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Introduction: Emerging evidence suggests that different metabolic

characteristics, particularly bioenergetic differences, between the synaptic

terminal and soma may contribute to the selective vulnerability of dopaminergic

neurons in patients with Parkinson’s disease (PD).

Method: To investigate the metabolic differences, we generated four

thermodynamically flux-consistent metabolic models representing the synaptic

and non-synaptic (somatic) components under both control and PD conditions.

Differences in bioenergetic features and metabolite exchanges were analyzed

between these models to explore potential mechanisms underlying the selective

vulnerability of dopaminergic neurons. Bioenergetic rescue analyses were

performed to identify potential therapeutic targets for mitigating observed

energy failure and metabolic dysfunction in PD models.

Results: All models predicted that oxidative phosphorylation plays a significant

role under lower energy demand, while glycolysis predominates when

energy demand exceeds mitochondrial constraints. The synaptic PD model

predicted a lower mitochondrial energy contribution and higher sensitivity

to Complex I inhibition compared to the non-synaptic PD model. Both PD

models predicted reduced uptake of lysine and lactate, indicating coordinated

metabolic processes between these components. In contrast, decreased

methionine and urea uptake was exclusively predicted in the synaptic PD

model, while decreased histidine and glyceric acid uptake was exclusive to

the non-synaptic PD model. Furthermore, increased flux of the mitochondrial

ornithine transaminase reaction (ORNTArm), which converts oxoglutaric acid

and ornithine into glutamate-5-semialdehyde and glutamate, was predicted

to rescue bioenergetic failure and improve metabolite exchanges for both the

synaptic and non-synaptic PD models.

Discussion: The predicted differences in ATP contribution between models

highlight the bioenergetic differences between these neuronal components,

thereby contributing to the selective vulnerability observed in PD. The observed
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differences in metabolite exchanges reflect distinct metabolic patterns between

these neuronal components. Additionally, mitochondrial ornithine transaminase

was predicted to be the potential bioenergetic rescue target for both the

synaptic and non-synaptic PD models. Further research is needed to validate

these dysfunction mechanisms across different components of dopaminergic

neurons and to explore targeted therapeutic strategies for PD patients.
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Parkinson’s disease, bioenergetics, synaptic, non-synaptic, modeling

1 Introduction

Parkinson’s disease (PD) is an age-related, progressive
neurodegenerative disorder characterized by the selective
vulnerability of dopaminergic neurons in the substantia nigra
pars compacta (SNpc) (Gonzalez-Rodriguez et al., 2020; Ramesh
and Arachchige, 2023). Neurons in the substantia nigra project
axons to two regions of the dorsal striatum, the caudate nucleus
and the putamen, forming the well-known nigrostriatal pathway
(Pissadaki and Bolam, 2013). This pathway is essential for fine
motor skills and their functions, significantly contributing to the
motor symptoms of PD. Recent studies have demonstrated that
neurodegeneration in PD follows a retrograde progression, which
highlights distinct dysfunctions between the synaptic terminals
and the neuronal soma of dopaminergic neurons (Burke and
O’Malley, 2013; Morales et al., 2021; Calabresi et al., 2023). Several
factors, such as variations in oxidative stress, differences in calcium
distribution, and metabolomic diversity, have been identified that
may contribute to the selective vulnerability of dopaminergic
neurons in the SNpc (Jové et al., 2014; Gonzalez-Rodriguez et al.,
2020; Watanabe et al., 2024). In particular, metabolic differences,
especially in mitochondrial morphology and bioenergetics between
the synaptic terminal and the soma, may play a critical role
in this selective vulnerability (Brown et al., 2006; Stauch et al.,
2014; Zanfardino et al., 2021; Faria-Pereira and Morais, 2022).
This may further result in dynamic metabolomic patterns in PD,
contributing to the heterogeneity observed in metabolomic studies
of PD patients (Luo et al., 2024).

Mitochondria are highly dynamic organelles with a complex
organization that enables them to perform essential biological
functions such as regulating lipid and amino acid metabolism
(Todkar et al., 2017), as well as maintaining calcium homeostasis
(Borsche et al., 2021; Walkon et al., 2022). Abnormal mitochondrial
function in PD patients, characterized by significantly reduced
Complex I activity, has been observed since 1990 (Schapira et al.,
1990). Due to their long, unmyelinated axons and numerous
dopamine release sites, dopaminergic neurons in the SNpc require
substantial energy for action potential propagation, recovery, and
neurotransmitter release, making them particularly vulnerable to
impairments in energy metabolism (Pissadaki and Bolam, 2013;
Cunnane et al., 2020). Moreover, gray matter regions, including
the substantia nigra and dorsal striatum, consume more energy
than the brain average (Attwell and Laughlin, 2001; Tomasi et al.,
2013). Consequently, disruptions in energy metabolism can lead to
a balance between energy supply and demand, impairing energy-
intensive cellular processes.

Mitochondrial morphology and size are regulated by fission
and fusion processes, which are crucial for maintaining their
integrity, distribution, and bioenergetic function (Cheng et al.,
2022). Typically, the majority of neuronal mitochondria are located
in synapses, where they support vesicular neurotransmitter release
and synaptic vesicle cycling (Palikaras and Tavernarakis, 2020).
Fission process in the soma enables mitochondrial transport into
axon terminals, while fusion process helps reduce the burden on
stressed mitochondria (Rambold et al., 2011; Berthet et al., 2014).
Glycolysis, although less efficient, rapidly generate ATP to meet
energy demands for neuronal development. In contrast, oxidative
phosphorylation is highly efficient and generates the highest ATP
levels in differentiated neurons (Rumpf et al., 2023). The relative
contributions of glycolysis and oxidative phosphorylation remain
unclear, partly due to varying energy demands under different
functional states. Glycolytic ATP may be especially important
for action potential propagation and recovery in dendrites, the
soma, and axons during the resting state (Gruetter et al., 2001;
Faria-Pereira and Morais, 2022; Li et al., 2023), while oxidative
phosphorylation underpins the primary mechanisms of brain
information processing (Hall et al., 2012; Rumpf et al., 2023).
A deeper understanding of the bioenergetic differences between the
synaptic and non-synaptic components is therefore essential.

To comprehensively understand the metabolic changes in
both physiological and pathological states, constraint-based
reconstruction and analysis (COBRA) has been widely used to
build cell type-specific and condition-specific metabolic models
(Heirendt et al., 2019). Since the development of a metabolic
model for central brain energy metabolism (Cakir et al., 2007),
several models have been updated to enhance the understanding
of brain molecular mechanisms (Büchel et al., 2013; Sertbaş
et al., 2014; Özcan and Çakır, 2018). However, these brain
models fail to accurately predict the metabolism of dopaminergic
neurons due to the inclusion of stoichiometrically balanced
flux cycles that violate the second law of thermodynamics
(Schellenberger et al., 2011; Fleming et al., 2012). To address the
issue, XomicsToModel, a pipeline that generates context-specific,
thermodynamically flux-consistent models from global metabolic
networks and omics data (Preciat et al., 2021b), has been applied to
generate the metabolic models of midbrain-specific dopaminergic
neurons (iDopaNeuro models) (Preciat et al., 2021a). Although
the iDopaNeuro models compared well with experimental data,
they offer limited insights into the distinct synaptic and
somal components of dopaminergic neurons. Consequently, it is
necessary to explore metabolic differences, particularly regarding
bioenergetic differences, between the synaptic and non-synaptic
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(somal) components of dopaminergic neurons using constraint-
based metabolic modeling.

To investigate metabolic differences between the synaptic
and non-synaptic (somal) components of dopaminergic neurons
under physiological (control) and pathological (PD) conditions, we
generated four constraint-based metabolic models from the global
human metabolic model (Recon3D Model) (Brunk et al., 2018)
using “XomicsToModel” pipeline. These models were analyzed to
compare the differences in bioenergetic features and metabolite
exchanges, thereby exploring potential mechanisms underlying
the selective vulnerability of dopaminergic neurons. First, we
conducted bioenergetic analyses under varying energy demands
to evaluate ATP contributions among the models. Subsequently,
we assessed sensitivity to Complex I inhibition by simulating
varying levels of inhibition in each model. Next, we compared the
metabolite exchanges in the synaptic and non-synaptic PD models
with significantly altered cerebrospinal fluid (CSF) metabolites
in PD patients (Luo et al., 2024), aiming to identify metabolic
changes that are either consistent or inconsistent with PD patients.
Finally, bioenergetic rescue analyses were performed to identify
potential therapeutic targets for mitigating observed energy failure
and metabolic dysfunction in PD models, offering insights into
treatment strategies for PD patients.

2 Materials and methods

2.1 Model generation

An established pipeline, XomicsToModel, was used to
generate thermodynamically flux-consistent, context-specific
models (Preciat et al., 2021b) for the synaptic and non-synaptic
components under control and PD status, respectively. This
pipeline facilitates the integration of omics data (including
genomics, transcriptomics, proteomics, metabolomics, and
bibliomics) and enables the extraction of a physicochemically
consistent mechanistic model from a global metabolic network,
as previously demonstrated for in vitro dopaminergic neurons
(Preciat et al., 2021a). In this study, we used bibliomics and
transcriptomics data as input, with the human metabolism model
(Recon3D Model) (Brunk et al., 2018) serving as the global
metabolic network for model generation. The bibliomics data were
manually curated from published neurobiochemical literature and
brain metabolism models, with a particular focus on dopaminergic
neuronal (iDopaNeuro) models, to improve the simulation of
both synaptic and non-synaptic components of dopaminergic
neurons. Transcriptomics data refer to single-cell RNA sequencing
(ScRNA-seq) data obtained from a public database for dopamine
neurons, enabling a more precise distinction between control and
PD conditions (Kamath et al., 2022).

