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Resource-dependent
heterosynaptic
spike-timing-dependent
plasticity in recurrent networks
with and without synaptic
degeneration

James Humble*

Independent Researcher, Randolph, MA, United States

Many computational models that incorporate spike-timing-dependent plasticity

(STDP) have shown the ability to learn from stimuli, supporting theories that

STDP is a su�cient basis for learning and memory. However, to prevent runaway

activity and potentiation, particularly within recurrent networks, additional

global mechanisms are commonly necessary. A STDP-based learning rule,

which involves local resource-dependent potentiation and heterosynaptic

depression, is shown to enable stable learning in recurrent spiking networks. A

balance between potentiation and depression facilitates synaptic homeostasis,

and learned synaptic characteristics align with experimental observations.

Furthermore, this resource-based STDP learning rule demonstrates an innate

compensatory mechanism for synaptic degeneration.

KEYWORDS

spike-timing-dependent plasticity, homeostasis, heterosynaptic, recurrent network,

learning, spiking, synaptic degeneration, neurodegeneration

1 Introduction

The concept of spike-timing-dependent plasticity (STDP) has been thoroughly

researched and frequently serves as a foundation for learning in computational models.

Various studies adopt STDP in diverse formats. For instance, it may be utilized with

either an additive or a multiplicative rule for updates: Potentiation or depression may

depend on or be independent of a synapse’s weight. Different STDP implementations can

lead to varied outcomes, with some rules more closely reflecting phenomena observed in

experiments. These variations include (1) synaptic weight distributions, (2) the presence of

non-potentiable synapses, (3) silent synapses, (4) synaptic persistence, and (5) competition

between synapses:

1. Empirically identified synaptic weight distributions generally display a uni-modal

pattern that peaks close to zero, characterized by numerous weak synapses and a few

strong connections forming a long tail (Buzsáki, 2004; Yasumatsu et al., 2008; Kasai,

2023). In computational models, synaptic distributions change based on whether STDP

is implemented additively or multiplicatively. In feedforward networks, additive STDP

often produces bi-modal distributions, with peaks located near zero and the upper limit

of synaptic weight (Rossum et al., 2000; Barbour et al., 2007; Morrison et al., 2008).

In contrast, multiplicative STDP often generates uni-modal distributions with a peak
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situated between zero and the upper bound (Rossum et al., 2000;

Barbour et al., 2007; Morrison et al., 2008). Gütig et al. (2003)

used a non-linear STDP model to interpolate between these two

extremes and found that weight distributions transition between

bimodal and unimodal, albeit not similar to the characteristic

experimentally observed long tailed distribution. In recurrent

networks, additive STDP can produce a uni-modal distribution

with a peak at the upper-bound and multiplicative, uni- or

multi-modal distributions (Morrison et al., 2007).

2. Silent synapses are primarily defined by their absence of α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptors, as comprehensively discussed by Montgomery and

Madison (2004). Despite the scarcity of AMPA receptors,

these synapses often retain a degree of plasticity due to the

presence of N-methyl-D-aspartate (NMDA) receptors (Kim

et al., 2025). In a study by Brunel et al. (2004), a prominent

and sharply delineated subset of silent synapses was integrated

into an empirically derived distribution by assessing those

potentially undetected because of technological limitations and

their deficiency in AMPA receptors. Such a peak is observed

in spine volume (Yasumatsu et al., 2008) and synaptic efficacy

(Barbour et al., 2007).

3. Research has indicated that certain synapses may not be

capable of potentiation. For instance, Debanne et al. (1999)

reported the inability to induce potentiation in 24% of the

synapses examined. Debanne et al. propose that this attributed

to synapses individually reaching saturation. Conversely,

computational models often employ either a universal upper

limit across all synapses or a global normalizing mechanism and

neglecting these constraints may lead to excessive activity and

potentiation (Rossum et al., 2000).

