization, as 
evidenced by the model’s high accuracy and low std. In contrast, less 
stable models like CNN + BiGRU (std: 3.13) or CNN + LSTM (std: 
2.78) exhibit wider performance fluctuations, possibly due to weaker 
temporal modeling (BiGRU) or unidirectional context (LSTM) .
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FIGURE 6

CNN + LSTM t-SNE dimensionality reduction diagram.

FIGURE 7

CNN + BiLSTM t-SNE dimensionality reduction diagram.
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FIGURE 9

CNN + LSTM+DC-IGN t-SNE dimensionality reduction diagram.

FIGURE 8

CNN + BiGRU t-SNE dimensionality reduction diagram.
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FIGURE 10

CNN + BiLSTM+DC-IGN t-SNE dimensionality reduction diagram.

FIGURE 11

CNN + BiGRU+DC-IGN t-SNE dimensionality reduction diagram.
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FIGURE 12

Comparison of three kinds of affective accuracy of different models.

In summary, the CNN + BiLSTM+DC-IGN architecture leverages 
the strengths of each component—spatial feature extraction, 
bidirectional temporal dynamics, and probabilistic feature 
enrichment—while its minimal std. underscores reliability, making it 
the optimal choice for emotion classification.

According to the experimental results, the 
CNN + BiLSTM+DC-IGN model performed best in the emotion 
classification task, especially in the classification of negative and 
positive emotions, with an accuracy of 0.93 and 0.93, respectively. This 
shows that the model can effectively combine the local feature 
extraction of CNN, the time context modeling of BiLSTM and the 
probabilistic feature modeling of DC-IGN to comprehensively 
improve the accuracy of emotion classification when processing 
multi-channel EEG data. The other models performed better on 
Neutral emotion, but not as well as the CNN + BiLSTM+DC-IGN 
model on Positive emotion. This further confirms the importance of 
multi-component fusion in enhancing sentiment classification 
performance (Figure 12).

It can be concluded according to Table 2 and Figure 13, different 
learning rate scheduling strategies exhibit varying effects on model 
performance, both in terms of accuracy and stability. Among the 
tested strategies, piecewise exponential attenuation achieves the 
highest accuracy (94.35%) and the lowest standard deviation (1.26), 
indicating not only superior performance but also the most consistent 
results across multiple runs. This suggests that the strategy effectively 
balances convergence speed and training stability. The constant 
learning rate approach, while simple and intuitive, yields an accuracy 
of 94.26% with a std. of 1.34. The relatively high std. implies greater 
variability in model performance, likely due to the fixed learning rate’s 
inability to adapt to different training phases. This can lead to 
instability, particularly when gradients are large, increasing the risk of 
suboptimal convergence. Cosine annealing, despite its theoretical 
advantage of escaping local optima through periodic learning rate 
fluctuations, shows the highest std. (1.75) alongside an accuracy of 
94.24%. The large variability suggests that the strategy’s aggressive 
learning rate oscillations may introduce instability, making it less 

reliable in some training scenarios. Stepped down descent (94.19%, 
std. = 1.43) and linear descent (94.14%, std. = 1.42) both exhibit 
moderate accuracy and comparable std. values, indicating consistent 
but suboptimal performance. The stepwise reduction in learning rate 
(stepped descent) lacks flexibility, potentially causing abrupt 
adjustments that hinder fine-tuning. Meanwhile, linear descent’s 
gradual reduction may slow convergence too early, limiting 
final accuracy.

The piecewise exponential decay strategy outperforms others not 
only in accuracy (94.35%) but also in stability (std = 1.26), 
demonstrating its ability to balance rapid early-stage convergence with 
precise late-stage adjustments. In contrast, constant learning rates and 
cosine annealing show higher variability, while stepped and linear 
descent deliver steadier but inferior results. From this, it can be seen 
that the importance of choosing an adaptive learning rate strategy to 
optimize the performance and repeatability of model training.

It can be seen from Figure 14 that there are certain fluctuations in 
the performance of the model on different subjects. The accuracy of 
Subject15 (99.11%), Subject6 (96.89%) and Subjet8 (95.86%) is 
significantly higher than that of other subjects. This may indicate that 
the EEG data features of these subjects are more stable and unique, 
allowing the model to extract and classify emotional features more 
efficiently. The accuracy of Subject2 (87.43%) and Subject1 (89.20%) 
is relatively low. This may be because the EEG data features of these 
subjects are more complex or noisy, which makes the model difficult 
to extract and classify. The accuracy of most subjects is concentrated 
between 90 and 95%, indicating that the model had high robustness 
and generalization ability in most cases.