2.1.1 Bibliomics data
Manual curation of bibliomics data prioritized central carbon

metabolism and established metabolic pathways, for example,
dopamine metabolism and mitochondria-associated pathways.
The primary evidence in the literature is ideally derived from
neurobiochemical experiments conducted using human tissue.
In cases where human-specific data are unavailable, evidence

from mammalian studies can be considered a suitable alternative.
To satisfy the input data requirements of the XomicsToModel
pipeline, bibliomics data were organized into a standardized
format (Preciat et al., 2021b). The bibliomics data corresponding
to each model are provided in Supplementary Files 1-4,
respectively. Each file contained multiple sheets categorizing
the data into the following: active genes (activeGenes), inactive
genes (inactiveGenes); active reactions (activeReactions); inactive
reactions (rxns2remove); new reactions to be added (rxns2add);
coupled reactions representing potential degradation pathways for
the same biomass precursor (coupledRxns); essential amino acids
(essentialAA); uptake reactions indicating specific metabolites
from the system (mediaData); and context-specific constraints
(rxns2constraints).

2.1.1.1 Identification of active and inactive genes
The enzymes expressed in all neurons, such as those

involved in central carbon metabolism, lipid metabolism, amino
acid metabolism, basic mitochondrial functions, and necessary
transporters, were designated as active genes for both synaptic
and non-synaptic models (Cakir et al., 2007; Panov et al., 2014;
Zheng et al., 2016). Additionally, genes exhibiting high expression
levels in neurons during experiments were classified as active genes
(Thiele and Palsson, 2010). For example, the cytochrome P450 side-
chain cleavage genes (P450scc) and the 17alpha-hydroxylase/C17-
20-lyase genes (P450c17) were detected in neurons using reverse
transcription polymerase chain reaction (Zwain and Yen, 1999).
Furthermore, tyrosine hydroxylase was found to be co-expressed
with FOXA2, NURR1, GIRK2, and VMAT2, which serve as
markers of midbrain dopaminergic neurons (Schöndorf et al.,
2014). Thus, these genes were designated as active in all the
models. Moreover, several genes showed differential expression
between the synaptic and non-synaptic components across multiple
pathways, including oxidative phosphorylation, mitochondrial
fission and fusion processes, and mitochondrial DNA replication
and maintenance (Stauch et al., 2014; Petersen et al., 2019), which
could help differentiate the synaptic and non-synaptic components
of dopaminergic neurons. Accordingly, genes exhibiting significant
changes in the synaptic component were designated as active in the
synaptic but inactive in the non-synaptic model. Conversely, genes
showing significant changes in the non-synaptic components were
considered active only in the non-synaptic model. For example,
most rat dopamine neurons in culture expressed VGLUT2,
one of the three vesicular glutamate transporters. Thus, the
VGLUT2 gene was considered active and specific to the synaptic
model, while inactive in the non-synaptic model (Dal Bo et al.,
2004).

Moreover, the human proteome map (Uhlén et al., 2015),
constructed using an integrated omics approach and covering
32 different tissues and organs, was used to refine the active
and inactive gene lists. Genes absent from the brain in the
proteome map were assigned to the inactive gene list. As the
brain comprises a mixture of glial cells (such as astrocytes,
microglia, and oligodendrocytes) and various types of neurons,
genes that were highly expressed in glial cells or show little to
no expression in neurons were assigned to the inactive gene
list for all components of dopaminergic neurons. For example,
evidence indicates that glycogen-related enzymes are expressed at
low levels in the brain (Fagerberg et al., 2014). Brain glycogen
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enzymes, such as glycogen branching enzyme and glycogen
phosphorylase, are localized exclusively in astrocytes, where they
serve as an energy reserve (Benarroch, 2005; Schönfeld and
Reiser, 2013). Additionally, astrocytes are the brain’s primary
steroidogenic cells, exhibiting the highest activity of corresponding
genes, such as those in the 17beta-hydroxysteroid dehydrogenase
(17betaHSD) family (Zwain and Yen, 1999). The GLUT5 gene,
a fructose transporter responsible for fructose uptake, was
identified as localized in microglia within the central nervous
system (Mizuno et al., 2021). Furthermore, the transcriptional
regulation of acyl-CoA synthetase and acyl-CoA thioesterase
enzymes appears very low in the brains of male mice (Ellis
et al., 2015). Therefore, these genes were assigned to the inactive
gene list for all models. All the active and inactive genes
were specified in terms of Entrez identifiers. The identifiers for
genes, metabolites, and reactions were specified using the Virtual
Metabolic Human (VMH) namespace1, a metabolic knowledge
database that annotates these entities in metabolic models
(Noronha et al., 2019).

2.1.1.2 Identification of active and inactive metabolic
reactions

Active and inactive reactions of the synaptic and non-synaptic
components were primarily classified according to the activity
status of their corresponding genes. When evidence of enzyme
activity supporting a specific reaction in a given cell type was found,
the reaction was classified as active. For example, reactions involved
in glycolysis, oxidative phosphorylation, and dopamine metabolism
were classified as active due to the associated genes were designated
as active. When uncertainty existed regarding the classification
of several possible metabolic reactions, only the related gene was
added to the active list rather than each individual reaction.

In addition to gene-based classifications, several reactions were
classified as active if supported by literature evidence. For instance,
folate serves as a cofactor in one-carbon metabolism and DNA
repair, promoting the remethylation of homocysteine (Balashova
et al., 2018). Folate deficiency and elevated homocysteine
levels have been linked to neurodegenerative disorders, such as
Alzheimer’s disease and Parkinson’s disease, in adults and older
individuals. In the brain, folate primarily exists in a polyglutamated
form, with one to seven terminal gamma-linked glutamates. The
penta- and hexa-derivatives are the most commonly occurring
polyglutamated forms of folate in the brain (Priest et al., 1982).
Therefore, the folate uptake reaction and the associated metabolic
reactions involving longer polyglutamate chains were classified as
active.

Additionally, new reactions from the iDopaNeuro models were
included to further enhance the bibliomics data, such as the
demand reactions for cardiolipin (Martinez-Vicente, 2017) and
several reactions related to aminoacylase 1 (Preciat et al., 2021a).
Since fully differentiated dopaminergic neurons cannot replicate,
turnover constraints for their constituent biomass precursors were
applied to maintain basic neuronal requirements (Preciat et al.,
2021a). Consequently, all existing biomass reactions in the human
metabolic model (Recon3D Model) were set as inactive reactions to
avoid duplicate uptake. Additionally, if no evidence of metabolite

1 https://www.vmh.life/

accumulation was found, any existing demand and sink reactions
in the Recon3D Model were also set as inactive.

2.1.1.3 Adding specific constraints for synaptic and
non-synaptic models

To more accurately simulate the molecular conversion and
metabolism in the synaptic and non-synaptic components of
dopaminergic neurons, we introduced specific constraints for
each model. In this study, we derived quantitative constraints on
biochemical reactions by referencing established models (Lewis
et al., 2010; Preciat et al., 2021a) and through manual curation of
neurobiochemical literature.

General constraints for all models. Because of the limited
experimental evidence on synaptic and non-synaptic components,
most literature-derived constraints are identical to those used
in established neuronal models, particularly the iDopaNeuro
models. Due to inconsistencies in the units used across different
experimental techniques, all reaction flux constraints were
converted to a uniform unit (mol/gDW/h). Here, gDW refers to
the gram per dry weight of general gray matter tissue, assuming
an average water content of 82.3% in human cerebral cortex gray
matter (O’Brien and Sampson, 1965; Preciat et al., 2021a).

Since fully differentiated dopamine neurons cannot replicate,
fulfilling the turnover demand for most cellular constituents
is sufficient. Turnover constraints for dopaminergic neurons
were applied to both synaptic and non-synaptic models. The
fractional composition of biomass constituents in a human SNpc
dopaminergic neuron is identical to that of the iDopaNeuro models
(O’Brien and Sampson, 1965; Landolt et al., 1966; Norton et al.,
1975; Banay-Schwartz et al., 1992; Preciat et al., 2021a) and
comprises 39.6% lipid gDW, 56% protein gDW, 0.33% RNA gDW,
0.18% DNA gDW, and 3.96% other molecules gDW. We primarily
focused on the turnover of amino acids and lipids, which together
constitute over 90% of cellular constituents. Detailed calculations
of these turnover constraints are provided in Supplementary File 1.
These constraints were then used to restrict the main degradation
pathways of the biomass precursors, representing their minimal
consumption. Coupled reactions, which account for multiple
degradation pathways from a single biomass precursor, were set
to match those in the iDopaNeuro models for both synaptic and
non-synaptic models.

To maintain mass balance, several specific exchange reactions
were designated as active to simulate metabolite exchange between
a neuron system and its environment. The essential amino acids
for dopaminergic neurons, including histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, threonine, tryptophan, and
valine, were contrainted for uptake only. Due to a dearth of
experimentally measured metabolite uptake and secretion rates
for in vivo dopaminergic neurons, exometabolomic data from
in vitro dopaminergic neurons differentiated from human induced
pluripotent stem cells (Preciat et al., 2021a) were used to constrain
uptake and excretion of selected metabolites in all models. The
uptake and secretion of additional metabolites were constrained
using further evidence from in vivo neurobiochemical studies.
For example, unconjugated bile acids such as cholic acid (CA),
chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA) have
been detected in the rat brain (Higashi et al., 2017); reduced
glutathione can convert to cysteinyl-glycine in astrocytes, which
then supplies cysteine to neurons (Cakir et al., 2007); and lactate
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and ketones, including acetoacetate and -hydroxybutyrate, can be
taken up by neurons and used as energy supplements (Hyder
et al., 2006; Cunnane et al., 2020; Jensen et al., 2020; Omori et al.,
2022; Yamagata, 2022). All activated exchange reactions capable of
metabolite uptake were used as artificial media data and saved in
the “mediaData” sheet for each model, as detailed in Supplementary
Files 1–4.