4. The persistence of synapses is typically considered to be

fundamentally important for memory. In their study, Billings

and Rossum (2009) investigated the durability of synaptic

weights governed by STDP principles and found that additive

STDP facilitates stability, whereas multiplicative STDP causes

instability due to rapid weight variations. Gütig et al. (2003)

found that a non-linear STDP implementation permitted stable

learning when in the multiplicative regime. Empirical evidence

from long-term potentiation (LTP) studies indicates a two-phase

persistence: an initial phase that diminishes swiftly and seems

to be reliant on neuronal activity (Dong et al., 2015), and a

later phase capable of sustaining LTP over prolonged periods,

possibly extending to a year (Abraham et al., 2002). There is,

however, strong evidence demonstrating that spine volumes

fluctuate in the absence of activity and plasticity [reviewed by

Kasai (2023)] and that such fluctuations combined with STDP

can be stable (Humble et al., 2019). In this case, the mean spine

volume of a group of neurons must be persistent rather than the

individual synaptic strengths.

5. Whereas STDP following an additive rule is known for its strong

competitive interactions, STDP governed by a multiplicative

rule typically exhibits limited competition [although see Gütig

et al. (2003) for competitive non-linear STDP], prompting the

incorporation of supplementary mechanisms such as synaptic

scaling (Turrigiano, 2008) or intrinsic fluctuations to achieve

the competition essential for learning (Rossum et al., 2000;

Humble et al., 2019). The inherently competitive aspect of

additive STDP typically necessitates enforcing a stringent upper

limit on synaptic strength to control excessive potentiation.

In contrast, multiplicative STDP operates under more flexible

upper limits determined by weight dependency. A drawback

of deploying global limits is their assignment of preset

values before the learning process, which may not align with

biological realism. Moreover, as mentioned above, Debanne

et al. (1999) demonstrated the possibility of individual synaptic

upper limits.

Furthermore, to control runaway activity, mechanisms such

as synaptic scaling (Turrigiano, 2008), inhibition (Bannon et al.,

2020; Eckmann et al., 2024), or the Beinenstock-Cooper-Munro

rule (Cooper and Bear, 2012) are typically included with Hebbian-

based learning rules in recurrent networks. However, these can

operate on a slower timescale than that required for STDP

(Zenke et al., 2013). In addition, weight normalization is often

included in computational models of plasticity in recurrent

models; however, because it requires a continuous global sum of

weights across a neuron, it is less biologically plausible than a

local mechanism.

The above picture is further complicated by experiments

showing that heterosynaptic plasticity can occur in unstimulated

spines near a stimulated one [reviewed by Chater andGoda (2021)].

Essentially, given some homosynaptic activity in a subset of spines,

heterosynaptic changes have been observed in unstimulated ones.

The distance dependence and direction of these heterosynaptic

changes are potentially competitive (Chater et al., 2024).

Motivated by these experimental results, this paper explores

ongoing research into computational disparities by utilizing

a learning methodology that integrates “resources” alongside

heterosynaptic plasticity in a spiking recurrent network. In a

computational model of individual neurons (Chen et al., 2013)

and a feedforward network [Chapter 5 of Humble (2013)], it

has previously been shown that heterosynaptic plasticity can be

beneficial in controlling activity and plasticity.

In addition to networks with static connectivity, progressive

loss of synapses is a hallmark of many neurodegenerative

diseases, including Huntington’s, Parkinson’s, and Alzheimer’s

(Herms and Dorostkar, 2015; Meftah and Gan, 2023), and

neuropsychiatric disorders such as schizophrenia and depression

(Penzes et al., 2011). To counteract synaptic loss, the existence

of compensatory mechanisms has been suggested that include

enlargement of the remaining spines and increased spinogenesis

(Bhembre et al., 2023).

By advancing STDP through the local incorporation of limited

resources for potentiation and merging it with heterosynaptic

depression that affects neighboring synapses, the results reveal that

this model effectively resolves the discrepancies mentioned above

while presenting an innate local mechanism for both synaptic

homeostasis and synaptic degeneration compensation.

