AUTHOR=Humble James TITLE=Resource-dependent heterosynaptic spike-timing-dependent plasticity in recurrent networks with and without synaptic degeneration JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1593837 DOI=10.3389/fncom.2025.1593837 ISSN=1662-5188 ABSTRACT=Many computational models that incorporate spike-timing-dependent plasticity (STDP) have shown the ability to learn from stimuli, supporting theories that STDP is a sufficient basis for learning and memory. However, to prevent runaway activity and potentiation, particularly within recurrent networks, additional global mechanisms are commonly necessary. A STDP-based learning rule, which involves local resource-dependent potentiation and heterosynaptic depression, is shown to enable stable learning in recurrent spiking networks. A balance between potentiation and depression facilitates synaptic homeostasis, and learned synaptic characteristics align with experimental observations. Furthermore, this resource-based STDP learning rule demonstrates an innate compensatory mechanism for synaptic degeneration.