Specific constraints to differentiate the synaptic and non-
synaptic components. The constraints for the internal reactions
were derived from experimental literature, particularly regarding to
the enzyme activities in synaptic and non-synaptic mitochondria.
For instance, the minimum and maximum enzyme activities
measured in isolated synaptic and non-synaptic mitochondria
were used to constrain the corresponding mitochondrial reactions,
especially those involved in oxidative phosphorylation (Leong et al.,
1984; Almeida et al., 1995; Davey and Clark, 1996; Davey et al.,
1998). Additionally, the cerebral metabolic rates of glucose and
oxygen in the putamen and substantia nigra were employed as
maximum uptake values in the synaptic and non-synaptic models,
respectively (Powers et al., 2008). Furthermore, enzyme activities
related to glycolytic metabolism (Lowry and Passonneau, 1964),
purine and pyrimidine metabolism (Maiuolo et al., 2016), amino
acid metabolism (Vorstman et al., 2009), and lipid metabolism,
including the synthesis of phosphatidylethanolamine (PE) and
phosphatidylcholine (PC) (Roberti et al., 1980), were obtained
from published studies and used to constrain the synaptic and
non-synaptic models.

Specific constraints to differentiate normal and PD status.
Evidence indicates that enzyme activities differ in patients
with PD compared with healthy individuals, particularly in
the mitochondria and those involved in dopamine metabolism
(Bourne, 1968; Schapira et al., 1990; Stauch et al., 2014). For
instance, Complex I activity has been reported to be reduced by
18-35% in post-mortem substantia nigra tissue from PD patients
relative to control subjects (Schapira et al., 1990). Therefore,
we set the maximum Complex I activity in PD models to 82%
of that observed in control models. A well-known pathological
characteristic of PD is the progressive loss of dopaminergic neurons
and a decrease in dopamine levels in the SNpc (Bloem et al., 2021).
It has been reported that the striatal dopamine concentration in
individuals with PD is approximately one-quarter of that in control
subjects (Bourne, 1968). Consequently, in this study, we assumed
that dopamine release in the synaptic PD model is one-quarter of
the release observed in the control model.

Moreover, to better differentiate PD and control models, we
obtained data on maximum glucose and oxygen consumption
in early-stage PD patients and age-matched controls who were
studied while awake (Powers et al., 2008). The minimal glucose
uptake was set at 25% of the maximum uptake in control
models, reflecting the allocation of approximately 25% of glucose
uptake to neurons (Hyder et al., 2006). For PD models, the
minimum uptake of glucose and oxygen was set to zero due to
the uncertainty surrounding minimal consumption in PD patients.
Finally, the corresponding biochemical reactions of lysosomal -
glucocerebrosidase were constrained based on the maximum GBA
enzyme activities observed in induced pluripotent stem cell-derived
(iPSC) neurons from both PD and control groups (Schöndorf et al.,
2014).

It has been reported that 1 g of wet weight (WW) tissue
corresponds to 4-6 mg of non-synaptic mitochondrial protein
and 1-1.5 mg of synaptic mitochondrial protein in the rat
striatum (Leong et al., 1984). In this study, we assumed that
1 g of WW gray matter corresponds to approximately 5 mg
of non-synaptic mitochondrial protein and 1.25 mg of synaptic
mitochondrial protein. When enzyme activities were reported in a
mixed mitochondrial protein homogenate, 5 mg of mitochondrial
protein per gram of WW gray matter was applied as an average.
In cases where enzyme activity was measured in a whole protein
homogenate, an average protein fraction of 9.9% of wet weight
tissue was applied for unit conversion (O’Brien and Sampson,
1965). Due to the variability in reported enzyme activities,
attributable to differences in species and experimental techniques,
the higher reported value was chosen as the upper bound constraint
to avoid overly constraining the model.

Furthermore, the residual energy consumption rate of
human gray matter is estimated at 10 mol ATP/g/min (Attwell
and Laughlin, 2001), which corresponds to approximately
106.2 mol/gDW/h. It has been reported that each human SNpc
dopaminergic neuron generates about ten times as many synapses
and has an axonal length roughly ten times greater than that of
a rat neuron (Bolam and Pissadaki, 2012; Pissadaki and Bolam,
2013). Since our models employ rat synaptic and non-synaptic
mitochondrial data to constrain most mitochondrial reactions,
we reduced the minimum energy demand by a factor of ten.
Specifically, the lower bound for ATP maintenance reaction
(ATPM) was set at 10.62 mol/gDW/h, while the upper bound was
established at 600 mol/gDW/h across all models. This upper bound
corresponds to 10 Hz tonic firing activity and the 9.36 100 ATP
molecules per Hz of action propagation by 382,000 dopaminergic
neurons within a volume of 6,280 mm in the dorsal striatum (Liss
et al., 2001; Pissadaki and Bolam, 2013).

2.1.2 Transcriptomic data
The ScRNA-seq data for human dopamine neurons (DA) were

obtained from CELLxGENE2, a resource offering a suite of tools
for exploring published single-cell data. We identified ScRNA-seq
profiles for 22,048 DA neuron profiles from patients with PD and
matched controls, which revealed 10 DA subgroups (Kamath et al.,
2022). One of the DA subgroups, SOX6-AGTR1, is characterized
by the expression of the genes SOX6 and AGTR1. This subgroup is
primarily located in the ventral tier of the SNpc and is particularly
vulnerable to degeneration in PD. Therefore, we used the data
from this subgroup as our transcriptomic data to more effectively
differentiate control and PD states in the synaptic and non-synaptic
models of dopaminergic neurons.

Before being used as input data for the XomicsToModel
pipeline, the transcriptomic data were preprocessed as follows.
Initially, genes with a total count of zero were removed from
both the PD and control matrices. The unique molecular identifier
(UMI) count data were normalized using the median of ratios
method (Anders and Huber, 2010; Chen et al., 2018), which
involved dividing counts by sample-specific size factors determined
from the median ratio of gene counts relative to the geometric
mean of each gene. Finally, the mean expression value for each gene

2 https://cellxgene.cziscience.com/
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was calculated and used as gene weights in the XomicsToModel
pipeline. All gene IDs were converted to Entrez IDs to better match
those in the Recon3D Model. The preprocessed transcriptomic
data for the control and PD groups is provided in Supplementary
File 5. Threshold values for PD and control data were determined
based on housekeeping genes (Hounkpe et al., 2021) to identify the
most active genes, and these thresholds were subsequently used as
input parameters for the XomicsToModel pipeline. Specifically, the
threshold for both PD and control datasets was set to –3, as shown
in Supplementary Figure 1.

2.1.3 Modeling parameters
In this study, we used the “thermoKernel” algorithm within

the XomicsToModel pipeline to extract thermodynamically
flux-consistent models (Preciat et al., 2021b). The solver Gurobi
v9.1.2 (Gurobi Optimization, LLC) was selected to solve linear
optimisation problems. Additionally, the “fastcc” algorithm
(Vlassis et al., 2014) was employed to check flux consistency.
The specific parameters used to generate our models were set as
follows: the parameter epsilon, which is used as a threshold to
define a non-zero flux in the fastcc implementation, was set to
1e-4 (epsilon = 1e-4). The parameter weightsFromOmics, which
uses preprocessed gene expression from transcriptomic data as
a weight to incentivise or penalize the corresponding reactions,
was set to true (weightsFromOmics = true). For the synaptic
and non-synaptic components, manually assigned active and
inactive genes and reactions were retained in case of conflicts
between bibliomics and transcriptomic data. Consequently, the
parameter curationOverOmics, which is used to resolve any
conflicts between bibliomics and transcriptomic data, was also
set to true (curationOverOmics = true) to prioritize bibliomics
curation. The parameter activeOverInactive, which is used to
resolve conflicts between active and inactive genes, was set
to true (activeOverInactive = true) to prioritize active genes.
The parameter transcriptomicThreshold, used to identify the
most active genes in the transcriptomic data, was set to –3
(transcriptomicThreshold = –3). Other parameters were set to
their default values, as described elsewhere (Preciat et al., 2021b).

2.2 Model analysis

2.2.1 Entropic flux balance analysis
Flux balance analysis (FBA) is a widely used computational

method for predicting the steady-state behavior of metabolic
networks by calculating metabolic fluxes under defined constraints
(Orth et al., 2010). However, FBA may generate thermodynamically
infeasible fluxes within stoichiometrically balanced cycles that
violate energy conservation and the second law of thermodynamics
(Fleming et al., 2012). These infeasible fluxes can lead to
unbounded metabolic fluxes in such cycles, even though mass
balance and directionality constraints are satisfied. In this study,
entropic flux balance analysis [EntropicFBA, (Fleming et al.,
2012; Preciat et al., 2021a)] was used with default settings to
compute an optimal, thermodynamically feasible solution for a
biological objective function. This method enables the computation
of optimal fluxes that satisfy steady-state mass conservation, energy

conservation, and the second law of thermodynamics in genome-
scale biochemical networks. EntropicFBA is represented by the
following mathematical optimisation problem

minvf,vr,w g◦vT
f · log (vf)+g◦vT

r · log (vr)+cT
e · w+

1
2 (v−h)T

·H · (v−h)

s.t. N · (vf−vr)+B · w = b:yN

C · (vf−vr) ≤ d:yC

l ≤ [vf−vr; ;w] ≤ u:zv

0 ≤ vf:zvf

0 ≤ vr:zvr

(1)

where the parameter g is a strictly positive weight for internal
flux entropy maximization (the default value is 2), ◦ denotes the
entrywise (Hadamard) product of two vectors and · denotes the
scalar product of two vectors. Since all the reversible reactions can
be split into the forward and reverse directions, the net internal flux
v can be expressed as the difference between the forward flux vf and
the reverse flux vr , where v = vf − vr . The terms g◦vT

f · log
(
vf

)
and g◦vT

r · log (vr) represent the entropy of unidirectional forward
and reverse fluxes, respectively. External reactions are optimized
with cT

e · w, where ce is a real-valued linear objective coefficient
for external flux, and w is the external flux vector. The term
1
2
(
v− h

)T
·H ·

(
v−h

)
represents the quadratic penalty terms for

the predicted fluxes from experimental or target flux data, where
h is a vector representing experimental or target flux data, which
serves as a reference for penalizing deviations from the data, and H
is matrice representing penalties for predicted fluxes. The equality
constraint N ·

(
vf−vr

)
+B · w = b represents mass balance, while

the inequality constraints C ·
(
vf−vr

)
< d represents coupling

between reaction fluxes. Box constraints implement lower and
upper bounds on net fluxes, l ∈ Rn and u ∈ Rn respectively,
or strictly non-negative constraints on internal unidirectional
fluxes. This is a strictly convex optimisation problem that predicts
unique optimal unidirectional forward and reverse fluxes. The
dual variables (also called Lagrange multipliers, shadow prices,
or dual prices) associated with each of these constraints, that is
yN , yC, zv, zvf , zvr respectively, represent how much the optimal
value of the objective function would change if a constraint were
slightly relaxed or tightened (Boyd and Vandenberghe, 2023). In
particular the dual variable to the mass balance constraints, that
is yN ,is analogous to the chemical potential of each molecular
species (Fleming et al., 2012). The Mosek v10.0.40 optimisation
solver (MOSEK ApS) was employed to solve the nonlinear convex
optimisation problems arising in EntropicFBA with the default
parameters.