2 Methods

The network structure (Figure 1A) consists of a pool of

Nexc = 200 excitatory neurons recurrently connected with plastic
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FIGURE 1

Network, neuron, and synaptic models and stimulation protocol. (A) A pool of 200 excitatory neurons receive input from 50 independent Poisson
processes. All recurrent synapses undergo STDP. (B) A synaptic input, s, and one neuron’s refractoriness, r, and membrane potential, v. (C) STDP

learning window. (D) Synaptic change dependence on weight. (E) Spines on a dendrite are depicted either before or after a STDP learning event. The

spine volume and number of resources is analogous to synaptic strength. Three di�erent scenarios for heterosynaptic plasticity are shown: (i)

potentiation accompanied by heterosynaptic depression of resources (blue circles) from neighbors (dependent on a decaying exponential as a

function of distance, top left), (ii) potentiation with resources taken from the pool (resources in the dendrite), and (iii) depression with resources being

relocated in to the dendrite pool. (F) Input is provided for the first 20 s.

excitatory synapses with a probability of 25%. Independent Poisson

spike trains are presented to the pool with an input connection

probability of 10% from Nin = 50 spike trains. All connections

have axonal delays drawn from a uniform distribution from 1ms to

5ms (Lemaréchal et al., 2021).

Throughout the following n notates a neuron’s index, i notates

an input synapse’s index, j notates a recurrent excitatory synapse’s

index, and i/j notates either i or j.

Excitatory neurons are refractory leaky integrate-and-fire cells

(Equation 1). The membrane potential of each neuron, v, follows

low-pass dynamics with a time constant τv = 25ms (Rall,

1969) and is reset when it reaches the firing threshold, θ = 1

(Figure 1B bottom).

τv
dvn

dt
= −vn + rn(

Nin
∑

i

si +

Nexc
∑

j

sj) (1a)

vn → 0 if vn ≥ θ (1b)

An absolute refractory period of 3ms is followed by a

relative refractoriness period, τr = 5ms (Equation 2 and

Figure 1B middle).

τr
drn

dt
= 1− rn (2)

All input and recurrent afferents were modeled as synaptic

currents, s′ and s (Equation 3 and Figure 1B top). τsr = 2.6ms is

the time constant for the synaptic current rise and τsf = 31.3ms

the decay constant (Hunt et al., 2022). The input of each synapse

consists of binary presynaptic neuron spikes, I, scaled by the

synapse’s weight, w.

τsr
ds′i/j

dt
= −s′i/j + Ii/j wi/j (3a)

τsf
dsi/j

dt
= −si/j + s′i/j (3b)
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Recurrent excitatory synapses are plastic. Pairs of presynaptic

and postsynaptic spikes evoke changes in synaptic weight, 1w =

f (τ ), given as a function of their temporal distance, τ =

post-spike time − pre-spike time (Figure 1C). Equation 4 describes

the STDP function used, where τSTDP = 20ms (Bi and Poo, 1998).

Depression is weight dependent, as observed by Bi and Poo (1998)

(Figure 1D). Recurrent weights were bounded [0,+∞). See below

for a description of the inclusion of 0.18 in depression.

f (τ ) =















exp
(

−τ
τSTDP

)

if τ ≥ 0

0.18 exp
(

τ
τSTDP

)

w if τ < 0

(4)

Previous models have included noisy STDP updates, for

example, Rossum et al. (2000), to replicate the spread in weight

dependence observed experimentally by Bi and Poo (1998),

however, without these noisy updates, resource-dependent STDP

replicates the weight dependence spread (Figure 1D).

The initial input weights are set with random values drawn

from a uniform distribution between 0 and 1. All recurrent weights,

w, are initially assigned 0 as akin to a newly formed network.

This typical STDP implementation is extended as in Humble

(2013) to include the requirement of resources for potentiation

paired with potentiation-driven heterosynaptic depression in

neighboring synapses. Firstly, a pool of resources is included, p

per neuron. There is a single pool of resources per neuron that

is common across all synapses on a single neuron. Similarly to

many receptors and proteins that undergo degradation or recycling,

the pool’s resources decay with a time constant of τp = 10 s

(Equation 5).