Our model achieves 94.35% accuracy (std = 1.26) on SEED 
dataset, demonstrating both high performance and superior stability 
compared to other methods. The lower standard deviation of 1.26 
indicates more consistent and reliable classification results than 
BFE-Net (std = 4.65) and ComNet-PSR-VG (std = 4.69), whose higher 
variations suggest greater performance fluctuations. This stability 
advantage, combined with our 2.06% accuracy improvement over 
BFE-Net (92.29%), highlights the robustness of our multi-modal 
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FIGURE 13

Piecewise exponential attenuation confusion matrix.

TABLE 2 Comparison of learning rate strategies on SEED dataset.

Comparison of learning rate strategies Accuracy Std

Constant learning rate 94.26 1.34

Piecewise exponential attenuation 94.35 1.26

Cosine annealing 94.24 1.75

Stepped down descent 94.19 1.43

Linear descent 94.14 1.42

FIGURE 14

SEED line chart of accuracy for different subjects.
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feature extraction approach. Our model’s spatial–temporal-
probabilistic feature fusion through CNN-BiLSTM and DC-IGN, 
coupled with optimized training strategies, not only achieves higher 
accuracy but also maintains consistently reliable performance across 
different test cases, addressing the variability issues observed in prior 
methods. The comprehensive evaluation shows our model 
outperforms all benchmarks including DGCNN (90.40% ± 8.49) and 
BiDANN (92.38% ± 7.04), establishing new state-of-the-art 
performance in EEG emotion recognition (Table 3).

The experimental results demonstrate significant 
improvements in both accuracy and stability after BiLSTM and 
DC-IGN. Compared to the baseline CNN + LSTM 
(87.42% ± 8.33  in valence, 88.11% ± 7.98  in arousal), 
CNN + BiLSTM+DC-IGN achieves superior performance with 
88.34% ± 6.45 in valence and 89.55% ± 6.55 in arousal. Notably, 
the standard deviations consistently decrease across all 
enhanced models-from 8.33 to 6.45 in valence and from 7.98 to 
6.55  in arousal-indicating DC-IGN’s remarkable ability to 
improve model robustness. The combination of BiLSTM and 
DC-IGN shows particular effectiveness in arousal classification 
(89.55% ± 6.55), suggesting its superior capability in capturing 
complex temporal dynamics and spatial relationships of 
emotional characteristics. This performance improvement, 

coupled with reduced variability, confirms the architecture’s 
enhanced generalization capability for EEG-based emotion 
recognition tasks (Table 4).

When evaluating learning rate strategies on the DEAP 
dataset, the piecewise exponential attenuation method 
demonstrated superior performance, achieving 89.84% ± 6.12 in 
valence and 90.31% ± 6.50 in arousal. This strategy outperforms 
other approaches not only in accuracy but also in stability, as 
evidenced by its lower standard deviations compared to most 
alternatives. The constant learning rate (88.34% ± 6.45, 
89.55% ± 6.55) and cosine annealing (86.66% ± 7.14, 
90.00% ± 6.86) show competitive performance in arousal but 
were less stable in valence. The piecewise exponential strategy’s 
dynamic adjustment capability proves particularly effective for 
emotion classification, maintaining optimal learning rates 
throughout different training phases to balance convergence 
speed and model stability. These results confirm its advantages 
in handling EEG-based emotion recognition’s complex feature 
spaces while ensuring robust performance across different 
emotional dimensions (Table 5).

In experiments on DEAP datasets (Figure 15), our model 
classifies emotions against EEG data of 32 subjects, and the 
results show that the model has good generalization ability and 

TABLE 5 Comparison of learning rate strategies on DEAP dataset.

Comparison of learning rate strategies DEAP-valence DEAP-arousal

Accuracy Std Accuracy Std

Constant learning rate 88.34 6.45 89.55 6.55

Piecewise exponential attenuation 89.84 6.12 90.31 6.50

Cosine annealing 86.66 7.14 90.00 6.86

Stepped down descent 89.53 6.75 88.18 7.92

Linear descent 87.97 7.81 89.22 6.69

TABLE 4 Comparison of different models on DEAP dataset.