All the codes used in this study rely on the COBRA Toolbox
3.0 (Heirendt et al., 2019), including the “XomicsToModel”
pipeline for model generation, the thermoKernel model extraction
algorithm, and EntropicFBA algorithm for further analysis. The
solvers, such as Gurobi v9.1.2 and Mosek v10.0.40, are all interfaced
with the COBRA Toolbox 3.0.

2.2.2 Model characteristics
After generating the models, we first performed validity

checks on each model to evaluate basic metabolic functions
(Heirendt et al., 2019). These checks involved verifying whether
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the model could generate ATP using different carbon sources
and determining which basic human functions were feasible.
Subsequently, we compared the metabolites, reactions, and genes in
our models with those in the iDopaNeuro models (iDopaNeuroC
and iDopaNeuroCT) to assess their consistency with general
dopaminergic neuronal models.

2.2.3 Bioenergetic analysis
To elucidate the bioenergetics differences between the synaptic

and non-synaptic models under control and PD conditions, we
calculated the flux distribution for each model using EntropicFBA,
with the ATP maintenance (ATPM) as the objective function.
Subsequently, we identified the biochemical reactions responsible
for ATP contribution and consumption in each model. ATP
contribution reactions were defined as those with net ATP
generation with non-zero fluxes, while ATP consumption reactions
exhibited net ATP consumption. The ATP contribution reactions
were then classified into their respective subsystems to explore
energy contribution differences among the models. To investigate
energy contributions under varying energy demands, the ATPM
constraint was set to values between 10 and 600 mol/gDW/h,
reflecting a range from minimum to maximum energy demand.
Comparisons among the models, particularly between the synaptic
and non-synaptic models, and between the control and PD models,
were performed to explore their bioenergetic differences.

Since the ongoing debate regarding oxygen and glucose
consumption rates in the nigrostriatal region of PD patients
compared to healthy controls (Powers et al., 2008; Borghammer
et al., 2012), we conducted a sensitivity analysis of these models to
assess the sensitivity of oxidative phosphorylation to variations in
oxygen and glucose consumption. For each model, the flux of ATP
synthesis via oxidative phosphorylation was calculated by varying
the uptake constraints for oxygen or glucose from their lower
bound to zero. Then, we compared how these changes in oxygen
or glucose consumption affected ATP synthesis through oxidative
phosphorylation between the control and PD models.

2.2.4 Complex I inhibition analysis
Given that significantly reduced Complex I activity has been

observed in PD patients, we conducted a Complex I inhibition
analysis in the models to explore the differential sensitivity to
Complex I inhibition between the synaptic and non-synaptic
components. To simulate the inhibition of Complex I activity,
we reduced the lower bound of Complex I reaction from 0%
(no inhibition) to 100% (full inhibition) in each model and
computed the resulting flux changes in ATP synthesis via oxidative
phosphorylation under varying energy demands. Next, the flux
changes between PD and control models were compared for both
synaptic and non-synaptic components to assess their relative
sensitivity to Complex I inhibition.

2.2.5 Exploration of metabolite exchanges
Considering that selective vulnerability may be linked to

dynamic metabolomic patterns in PD, we further investigated
metabolite exchanges in PD models, thereby identifying either
consistent or inconsistent metabolic changes with those observed in
PD patients. Metabolites reproducibly altered in the cerebrospinal
fluid (CSF) of PD patients, as reported in multiple independent

metabolomic studies, were used to evaluate differences in the
metabolite exchanges predicted by PD models (Luo et al., 2024).
These metabolites, referred to as PD CSF metabolites in this
study, were hypothesized to reflect metabolic dysfunctions in
dopaminergic neurons. Therefore, PD CSF metabolites may serve
as a basis for comparing the metabolic concentration changes
observed in PD patients with the flux changes predicted by the
PD models. Specifically, if a metabolite is increased in PD CSF, it
may indicate lower uptake or higher excretion in the corresponding
exchange reaction within the PD models. Conversely, a decrease
in a metabolite in PD CSF may suggest higher uptake or lower
excretion in the models. Subsequently, we explored the relative
flux changes of exchange reactions for PD CSF metabolites in the
synaptic and non-synaptic PD models to explore their consistency
and inconsistency with the changes observed in PD CSF.

2.2.6 Bioenergetic rescue analysis
Moreover, bioenergetic rescue analyses was performed on

the PD models to explore potential therapeutic targets for
dysfunctional dopaminergic neurons. These analyses aimed to
identify reactions that could computationally restore the PD energy
state and the dysfunctional metabolite exchanges to a control state.
To identify reactions that significantly impact energy contribution,
we employed the single-reaction flux inhibition method and single-
reaction flux increaseing method.

In the single-reaction flux inhibition method, each reaction
in the model was individually inhibited by setting its bound to
zero, and the resulting ATP contribution was then recalculated to
assess bioenergetic improvement. Reactions that restored glycolytic
pathway and ATP synthase fluxes to levels approaching or
exceeding those observed in the control under varying energy
demands were identified as potential energy rescue reactions.
Moreover, we assessed improvements in the fluxes of exchange
reactions for PD CSF metabolites in the PD models to determine
whether these rescue reactions could reverse or improve the flux
alterations observed in the PD models relative to the corresponding
control models. The most effective PD rescue reaction, especially
those that could improve metabolite exchanges associated with
dopamine release, was identified as potential therapeutic targets
for PD patients. To better understand the impact of inhibited
reactions, we also examined the changes in the chemical potential
of the associated metabolites. In thermodynamics and biochemical
systems, chemical potential represents the change in free energy
that occurs when a small quantity of a substance is added or
removed, where a negative value indicates a tendency to participate
in reactions that release free energy, whereas a positive value
implies a tendency to consume energy. Within the framework of
EntropicFBA, the dual variableyN in the Equation 1, associated
with the steady-state constraint, reflects the marginal cost of
each metabolite required to maintain the steady-state condition.
Therefore, the variable yN can be interpreted as representing the
chemical potential of each metabolite, thereby providing insight
into altered pathways after the reaction inhibition in the network.
To better identify the reactions whose enhancement might improve
bioenergetic performance and metabolite exchanges, we performed
a single-reaction flux increasing analysis. In this method, the flux of
each internal reaction in the PD models was individually increased
by setting its bound to 1.1 times the original entropicFBA flux value
(without any increasing). To predict perturbed fluxes resulting
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from increased reaction flux, we used flux entropy maximization as
the objective for internal reactions. Simultaneously, the exchange
reaction bounds derived from original entropicFBA flux (target
fluxes) were replaced with the more relaxed generic bounds from
the same reactions in the model to maintain similar PD molecular
exchanges, and a quadratic penalty term was used to the objective
to penalize deviation from the target fluxes (Preciat et al., 2021a).
Similarly, bioenergetic improvements and changes in metabolite
exchanges were assessed following the increase in the flux of each
internal reaction.

3 Results

3.1 Model characteristics

Four thermodynamically flux-consistent models were
generated: a synaptic control model (SYN), a synaptic PD
model (SYNPD), a non-synaptic control model (ASYN), and a
non-synaptic PD model (ASYNPD). These models successfully
passed validity checks based on approximately 80 basic metabolic
functions, such as generating ATP from several carbon sources and
performing basic lipid and amino acid metabolism, as detailed in
Supplementary File 6. The general model statistics, such as the total
number of reactions, metabolites, genes, and other characteristics,
are summarized in Table 1. The four models are of similar size, each
containing approximately 750 unique metabolites, 2,400 reactions,
and 1,300 metabolic genes, which span over 70 pathways and 9
subcellular compartments. The overlap of metabolites, reactions,
and genes between the synaptic and non-synaptic models, as well
as the iDopaNeuro models, is illustrated in Figure 1. More than
70% of the metabolites and reactions, as well as 90% of the genes
from the iDopaNeuro models, are present in both the synaptic and
non-synaptic models.

3.2 Bioenergetic differences between
synaptic and non-synaptic models

Figure 2 presents a comparison of ATP contribution
reactions under control and PD conditions for both synaptic
and non-synaptic models at a minimum energy demand of 10.62
mol/gDW/h. In both model types, ATP is primarily generated
by ATP synthase via oxidative phosphorylation (ATPS4mi)
and by glycolysis, particularly through phosphoglycerate kinase
(PGK) and pyruvate kinase (PYK). Additional ATP generating
pathways include the citric acid cycle (SUCOASm), nucleotide
interconversion (e.g., NDPK1, ADK1, and CYTK1), NAD
metabolism (NMNATr), and the pentose phosphate pathway
(r0408 and RE0124C).