τp
dpn

dt
= −pn (5)

The amounts of the initial resource pool are assigned by

Equation 6 where ξ is a random number from a standard normal

distribution. The constant multiple was found through a parameter

search to ensure that the weights were strong enough that

the activity continued after stimulation stopped. A log normal

distribution is chosen as skewed distributions are observed for

many aspects of brain dynamics (Buzsáki and Mizuseki, 2014).

pn = 2 eξ (6)

When updating the weights with resource-dependent STDP,

there are three scenarios, Figure 1E where → denotes letting a

variable take a new value:

• When potentiating a synapse, its neighbors are actively

depressed by an exponential function of their distance to

the potentiating synapse, and the potentiating amount to a

maximum distance of 3 synapses (Equation 7).

if

3
∑

k=1

wj±k ≥ 0















for k ∈ {1, 2, 3} wj±k → wj±k

−f (τ )
(

e−abs(k)/
∑3

k′=1 e
k′/2

)

wj → wj + f (τ )

(7)

• When potentiating a synapse and its neighbors have no

resources left, the potentiating synapse acquires resources

from the pool, if available (Equation 8).

if

3
∑

k=1

wj±k = 0























if pn ≥ f (τ )

{

wj → wj + f (τ )

pn → pn − f (τ )

else

{

wj → wj + pn

pn → 0

(8)

• When a synapse is depressed, its resources are relocated to the

pool for reuse (Equation 9).

if wj ≥ f (τ )

{

pn → pn + f (τ )

wj → wj − f (τ )
(9a)

else

{

pn → pn + wj

wj → 0
(9b)

Combinations of the above scenarios are possible. For example,

when potentiating, it is possible that neighboring spines provide

only 50% of the resources required for potentiation; in this case,

additional resources will be taken from the pool. Furthermore,

if the pool and neighboring spines are depleted, potentiation is

not possible. Moreover, when neighboring spines or the pool have

insufficient resources but are non-zero, the amount of resources

acquired are equal to those available, and the neighboring spines

or pool are depleted. Finally, given a case where the neighboring

spines’ resources combined with any available from the pool are not

sufficient for potentiation, the amount of potentiation is limited.

For simplicity, time constants for resource mobility are

neglected; hence, resources can transfer between a synapse and the

pool, and vice versa, within a single time step.

With local heterosynaptic plasticity, depression dominates

because potentiation events are accompanied by depression, and

thus depression has to be decreased. It has previously been

found that 0.18 was a suitable multiple for depression such

that potentiation and depression were balanced (Humble, 2013).

This reduced depression (Figure 1C) matches the experimental

observations of decreased depression relative to potentiation (Bi

and Poo, 1998).

The rate of the input spike trains is 50Hz for the first 20 s

(Figure 1F).

All simulations used forward Euler integration with a time step

of dt = 0.1ms and were implemented in MATLAB.

3 Results

During stimulation of a typical network, most neurons in

the excitatory pool fire with increased firing rates (Figures 2A,

B). After stimulation, a subset continues to fire representing a

learned memory. Not all neurons are recruited into the memory,

due to initial random input and recurrent connectivity and

random activity-driven plasticity. Furthermore, after learning, the
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FIGURE 2

Typical network dynamics. (A) Firing rates of the network’s neurons. (B) Sorted firing rate of the network’s neurons for when they first fire ≥ 100Hz.
(C) Change in the firing rate from after learning to the end of the simulation. (D) Weights, w, at the end of the simulation. (E) Actual potentiation

amount as a percentage of that determined by the STDP window. (F) Left axis: example of 100 synapses’ weights. Right axis/dashed line: mean of

nonfilopodia synapses’ weights. (G) Distance between nonfilopodia spines. (H) Resource pools, p. (I) Mean in degree, out degree, in closeness, and

out closeness during the simulation. (J) Network of neurons after learning. (K) Weight change after learning. (L) Network of neurons at the end of the

simulation. (J) and (L) Only the strongest 10% are shown. Line width represents weight.

firing rates of many neurons change (Figure 2C); nevertheless, the

memory is preserved.

After learning, weight statistics match those found

experimentally—five observations were identified in

the introduction:

1. The weight distribution for recurrent connections at the

end of the simulation is unimodal (Figure 2D) matching

those observed experimentally (see Supplementary Figure 1 for

additive and multiplicative STDP results in this model without

resource dependence and Supplementary Figure 2 for non-

linear STDP with resource dependence).

2. The distribution also shows a large peak of empty synapses:

silent synapses.