Model DEAP-valence DEAP-arousal

Accuracy Std Accuracy Std

CNN + LSTM 87.42 8.33 88.11 7.98

CNN + BiLSTM 87.77 8.29 88.69 7.36

CNN + LSTM+DC-IGN 87.46 7.32 89.39 6.91

CNN + BiLSTM+DC-IGN 88.34 6.45 89.55 6.55

TABLE 3 Comparison with existing models on SEED dataset.

model Accuracy Std

GCNN (Defferrard et al., 2016) 87.40 8.64

DGCNN (Song et al., 2020) 90.40 8.49

BiDANN (Li et al., 2021) 92.38 7.04

ComNet-PSR-VG (Yao et al., 2024) 91.39 4.69

BFE-Net (Zhang et al., 2024) 92.29 4.65

Our model 94.35 1.26
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stability. On valence and arousal, most of the subjects had an 
accuracy rate of more than 80 percent, with several of them 
averaging more than 90 percent. In particular, Subject7 achieved 
98.75% and 96.88% accuracy on both tasks, showing the model’s 
excellent performance when processing specific individual data. 
Although some subjects, such as Subject22, performed relatively 
poorly on Arousal task, overall, the model showed a strong 
ability of emotional recognition. These results further validate 
the validity of our model in cross-dataset and cross-subject 
situations, demonstrating its potential for application in the 
field of affective computing.

Our model shows significant advantages in the emotion 
recognition task of the DEAP dataset (Table 6), mainly reflected 
in three aspects: Firstly, an accuracy rate of 90.31% (standard 
deviation 6.50) is achieved in the arousal dimension, which is 7.8 
percentage points higher than the current optimal FLTSDP 
framework (82.51%), and the stability is better (the standard 
deviation decreased by 0.78). This breakthrough progress is 
attributed to our innovatively designed feature fusion mechanism, 
which can more effectively capture the temporal dynamic features 
and spatial topological relationships in EEG signals. Secondly, our 

model is slightly lower than FLTSDP in the dimension of pleasure, 
and the standard deviation is also slightly lower than FLTSDP, 
indicating that there is still much room for improvement in our 
model. This difference may stem from: (1) FLTSDP, which adopts 
the teacher-student framework, is particularly good at handling 
static features, while pleasure recognition relies more on stable 
spatial features; (2) Our dynamic feature extraction mechanism is 
more sensitive to temporal changes, which gives it an advantage 
in the wake-up task. Finally, compared with benchmark models 
such as CLSTM and RACNN, our model has significantly 
improved in both accuracy and stability (pleasure has increased 
by 9–15 percentage points, and arousal has increased by 15–22 
percentage points), indicating that our improved network 
architecture can better balance the relationship between spatial 
feature extraction and time series modeling. Especially, the model 
maintains a low standard deviation of about 6% in cross-subject 
scenarios, proving that it has excellent generalization performance, 
which is of great significance for practical applications. Overall, 
our model achieves better stability and generalization ability while 
maintaining a high accuracy rate through innovative network 
design and feature fusion strategies.

FIGURE 15

DEAP line chart of accuracy for different subjects.

TABLE 6 Comparison with existing models on DEAP dataset.

Model DEAP-valence DEAP-arousal

Accuracy Std Accuracy Std

CLSTM (Li et al., 2016) 79.21 14.17 68.85 9.61

RACNN (Cui et al., 2020) 80.55 12.50 74.64 8.72

ATDD-LSTM (Du et al., 2022) 74.73 13.07 67.44 8.03

FLTSDP (Gu et al., 2023) 92.40 5.20 82.51 7.28

Our model 89.84 6.12 90.31 6.50
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5 Conclusion

In this study, an EEG emotion recognition model combining 
CNN-BiLSTM and DC-IGN is proposed, and the output is fused 
through the fully connected layer. The experimental results show 
that the accuracy of the model is 94.35% on SEED dataset, 89.84 
and 90.31% on the emotion dimension of DEAP dataset, 
respectively, which is significantly better than the traditional 
model and the existing advanced model. The superiority of the 
model is further verified by subject independent experiment and 
learning rate scheduling strategy comparison experiment. This 
study not only improves the performance of EEG emotion 
recognition, but also provides new research ideas and methods for 
related fields.
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