The comparison of ATP contribution between the synaptic
and non-synaptic models with energy demands (ATPM) ranging
from minimum to maximum (10–600 mol/gDW/h), revealed
a noticeable shift from oxidative phosphorylation to glycolysis
(Supplementary Figure 2). This shift can be attributed to specific
mitochondrial constraints imposed by available experimental data,
which limit the capacity of mitochondria to generate additional
energy via oxidative phosphorylation. Notably, the flux from

oxidative phosphorylation reaches a near-plateau at an ATPM
of 60 mol/gDW/h and increases only slightly beyond this point
(see Figure 3). Therefore, we then mainly explored the energy
contributions within the ATPM range of 100 mol/gDW/h.

The comparison of ATP contribution between the synaptic
and non-synaptic control models under the ATPM range of
100 mol/gDW/h is shown in Figure 4. The synaptic model exhibited
relatively lower ATP contributions from oxidative phosphorylation,
the pentose phosphate pathway, the citric acid cycle, and nucleotide
interconversion compared to the non-synaptic model. In contrast,
glycolysis and NAD metabolism contributed more, particularly
under relatively low energy demands. Compared with the control
model, the synaptic PD model demonstrated a lower contribution
of oxidative phosphorylation to ATP generation, while glycolysis
and the citric acid cycle contributed more, as shown in Figure 5.
Similarly, the non-synaptic PD model displayed significantly
decreased energy contributions from oxidative phosphorylation
and increased contributions from glycolysis and the citric acid cycle
relative to the control model (Supplementary Figure 3).

The results of the sensitivity analysis for oxygen and glucose are
shown in Supplementary Figure 4. Both synaptic and non-synaptic
PD models showed reduced energy contributions from oxidative
phosphorylation compared to their corresponding control models,
irrespective of oxygen uptake values. When oxygen uptake was
reduced from its highest values, the synaptic PD model exhibited
an earlier decline in ATP synthesis flux than the non-synaptic
PD model. Additionally, glucose metabolism maintained stable
ATP synthesis via oxidative phosphorylation across all models,
as glucose was substituted with alternative carbon sources,
particularly lactate and galactose (Supplementary Figure 5).

3.3 Complex I inhibition analysis

The results of Complex I inhibition in the control and
PD models at a minimum energy demand are shown in
Figure 6. In the synaptic control model, ATP synthesis via
oxidative phosphorylation remained stable until 70% inhibition
of Complex I activity, whereas in the synaptic PD model, a
decline in ATP synthesis via oxidative phosphorylation was
observed at 80% inhibition (Figure 6A). The non-synaptic
models exhibited a longer plateau phase than the synaptic
models. Specifically, in the non-synaptic control model, ATP
synthesis via oxidative phosphorylation began to decline at
90% inhibition of Complex I activity, whereas in the non-
synaptic PD model, a reduction in ATP synthesis was evident
at 70% inhibition, with significant changes apparent at 80%
inhibition (Figure 6B). Detailed flux changes for Complex I
under different levels of inhibition in each model are shown in
Figures 6C,D).

Nevertheless, the observation in the synaptic models differ
from the corresponding experimental findings (Davey et al., 1998),
where ATP synthesis through oxidative phosphorylation decreased
linearly once Complex I activity was inhibited by more than
25% of its control activity in isolated synaptic mitochondria.
Consequently, we performed the Complex I inhibition under
varying energy demand for each model. The results of Complex
I inhibition with an ATPM of 20 mol/gDW/h align more closely
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TABLE 1 General model statistics for synaptic and non-synaptic models.

SYN SYNPD ASYN ASYNPD

Total number of genes 1,317 1,317 1,339 1,310

Total number of reactions 2,405 2,405 2,508 2,306

Total number of metabolites 761 753 767 728

Total number of transport reactions 1,040 1,028 1,074 981

Total number of exchange reactions 227 237 231 212

Total number of subsystems 76 75 78 75

Total number of compartments 9 9 9 9

Total number of Genes in the mitochondria 377 391 414 384

Total number of reactions in the mitochondria 519 532 555 508

Total number of metabolites in the mitochondria 296 303 306 281

FIGURE 1

The overlapping metabolites, reactions, and genes shared between synaptic and non-synaptic models.

with experimental findings (Davey et al., 1998), as shown in
Figure 7. An earlier decline in ATP synthesis via oxidative
phosphorylation was observed in the synaptic models, with
changes detected at 30% inhibition in the synaptic control
model, while in the synaptic PD model, these changes occurred
at a lower threshold of 20% inhibition. In the non-synaptic
models, changes in ATP synthesis were observed at 70 and

80% inhibition of Complex I for the control and PD models,
respectively.

This difference may partly result from the predefined
constraints on mitochondrial reactions imposed by available
experimental data, particularly on Complex I. In the synaptic
models, Complex I reaches maximum activity at an ATPM value
of 30 mol/gDW/h, while the non-synaptic models do not exhibit a
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FIGURE 2

Flux comparison of reactions contributing to ATP production in synaptic and non-synaptic models under control and PD conditions.
(A) Comparison of ATP contribution reactions in control and PD synaptic models, with the horizontal axis representing ATP contribution reactions
and the vertical axis showing the corresponding flux values. (B) Comparison of ATP contribution reactions in control and PD non-synaptic models.
In all models, ATP is primarily produced via oxidative phosphorylation (ATPS4mi) and glycolysis, particularly through phosphoglycerate kinase (PGK)
and pyruvate kinase (PYK).

significant plateau in Complex I activity due to relatively relaxed
constraints (Supplementary Figure 6). Therefore, varying energy
demands have a significant impact on the observed performance
of Complex I inhibition in the synaptic models.

3.4 Comparison of metabolite exchanges

A total of 36 metabolites were significantly changed in the CSF
of PD patients across eight metabolomic studies from a previous
meta-analysis (Luo et al., 2024; Supplementary File 7). Seventeen
of these metabolites have corresponding exchange reactions that
enable either uptake or excretion in both synaptic and non-
synaptic models. In synaptic models, the defined constraints and
predicted flux values for these exchange reactions are shown in
Table 2.

Flux changes in six exchanged metabolites in the synaptic PD
model are consistent with the metabolic alterations observed in
the CSF of PD patients. The relatively lower uptake predicted in
the synaptic PD model are consistent with the increased levels of
methionine (Yilmaz et al., 2020), glutamine (Willkommen et al.,
2018; Yilmaz et al., 2020), lysine (Wuolikainen et al., 2016), and
lactate (Yilmaz et al., 2020) observed in the PD CSF, while the
reduced excretion of urea corresponds to decreased urea levels
(Trezzi et al., 2017). The predicted decrease in dopamine flux in the
synaptic PD model supports our hypothesis of reduced dopamine
release in the PD state.

Although glucose levels in PD CSF have been reported
inconsistently across studies, the synaptic PD model predicted
lower glucose uptake compared to the synaptic control model.
However, higher uptake of ketoleucine and histidine predicted
in the synaptic PD model contrasts with the increased levels
reported in the PD CSF (Wuolikainen et al., 2016; Yilmaz et al.,
2020). Additionally, although increased CSF levels of tryptophan
(Trupp et al., 2014), asparagine (Yilmaz et al., 2020), ornithine
(Wuolikainen et al., 2016), isoleucine (Wuolikainen et al., 2016),
citric acid (Yilmaz et al., 2020), pipecolic acid (Lewitt et al., 2013),
and putrescine (Yilmaz et al., 2020; Plewa et al., 2021), along with
the decreased level of glyceric acid (Trezzi et al., 2017) have been
reported in PD CSF, these changes were not reflected in the synaptic
PD model.

The flux changes for these exchange reactions in the non-
synaptic PD model are shown in Table 3. Notably, no flux is
associated with dopamine release in the non-synaptic models, as
the corresponding reactions have been manually inhibited. The
predicted flux changes in the uptake of glutamine, lysine, histidine,
lactate, and ketoleucine, as well as the excretion of glyceric acid in
the non-synaptic PD model, are consistent with changes observed
in PD CSF. However, the predicted changes in methionine,
pipecolic acid, ketoleucine, and urea are inconsistent with the
observations in PD CSF. Similarly, the fluxes of several metabolites,
including tryptophan, asparagine, isoleucine, ornithine, putrescine,
and citric acid, remain unchanged between the non-synaptic
control and PD models.
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FIGURE 3

Flux changes across various subsystems in both synaptic and non-synaptic models, with energy demand (ATPM) ranging from 10 to 100
µmol/gDW/h. (A) Flux changes across different subsystems in the synaptic control model under varying energy demands. (B) Flux changes across
different subsystems in the synaptic PD model under varying energy demands. (C) Flux changes across different subsystems in the non-synaptic
control model under varying energy demands. (D) Flux changes across different subsystems in the non-synaptic PD model under varying energy
demands. The flux from oxidative phosphorylation approaches a plateau at an energy demand of 60 µmol/gDW/h, with only slight increases beyond
this threshold, whereas glycolytic flux continues to rise as energy demand increases.

3.5 Bioenergetic rescue analysis

3.5.1 Single-reaction flux inhibition
Bioenergetic rescue analyses were conducted on the PD

models to identify reactions capable of computationally
improving the PD energy state and metabolite exchanges,
thereby exploring potential therapeutic targets for dysfunctional
dopaminergic neurons. The inhibition of 34 reactions in the
synaptic PD model and 23 reactions in the non-synaptic PD
model were identified that could improve the corresponding
PD energy state, particularly with respect to oxidative
phosphorylation (Supplementary File 8). However, only one
reaction, mitochondrial phenylalanine transaminase (PHETA1m),
that is

Oxoglutaric acid+ L-Phenylalanine < = >

L-Glutamic acid+Phenylpyruvic acid (2)

was identified as having the potential to improve the
bioenergetic performance and enhance metabolite exchanges
in the synaptic PD model, as shown in Supplementary
File 9. In contrast, none of the inhibited reactions in
the non-synaptic PD model were able to enhance both
the metabolite exchanges and energy production under
varying energy demands.