3. Resource-based STDP endows reduced and nonpotentiability

(Figure 2E). Specifically, the actual potentiation amount as a
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FIGURE 3

Left axis: example of 100 synapses’ weights during a long simulation.

Right axis/dashed line: mean of nonfilopodia synapses’ weights.

percentage of that determined by the STDP window function

demonstrates that sometimes not enough resources are available

to fully potentiate a synapse; some times very little or no

potentiation was observed.

4. Resource-based STDP is stable, with weights remaining

persistent in a longer simulation (Figure 3).

5. Weights converge to individual upper bounds despite the

positive feedback loop present due to plasticity. It was

observed that weights reach their own saturation points

(Figure 2F). Furthermore, due to the distance dependence of

heterosynaptic depression, analysis indicates that resource-

based heterosynaptic STDP promotes synaptic sparsity and

synaptic competition for limited resources, with functional

spines becoming spatially distributed along the dendrite. The

average distance between a nonfilopodia spine (with a non-zero

weight) and its closest nonfilopodia spine neighbor increases

during learning (Figure 2G).

Most of the resources available in the neurons’ pools quickly

decrease due to plasticity driven changes (Figure 2H). Some pools

may not be used up due to plasticity and instead naturally decay.

During the initial learning phase, the network’s in/out degree

increases and stabilizes ≈ 3, and the closeness (where the length of

the paths is the axonal delay) decreases (Figure 2I). The decrease in

closeness demonstrates that learning optimizes for short delays.

After the initial learning phase, the network is further

optimized with an increase in nonfilopodia spine distance and

a decrease in closeness. Furthermore, the network structure

changes during this optimization phase with weights increasing

or decreasing (Figures 2J–L). Most strong connections are stable

with a few changing; the majority of optimization changes are with

weaker synapses.

These results in a typical network demonstrate that resource-

based STDP is capable of stable learning in recurrent networks with

an innate homeostasis mechanism controlling runaway activity

and potentiation. Next, to model spine loss in neurodegenerative

diseases, synapses are progressively removed (Figures 4A, B).

In a typical network with resource-based heterosynaptic STDP,

the memory is maintained until≈ 17% of the original connections

remain (Figure 4C). As synapses are removed, their resources

replenish the pool and allow further compensatory potentiation

with an increase in mean synaptic weight and transient increases

in the pool of resources (Figures 4D, E). However, when this

replenishment is blocked, the memory is only maintained until

≈ 72% synapses remain (Figure 4F)—with no increase in the

remaining synaptic weights (Figure 4G).

This is further illustrated when comparing the sum of

weights as a percentage of the maximum sum (Figure 4H). Under

the replenishment-blocking condition, the total synaptic input

disappears ≈ 4 times faster than under the control condition.

Moreover, loss of neuron activity is sudden without replenishment

of resources; whereas with replenishment of resources there is a

progressive loss (Figure 4I).

4 Discussion

Discrepancies were reconciled between computational STDP

models and empirical observations by using a STDP framework

based on resource-dependent heterosynaptic STDP in a recurrent

spiking network. By integrating resource-dependent potentiation

with heterosynaptic depression at nearby synapses, neurons

performed a learning task while preserving synaptic weight

attributes and statistical traits consistent with biological data.

Resource-dependent heterosynaptic STDP results in weight

distributions characterized by a singular peak and a pronounced

tail. The distribution also shows a large peak at zero of spines empty

of resources (silent synapses) similar to those estimated by Brunel

et al. (2004) and similar to an abundance of filopodia as seen by

Yasumatsu et al. (2008) and reviewed by Kasai (2023).

Furthermore, this approach to heterosynaptic STDP

incorporates robust competitive dynamics and synaptic

homeostasis, leading to varying intrinsic upper limits for

individual synapses at which a synapse is no longer potentiable.

In addition, the STDP rule promotes sparse spatial encoding in

afferents and therefore strong competition between neighboring

spines for limited resources. This homeostasis among weights

is independent of any additional normalization mechanism

or universal constraints to regulate learning. Such synaptic

homeostasis is a compelling mechanism for stabilizing neural

activity and plasticity within recurrent networks.