The predicted changes in chemical potential (strictly, the dual
variable to the mass balance constraints) for each metabolite
involved in the PHETA1m reaction of rescued synaptic PD model

(PHETA1m inhibition) provide insight into altered metabolite
concentrations within the network, as shown in Supplementary
File 10. In conjunction with the observed reaction flux changes,
increased levels of oxoglutaric acid, phenylalanine, and glutamic
acid underscore the activation of alternative amino acid metabolism
in the rescued PD model, such as lysine and isoleucine
metabolism, as supported by increased fluxes in related reactions
(Supplementary File 9). These alternative amino acid metabolic
pathways further enhanced oxidative phosphorylation through
the electron transfer flavoprotein (ETF) coupling pathway, as
evidenced by increased fluxes in the corresponding reactions,
particularly those mediated by electron transfer flavoprotein-
ubiquinone oxidoreductase.

3.5.2 Single-reaction flux increasing

The single-reaction flux increasing analysis better target the
reactions that enhancing the PD energy state and metabolite
exchanges. The analysis results showed only the internal reaction,
mitochondrial ornithine transaminase reaction (ORNTArm), that
is

Oxoglutaric acid+ Ornithine < = >

L-Glutamic acid+ L-Glutamicgamma− semialdehyde (3)

could improve the bioenergetic performance and metabolite
exchanges for both synaptic and non-synaptic PD model, as shown
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FIGURE 4

ATP contribution proportions across various subsystems with energy demand ranging from 10 to 100 µmol/gDW/h in both synaptic and
non-synaptic models. Compared to the non-synaptic model, the synaptic model exhibited a lower energy contribution from oxidative
phosphorylation, citric acid cycle, and nucleotide interconversion, but a higher energy contribution primarily from glycolysis.

FIGURE 5

ATP contribution proportions across different subsystems, with energy demand ranging from 10 to 100 µmol/gDW/h, in synaptic control and PD
models. In the synaptic PD model, oxidative phosphorylation contributes less to ATP production than in the control model, while glycolysis and the
citric acid cycle contribute more.
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FIGURE 6

Complex I inhibition in synaptic and non-synaptic models at a minimum ATPM of 10.62 µmol/gDW/h. (A) Comparison of Complex I inhibition
between control and PD synaptic models. (B) Comparison of Complex I inhibition between control and PD non-synaptic models. (C) Flux changes
of Complex I under varying inhibition in the synaptic models. (D) Flux changes of Complex I under varying inhibition in the non-synaptic models.
ATP synthesis via oxidative phosphorylation remained stable up to 70% Complex I inhibition in the synaptic control model and 80% in the synaptic
PD model, reflecting higher sensitivity in the PD condition. In the non-synaptic models, ATP synthesis remained stable up to 90% inhibition in the
control, with reductions observed at 70% in the PD model.

in Supplementary File 11. Table 4 presents flux improvements
in ATP synthesis and metabolite exchanges following an increase
in ORNTArm in the synaptic PD model. An increased flux in
ATP synthesis was observed in the rescued synaptic PD model
(ORNTArm increased), highlighting the improved bioenergetic
performance on oxidative phosphorylation. Additionally, the
rescued synaptic PD model predicted improved exchange fluxes for
glutamine, lysine, histidine, ketoleucine, urea, and lactate compared
with the original synaptic PD model. However, no improvement
has been observed in the exchange of dopamine and glutamine.
Moreover, Supplementary Figure 7 compares energy contributions
under varying energy demands between the synaptic control and
rescued PD models. The results demonstrate a stable bioenergetic
improvement in the rescued synaptic PD model, associated
with increased ORNTArm, irrespective of energy demand. In
conjunction with other reaction flux changes (Supplementary
File 12), the increased flux through ORNTArm, which catalyses
the conversion of glutamate-5-semialdehyde and glutamate to
ornithine and α−ketoglutarate in the model, enhanced the activity
of the urea cycle and lysine metabolism in the rescued synaptic
PD model. This, in turn, further increased oxygen consumption,
thereby enhancing the respiratory chain.

Table 5 shows the flux improvement of ATP synthesis and
metabolite exchanges in the non-synaptic PD model. The improved
exchange fluxes for glutamine, lysine, histidine, and lactate were
observed in the rescued non-synaptic PD model. Furthermore,
the bioenergetic improvement in oxidative phosphorylation was
predominantly observed under low energy demand in the rescued

non-synaptic PD model, as indicated in Supplementary Figure 8.
Similarly to the rescued synaptic PD model, the increase in
ORNTArm was associated with alterations in the urea cycle and
an increase in oxygen uptake in the non-synaptic PD model
(Supplementary File 12).

4 Discussion

4.1 Bioenergetic differences between
models

A total of four models were generated to represent the
synaptic and non-synaptic components of dopaminergic neurons
under control and PD conditions. Although these models
contain similar metabolites, reactions, and genes, they differed in
their bioenergetic performance and metabolite exchange profiles.
Regarding bioenergetic performance, all models predicted that
oxidative phosphorylation plays a significant role under relatively
lower energy demand, while glycolysis predominates when energy
demand exceeded mitochondrial constraints. This shift highlights
that mitochondrial contributions are limited by the predefined
constraints derived from the available experimental data for
both synaptic and non-synaptic mitochondria. Although these
constraints, primarily based on rat or mouse mitochondrial
experiments, restrict the exploration of energy dynamics under
high energy demands, the bioenergetic differences observed within
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FIGURE 7

Complex I inhibition in synaptic and non-synaptic models at an ATPM of 20 µmol/gDW/h. (A) Comparison of Complex I inhibition between control
and PD synaptic models. (B) Comparison of Complex I inhibition between control and PD non-synaptic models. (C) Flux changes of Complex I
under varying inhibition levels in synaptic models. (D) Flux changes of Complex I under varying inhibition levels in non-synaptic models. In the
synaptic PD model, an earlier energy inflection point is observed, with lower Complex I flux than in the control model. Changes in ATP synthesis
occur at 30% Complex I inhibition in the control model and at 20% in the PD model. In the non-synaptic models, ATP synthesis alterations are
evident at 70% inhibition in the control model and 80% in the PD model.

these constraints between models provide valuable insights into
their relatively distinct bioenergetic features.

The synaptic models predicted a relatively lower ATP
contribution from oxidative phosphorylation and the citric acid
cycle compared with the non-synaptic models regardless of
energy demand, suggesting reduced mitochondrial activities.
This finding appears to conflict with our hypothesis that the
synaptic component consumes and generates more energy through
oxidative phosphorylation for dopamine release. The lower
mitochondrial activities in the synaptic models, compared to the
non-synaptic models, are consistent with the enzyme activities
measured in the mitochondria of the synaptosomal fraction
compared to free mitochondria (non-synaptic component) (Villa
et al., 1989; Davey and Clark, 1996; Davey et al., 1998), which
were used to generate models. The lower enzyme activities in
synaptosomal mitochondria relative to free mitochondria may be
due to the higher buoyant density of non-synaptic mitochondria
and the inherent heterogeneity of synaptic mitochondria (Lai and
Clark, 1976). Additionally, the widespread distribution of synaptic
terminals may result in a lower density of synaptic mitochondria
within individual units, further contributing to the observed low
enzyme activities in synaptosomal mitochondria.

The predicted lower ATP contribution from the pentose
phosphate pathway (PPP) and nucleotide interconversion in the
synaptic models may indicate reduced antioxidative capacity and
decreased nucleotide-related biological processes compared with
the non-synaptic models. The PPP is a metabolic pathway parallel
to glycolysis that converts glucose-6-phosphate into pentoses,

producing ribose-5-phosphate and NADPH, which plays a key role
in anabolic biosynthesis and redox homeostasis (Tu et al., 2019). In
neural cells, the PPP primarily supplies cytosolic NADPH, essential
for the antioxidative defense of brain cells through glutathione
(GSH) redox cycling (Lajtha and Sylvester, 2008). Nucleotide
interconversion, the process of converting one type of nucleotide
into another, ensures an adequate supply for critical functions,
such as DNA and RNA synthesis, energy transfer, and signal
transduction. The reduced energy contribution from nucleotide
interconversion in the synaptic models is consistent with the
reduced activity of the citric acid cycle (where GTP is converted
into ATP to meet energy requirements). Therefore, the higher
ATP contribution from glycolysis predicted in the synaptic models
may serve as a compensatory mechanism for insufficient energy
production.

Compared to the control models, both synaptic and non-
synaptic PD models predicted a lower ATP contribution from
oxidative phosphorylation regardless of energy demand. The
reduced ATP contribution from oxidative phosphorylation in
the PD models supports the hypothesis of impaired electron
transport chain in the mitochondria of dopaminergic neurons
in PD patients (Dias et al., 2013; Zanfardino et al., 2021).
Additionally, the decreased energy contribution from the PPP
predicted in PD models under lower energy demand is consistent
the decreased levels of glucose-6-phosphate dehydrogenase and
6-phosphogluconate dehydrogenase, key enzymes of the PPP,
observed in the putamen and cerebellum of PD patients (Dunn
et al., 2014; Camandola and Mattson, 2017). However, under
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increased energy demands, no significant difference in PPP flux
was observed between the control and PD models, likely due to
its low contribution to overall ATP generation. Moreover, the
higher energy contributions from glycolysis and the citric acid
cycle predicted in both synaptic and non-synaptic PD models
may suggest a compensatory mechanism for maintaining energy
production in the PD state (Travaglio et al., 2023).

The analysis of Complex I inhibition further emphasizes the
bioenergetic differences between these two neuronal components.
Under the defined mitochondrial constraints, the response to
Complex I inhibition in the synaptic models is strongly influenced
by energy demand. When energy demand increases, the synaptic
models showed greater sensitivity to Complex I inhibition than
the non-synaptic models, particularly under PD condition, with
an earlier energy inflection point. In contrast, the non-synaptic
models maintain relatively stable performance under Complex
I inhibition regardless of energy demand. These differences
in the models may suggest that the Complex I activity of
synaptic component is more sensitive and vulnerable in relatively
high energy environments than the non-synaptic component.
Moreover, it may also indicate that the isolated mitochondria
or cultured neurons may exhibit distinct energy dynamics under
varying energy demands, potentially contributing to the observed
experimental heterogeneity.