Finally, given progressive synaptic loss, resource-based

STDP demonstrated an innate compensatory mechanism due to

replenishment of resources; this mechanism has been hypothesized

to counteract a loss in input (Bhembre et al., 2023). Loss of

synaptic input is associated with early stages of neurodegenerative

diseases, for example, Alzheimer’s disease (Spires et al., 2005).

Resource-based STDP demonstrated the ability to maintain

total synaptic input by replenishing resources in the pool after

synaptic removal. Moreover, resource-based STDP demonstrated

a sufficient substrate for observations showing enlargement of

synapses following insults such as deafferentation and sensory

deprivation (Chen and Hillman, 1982; Barnes et al., 2017) and the

hypothesized spine enlargement in Alzheimer’s disease (Bhembre

et al., 2023). Finally, resource-based STDP exhibited a progressive

loss in, rather than a sudden loss in, neuron activity. How

this relates to aberrant activity observed in Alzheimer’s disease

(Korzhova et al., 2021) is unknown, and exploring this offers an

interesting future extension to this work.

Given that the proposed STDP rule aligns with experimentally

observed weight statistics and supports a hypothesized

neurodegenerative compensatory mechanism, its potential
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FIGURE 4

Typical network dynamics with and without resource pool replenishment while removing connections. (A) Input is provided for the first 20 s. Synapses
are progressively deleted from 40 s on (red). (B) Progressive synaptic loss. (C) Firing rates of the with replenishment of the resource pool. (D) Left axis:

example of 100 synapses’ weights with resource pool replenishment. Right axis/dashed line: mean of nonfilopodia synapses’ weights. (E) Resource

pools, p, with replenishment of the resource pool. (F) Firing rates of the network’s neurons without replenishment of the resource pool. (G) Left axis:

example of 100 synapses’ weights without replenishment of the resource pool. Right axis/dashed line: mean of nonfilopodia synapses’ weights. (H)

Sum of weights as a percentage of the maximum sum of weights. Solid line, with resource replenishment; dashed line, without resource

replenishment. (I) The number of active neurons as a percentage of the maximum number of active neurons. Solid line: with resource replenishment;

Dashed line: without resource replenishment. (B), (H), and (I) Vertical lines are when all neurons stopped firing either with or without resource

replenishment. (D) and (G) Weights are shown while they exist and the mean of nonfilopodia synapses’ weights is shown while neurons are active.

biological plausibility warrants examination. Royer and Paré

(2003) observed in amygdala slices that the induction of long-term

depression (potentiation) resulted in corresponding long-term

potentiation (depression) at distally located dendritic sites,

determined by the distance from the initial induction site. In

contrast, Hou et al. (2008) reported no such synaptic changes

at adjacent sites in cultured hippocampal neurons derived from

rat embryos.
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The research carried out by Oh et al. (2015) in P6-P7

hippocampal slice cultures aligns with the proposed STDP

model. Stimulation-induced potentiation in specific spines

was demonstrated to cause a reduction in the size of adjacent

unstimulated spines. This observation can be explained by two

potential mechanisms: first, the competition among nearby

spines for a scarce resource, or second, an activity-triggered

signal facilitating the reduction of adjacent spines. The findings

of Oh et al. lend credence to the second hypothesis. They

determined that blocking calcineurin, IP3 receptors or group

I metabotropic glutamate receptors hinders heterosynaptic

shrinkage, without affecting the potentiation process when

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is

inhibited. This evidence indicates that synaptic potentiation and

the associated decrease in nearby synaptic strength operate through

distinct pathways.

Bian et al. (2015) observed that competition among spines for

cadherin/catenin complexes plays a crucial role in orchestrating

both the maturation of individual spines and the pruning of

adjacent spines. Their in vivo studies revealed that variations

in cadherin/catenin complex concentrations between neighboring

spines lead to a redistribution of β-catenin, which in turn

influences whether a spine matures or is trimmed. Crucially, they

demonstrated that this process depends on neuronal activity and

the distance between the enlarging spine and the nearby one that is

slated to be eliminated. Furthermore, this competitive mechanism

was not limited to individual neurons; it occurred in neighboring

neurons receiving similar axonal input.