During the oxygen sensitivity analysis, the synaptic models
predicted higher ATP synthesis via oxidative phosphorylation than
the non-synaptic models when oxygen uptake was maintained
above the predicted oxygen uptake, indicating a greater sensitivity
of oxygen uptake in the synaptic models. This result also indicates
a predefined minimum oxygen uptake may significantly influence
the energy performance in the synaptic models. Furthermore, a
comparison within the synaptic models reveals that the synaptic PD
model exhibits higher sensitivity, with its energy inflection point
occurring earlier than that of the control model as oxygen uptake
declines. In contrast, the glucose sensitivity analysis indicated stable
ATP synthesis via oxidative phosphorylation, suggesting that under
certain conditions, other substrates can serve as the principal
carbon source (Camandola and Mattson, 2017).

4.2 Differences of metabolite exchanges

The consistent and inconsistent metabolite exchanges observed
in the synaptic and non-synaptic PD models may reflect distinct
metabolic patterns between these neuronal components. In
both model types, predicted flux changes in three metabolites,
glutamine, lysine, and lactate, were consistent with alterations
observed in the cerebrospinal fluid (CSF) of PD patients. The
observed flux changes in glutamine underscore its potential role
in coordinating dopaminergic neuron function and contributing
to reduced dopamine release. While it is widely recognized
that imbalances in glutamine and glutamate can disrupt the
glutamine-glutamate-GABA metabolic cycle in glutamatergic
neurons, emerging evidence underscores the role of glutamatergic
mechanisms in dopaminergic neurons (Plaitakis and Shashidharan,
2000; Eskenazi et al., 2021). Studies have indicated that the co-
transmission of dopamine and glutamate may serve as a general
mechanism for modulating the activity of dopaminergic and

serotonergic cells, thus expanding their range of neurotransmitter
actions (Hnasko et al., 2010; Broussard, 2012; Eskenazi et al.,
2021). Additionally, the decreased uptake of lysine may reflect
compensatory interconversion of other amino acids (Papes et al.,
2001), while the reduced uptake of lactate, a key energy substrate,
may be linked to the decreased energy activity of dopaminergic
neurons in PD condition (Karagiannis et al., 2021).

Consistent flux changes in methionine and urea, which align
with those observed in PD CSF metabolites, were predicted
exclusively in the synaptic PD model. This finding indicates that
these changes may be more specific to the synaptic component. It
has been reported that genes regulating methionine concentration
in the midbrain are involved in the dopaminergic synaptic
signaling pathway, with elevated methionine levels potentially
exacerbating neurodegenerative disorders (Wang et al., 2024).
Methionine is a widely used, sulfur-containing amino acid involved
in protein synthesis, the transsulfuration pathway, and polyamine
biosynthesis, such as spermine and spermidine (Parkhitko et al.,
2019). Moreover, dopamine-mediated oxidation of methionine 127
in α-Syn can lead to cytotoxicity and oligomerization of α-Syn
(Nakaso et al., 2013), a key pathological feature of PD. The flux
changes of methionine in the synaptic models may indicate that
dysfunctional polyamine metabolism is primarily associated with
the synaptic component, which, in turn, could alter ornithine
metabolism and affect urea levels via the urea cycle (Luo et al.,
2024). Further study is needed to better understand the changes in
methionine and urea levels in the synaptic components.

Consistent flux changes in histidine and glyceric acid observed
in the non-synaptic PD model may indicate that these alterations
are specific to the non-synaptic component of dopaminergic
neurons. The depletion of histidine is significantly associated
with altered histamine levels, which affect behavioral and
electrophysiological responses in humans (van Ruitenbeek et al.,
2009). The decreased histidine uptake in the non-synaptic PD
model may reflect reduced somal electrophysiological activity in
PD condition. However, the role of glyceric acid in dopaminergic
neurons remains unclear. Additionally, changes in six metabolites
in the CSF of PD patients, including tryptophan, asparagine,
isoleucine, ornithine, putrescine, and citric acid, were not observed
in either the synaptic or non-synaptic models, as their fluxes
reached the upper bound constraint set for dopaminergic neurons.
Further investigation is required to elucidate the metabolic
connections in the synaptic and non-synaptic components under
both control and PD conditions, and to clarify the mechanisms
underlying interactions among glial cells, neurons, and CSF.

4.3 Bioenergetic rescue target

The single-reaction flux inhibition analysis indicated that
inhibition of the mitochondrial phenylalanine transaminase
(PHETA1m) reaction could computationally improve the
energy state and metabolite exchanges only in the synaptic PD
model. This reaction involves two aminotransferases: tyrosine
aminotransferase and glutamic-oxaloacetic transaminase 2. Due
to their broad substrate specificity, evidence suggests that brain
tyrosine aminotransferase and glutamic-oxaloacetic transaminase
2 (GOT2) are functionally identical and play a crucial role in
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TABLE 2 Flux changes of 17 exchange reactions between control and PD in synaptic models.

Reaction ID Metabolite
name

Changes in PD CSF Bounds in
SYN

Flux in SYN Bounds in
SYNPD

Flux in SYNPD Changes in
PD model

Consistency

EX_dopa[e] Dopamine Increased (Yilmaz et al., 2020) [0.0007, 1,000] 1.0826 [0.0002, 1,000] 0.3840 Lower excrete No

EX_glc_D[e] D-Glucose Increased (Trezzi et al., 2017);
decreased (Lewitt et al., 2013)

[–3.01, –0.7525] –0.7525 [–3.69, 0] –0.3146 Lower uptake Yes

EX_trp_L[e] L-Tryptophan Decreased (Trupp et al., 2014) [–0.8357, 0] –0.8357 [–0.8357, 0] –0.8357 Same –

EX_met_L[e] L-Methionine Increased (Yilmaz et al., 2020) [–1.8909, 0] –1.8909 [–1.8909, 0] –1.2779 Lower uptake Yes

EX_asn_L[e] L-Asparagine Increased (Yilmaz et al., 2020) [0.4867, 1000] 0.4867 [0.4867, 1000] 0.4867 Same –

EX_orn[e] Ornithine Increased (Wuolikainen et al., 2016) [25.3657, 1000] 25.3657 [25.3657, 1000] 25.3657 Same –

EX_gln_L[e] L-Glutamine Increased (Willkommen et al., 2018;
Yilmaz et al., 2020); decreased (Trupp
et al., 2014)

[–60.5564, 0] –16.6588 [-60.5564, 0] –16.6238 Lower uptake Yes

EX_lys_L[e] L-Lysine Increased (Wuolikainen et al., 2016) [–100, 0] –15.0386 [–100, 0] –14.9391 Lower uptake Yes

EX_his_L[e] L-Histidine Increased (Wuolikainen et al., 2016;
Yilmaz et al., 2020)

[–27.05, 0] –6.3213 [–27.05, 0] –7.2753 Higher uptake No

EX_ile_L[e] L-Isoleucine Increased (Wuolikainen et al., 2016) [–19.49, 0] –8.4975 [–19.49, 0] –8.4975 Same –

EX_Lpipecol[e] L-Pipecolic acid Decreased (Lewitt et al., 2013) [0, 1000] 0 [0, 1000] 0 Same –

EX_cit[e] Citric acid Increased (Yilmaz et al., 2020) [–1000, 1000] 0.2540 [–1000, 1000] 0.2540 Same –

EX_4mop[e] Ketoleucine Increased (Wuolikainen et al., 2016) [–1000, 1000] –0.1546 [–1000, 1000] –0.1951 Higher uptake No

EX_ptrc[e] Putrescine Increased (Yilmaz et al., 2020; Plewa
et al., 2021)

[–1000, 1.6468] –0.1268 [–1000, 1.6468] –0.1268 Same –

EX_glyc_R[e] Glyceric acid Decreased (Trezzi et al., 2017) [0.2876, 1000] 0.2876 [0.2876, 1000] 0.2876 Same –

EX_urea[e] urea Decreased (Trezzi et al., 2017) [0, 1000] 0.2291 [0, 1000] 0.1597 Lower excrete Yes

EX_lac_L[e] L-Lactic acid Increased (Yilmaz et al., 2020) [-6.48, 0.83898] –0.3649 [-6.48, 0.83898] –0.2427 Lower uptake Yes
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TABLE 3 Flux changes of 17 exchange reactions between control and PD in non-synaptic models.

Reaction ID Metabolite
Name

Changes in PD CSF Bounds in
ASYN

Flux in ASYN Bounds in
ASYNPD

Flux in
ASYNPD

Changes in
PD model

Consistency

EX_dopa[e] Dopamine Increased (Yilmaz et al., 2020) [0, 1,000] 0 [0, 1,000] 0 No excrete –

EX_glc_D[e] D-Glucose Increased (Trezzi et al., 2017);
decreased (Lewitt et al., 2013)

[–1.93, –0.4825] –0.4825 [–2.24, 0] –0.2792 Lower uptake Yes

EX_trp_L[e] L-Tryptophan Decreased (Trupp et al., 2014) [–0.8357, 0] –0.8357 [–0.8357, 0] –0.8357 Same –

EX_met_L[e] L-Methionine Increased (Yilmaz et al., 2020) [–1.8909, 0] –1.1715 [–1.8909, 0] –1.2528 Higher uptake No

EX_asn_L[e] L-Asparagine Increased (Yilmaz et al., 2020) [0.4867, 1,000] 0.4867 [0.4867, 1,000] 0.4867 Same –

EX_orn[e] Ornithine Increased (Wuolikainen et al., 2016) [25.3657, 1,000] 25.3657 [25.3657, 1,000] 25.3657 Same –

EX_gln_L[e] L-Glutamine Increased (Willkommen et al., 2018;
Yilmaz et al., 2020); decreased (Trupp
et al., 2014)

[–60.5564, 0] –17.0832 [–60.5564, 0] –16.8687 Lower uptake Yes

EX_lys_L[e] L-Lysine Increased (Wuolikainen et al., 2016) [–100, 0] –19.2610 [–100, 0] –18.9466 Lower uptake Yes

EX_his_L[e] L-Histidine Increased (Wuolikainen et al., 2016;
Yilmaz et al., 2020)

[–27.05, 0] –6.9666 [–27.05, 0] –5.9576 Lower uptake Yes

EX_ile_L[e] L-Isoleucine Increased (Wuolikainen et al., 2016) [–19.49, 0] –8.4975 [–19.49, 0] –8.4975 Same –

EX_Lpipecol[e] L-Pipecolic acid Decreased (Lewitt et al., 2013) [0, 1,000] 0.8811 [0, 1,000] 1.0950 Higher excrete No

EX_cit[e] Citric acid Increased (Yilmaz et al., 2020) [–1000, 1000] 0.2540 [–1,000, 1,000] 0.2540 Same –

EX_4mop[e] Ketoleucine Increased (Wuolikainen et al., 2016) [–1,000, 1,000] –0.5428 [–1,000, 1,000] –0.5550 Higher uptake No

EX_ptrc[e] Putrescine Increased (Yilmaz et al., 2020; Plewa
et al., 2021)

[–1,000, 1.6468] –0.1268 [–1,000, 1.6468] –0.1268 Same –

EX_glyc_R[e] Glyceric acid Decreased (Trezzi et al., 2017) [0.2876, 1,000] 0.3131 [0.2876, 1,000] 0.2876 Lower excrete Yes

EX_urea[e] Urea Decreased (Trezzi et al., 2017) [0, 1,000] 0.0624 [0, 1,000] 0.0882 Higher excrete No

EX_lac_L[e] L-Lactic acid Increased (Yilmaz et al., 2020) [–6.48, 0.83898] –1.1569 [–6.48, 0.83898] –0.6983 Lower uptake Yes
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TABLE 4 Flux improvement of ATP synthase and exchange reactions in the rescued synaptic PD model with the increased flux of the mitochondrial ornithine transaminase reaction.

Reaction ID Description Changes in PD CSF Flux in SYN Flux in original
SYNPD

Flux in rescued
SYNPD

Improvement

ATPS4mi ATP synthase – 8.9379 8.5965 9.4468 Yes

EX_dopa[e] Exchange of Dopamine Increased (Yilmaz et al., 2020) 1.0826 0.3840 0.3118 No

EX_met_L[e] Exchange of L-Methionine Increased (Yilmaz et al., 2020) –1.8909 –1.2779 –1.2324 No

EX_gln_L[e] Exchange of L-Glutamine Increased (Willkommen et al., 2018; Yilmaz et al., 2020);
decreased (Trupp et al., 2014)

–16.6588 –16.6238 –17.5047 Yes

EX_lys_L[e] Exchange of L-Lysine Increased (Wuolikainen et al., 2016) –15.0386 –14.9391 –15.1006 Yes

EX_his_L[e] Exchange of L-Histidine Increased (Wuolikainen et al., 2016; Yilmaz et al., 2020) –6.3213 –7.2753 –6.9867 Yes

EX_4mop[e] Exchange of Ketoleucine Increased (Wuolikainen et al., 2016) –0.1546 –0.1951 –0.1687 Yes

EX_urea[e] Exchange of urea Decreased (Trezzi et al., 2017) 0.2291 0.1597 0.3223 Yes

EX_lac_L[e] Exchange of L-Lactic acid Increased (Yilmaz et al., 2020) –0.3649 –0.2427 –0.3285 Yes

TABLE 5 Flux improvement of ATP synthase and exchange reactions in the rescued non-synaptic PD model with the increased flux of the mitochondrial ornithine transaminase reaction.

Reaction ID Metabolite name Changes in PD CSF Flux in ASYN Flux in original
ASYNPD

Flux in rescued
ASYNPD

Improvement

ATPS4mi ATP synthase – 8.5862 9.48623 9.5930 Yes

EX_gln_L[e] Exchange of L-Glutamine Increased (Willkommen et al., 2018; Yilmaz et al., 2020);
decreased (Trupp et al., 2014)

–17.0832 –16.8687 –17.4678 Yes

EX_lys_L[e] Exchange of L-Lysine Increased (Wuolikainen et al., 2016) –19.2610 –18.9466 –19.7937 Yes

EX_his_L[e] Exchange of L-Histidine Increased (Wuolikainen et al., 2016; Yilmaz et al., 2020) –6.9666 –5.9576 –6.1757 Yes

EX_glyc_R [e] Exchange of Glyceric acid Decreased (Trezzi et al., 2017) 0.3131 0.2876 0.2876 No

EX_lac_L[e] Exchange of L-Lactic acid Increased (Yilmaz et al., 2020) –1.1569 –0.6983 –0.7279 Yes
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phenylalanine transamination (Benuck, 1980; Mehere et al.,
2010; Kerk et al., 2022). In conjunction with observed reaction
flux changes, inhibition of PHETA1m appears to trigger a
compensatory mechanism that enhances alternative amino acid
pathways, as evidenced by increased flux in reactions primarily
involved in lysine, isoleucine, and phenylalanine metabolism. This
enhanced amino acid metabolism further improved oxidative
phosphorylation, particularly via the electron transfer flavoprotein
(ETF) coupling pathway. However, validating the involved non-
specific enzyme and broadly altered amino acid metabolism
remains challenging when the intervention is limited to PHETA1m
inhibition.

The analysis of single-reaction flux increasing more effectively
identified verifiable targets. The results indicated that an increased
flux through the mitochondrial ornithine transaminase reaction
(ORNTArm) could enhance bioenergetic performance and
metabolite exchanges in both synaptic and non-synaptic PD
models. This reaction is catalyzed by the mitochondrial ornithine
aminotransferase (OAT, E.C.2.6.1.13), which reversibly transfers
the δ-amino group from ornithine to α-ketoglutarate, yielding
glutamate-5-semialdehyde and glutamate (Ginguay et al., 2017).
It is involved in metabolic pathways connecting glutamate and
ornithine to key molecules in the urea cycle, proline metabolism,
and polyamine metabolism, with its activity predominantly
observed in the intestine, liver, and kidney (Ginguay et al., 2017).
In the brain, OAT was found in cortical, hippocampal, and basal
ganglia neurons (Kasahara et al., 1986). However, changes in
ornithine aminotransferase levels have only been observed in
glutamatergic neurons and associated with Huntington’s disease,
suggesting a role for OAT in the synthesis of the neurotransmitter
glutamate (Wong et al., 1982). In the rescued synaptic and
non-synaptic PD models, increased fluxes through the urea
cycle following an increase in ORNTArm suggest enhanced
ornithine metabolism; this was accompanied by increased oxygen
consumption and further improvements in the respiratory chain.
Although no evidence has yet established an association between
changes in OAT levels and other neurodegenerative disorders, OAT
may represent a promising target for alleviating bioenergetic failure
in Parkinson’s disease through enhanced ornithine metabolism.
Further research could focus on ornithine transaminase to
elucidate this mechanism and develop treatment strategies for PD
patients.

4.4 Limitations and recommendations

Several limitations in this study need to be improved in
future research. Although we explored the bioenergetic differences
between models within defined constraints under varying energy
demands, the mitochondrial activity data derived from rat or
mouse mitochondria across various brain regions may limit the
interpretation of energy dynamics in the dopaminergic neurons of
the human SNpc, particularly under high energy demand. Future
experiments are needed to determine in vivo mitochondrial enzyme
activities of these dopaminergic neuronal components in the
human SNpc. Additionally, applying identical uptake constraints
across all models, based on exometabolomic data from in vitro
dopaminergic neurons, limits our ability to capture differences

between the control and PD states in synaptic and non-synaptic
components. Additional investigation is required to elucidate the
metabolic requirements of in vivo dopaminergic neurons under
both control and PD conditions. Given that predefined constraints
(e.g., oxygen uptake) significantly influence model performance,
careful consideration of these constraints is essential for different
cellular components in future modeling.

Although this study hypothesized that PD CSF metabolites
primarily reflect metabolic dysfunction in dopaminergic neurons,
interactions among glial cells, neurons, and the CSF may also
contribute to these alterations in PD patients. The inconsistency
between predicted metabolite exchanges in PD models and
observed metabolite changes in the CSF may result from
insufficient exploration of these cellular interactions. Future
research should focus on metabolic interactions across multiple
cells to better elucidate the metabolic changes in the CSF. Given the
complex coordination within a neuron, functionally distinguishing
between these components remain challenging. Consequently, this
study can serve as a reference for further investigations into the
distinct roles of synaptic and non-synaptic components. Future
research is required to validate the dysfunction mechanisms that
contribute to the selective vulnerability of dopaminergic neurons
and to explore potential therapeutic strategies for PD patients.

Conclusion

To explore differences in bioenergetic performance and
metabolite exchanges between distinct neuronal components, we
generated four genome-scale metabolic models representing the
synaptic and non-synaptic components of dopaminergic neurons
under both control and PD conditions. In particular, the synaptic
PD model showed a significantly reduced ATP contribution from
oxidative phosphorylation and increased sensitivity to Complex
I inhibition, contributing to the selective vulnerability observed
in PD. The consistent and inconsistent metabolite exchanges
observed in the synaptic and non-synaptic PD models reflect
distinct metabolic patterns between these neuronal components.
Additionally, mitochondrial ornithine transaminase was predicted
to be the potential bioenergetic rescue target for both the synaptic
and non-synaptic PD models. Further research is needed to
validate these dysfunctional mechanisms and to explore targeted
therapeutic strategies for PD patients.
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