Within the framework of long-term potentiation (LTP), the

relocation of AMPA receptors to synaptic sites is associated

with increased synaptic activity (Hayashi et al., 2000; Sutton

and Schuman, 2006; Shi et al., 2001). In this process, CaMKII

experiences autophosphorylation when intracellular Ca2+ levels

rise through NMDA receptor-mediated channels, culminating

in the phosphorylation of GluR1 (Roche et al., 1996). AMPA

receptors can originate from multiple sources, such as recycling

endosomes (Park et al., 2004) and the trans-Golgi network

(Horton and Ehlers, 2004). Our model consolidates these

different origins into a common pool, taking advantage of

evidence that AMPA receptors can traverse long distances,

facilitated by movement along dendritic membranes (Choquet

and Triller, 2003) and microtubule pathways (Washbourne

et al., 2002). Regarding the mechanism that underlies

heterosynaptic depression, Oh et al. (2015) observed that blocking

calcineurin, IP3Rs, or group I metabotropic glutamate receptors

hindered the contraction of adjacent spines. Additionally,

Bian et al. (2015) propose the existence of a single molecular

structure that fulfills dual roles, both as a “resource” and as a

transmitter of depressive signals. Finally, recent experimental

and computational evidence suggests that Ca2+ activity is

a key component of competitive heterosynaptic plasticity

(Chater et al., 2024).

In addition to resource-dependent heterosynaptic STDP,

neuromodulation may apply additional constraints on the model.

Brzosko et al. (2019) suggest that neuromodulation may bridge the

millisecond STDP time scales and slower behavioral learning and

may have effects before, during, and after STDP-induced changes.

Before: plasticity priming via a- and B-adrengergic receptors (Seol

et al., 2007) may move resources closer (for LTP) to or away

(for long-term depression) from primed spines. During: nicotine

increases the threshold for STDP induction (Couey et al., 2007)

and noradrenaline widens the LTP time window (Liu et al., 2017),

both of which can be additive to the proposed STDP rule. After:

activation of dopamine receptors after an STDP event has been

shown to convert STDP-dependent depression to potentiation

(Brzosko et al., 2015)—including dopamine would be an interesting

extension to the model, especially as it has been proposed as

a synaptic tagging mechanism that can solve the distal reward

problem (Izhikevich, 2007). See Brzosko et al. (2019) for a review of

STDP neuromodulation. Furthermore, the reduction in cholinergic

tone in Alzheimer’s disease may contribute to STDP changes

that lead to spine loss due to the age-dependent loss of STDP

potentiation (Buskila et al., 2013).

The depiction of STDP herein does not include explicit

modeling of biological signaling pathways or diffusible

molecules that might cause depression in neighboring

synapses after activity-driven potentiation, nor does it specify

a precise timeline for such processes. Furthermore, it does

not incorporate the transfer of resources into or out of a

dendritic spine. Introducing these complexities could impose

interesting limitations on the model, suggesting areas for

future investigation.

Although a precise “resource” is not identified, nor is a specific

depression signal characterized, multiple hypotheses suitable for

experimental examination can be proposed under healthy and

synaptic degenerative conditions.

• As described by Oh et al. (2015), suppressing the

heterosynaptic depression signal could allow learning

driven by potentiation under healthy conditions to continue

until resources in the pool(s) are exhausted. Subsequent

learning would require the creation of new resources. As a

result, while the pace of learning may reduce under signal-

suppressed conditions compared to when active signals

are present, it would not come to a complete stop until all

resources are used with no change in neighboring spines.

• Suppression of the depression signal under synaptic

degenerative conditions might interfere with memory

retention during synaptic loss if the signal is required for

resource replenishment.

• Excessive activation of the depression signal in both healthy

and synaptic degenerative conditions could result in a

temporary surplus of resources that would persist until they

are used by potentiating synapses or degrade over time.

• A reduction in total resources could hinder learning

under healthy conditions, although it would not

stop if vital resources are actively liberated through

heterosynaptic depression.

• A reduction in total resources under synaptic degenerative

conditions could accelerate the total loss of synaptic input and

therefore the loss of neuronal/memory activity.

• In contrast, an increase in available resources might lead

to uncontrolled neuronal activity and potentiation under

health conditions.

• Under conditions of synaptic degeneration, an increase in

available resources can contribute to memory retention.
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