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Despite state-of-the-art technologies like artificial intelligence, human judgment 
is critically essential in cooperative systems, such as the multi-agent system (MAS), 
which collect information among agents based on multiple-cue judgment. Human 
agents can prevent impaired situational awareness of automated agents by confirming 
situations under environmental uncertainty. System error caused by uncertainty 
can result in an unreliable system environment, and this environment affects 
the human agent, resulting in non-optimal decision-making in MAS. Thus, it is 
necessary to know how human behavior is changed to capture system reliability 
under uncertainty. Another issue affecting MAS is time delay, which can delay 
agent information transfer, resulting in low performance and instability. However, 
it is difficult to find studies on the influence of time delay on human agents. This 
study is about understanding the human decision-making process under a specific 
system reliability environment by uncertainty with time delay. We used concepts of 
expected and unexpected uncertainty to implement reliability of the system usage 
environment with three types of time delay conditions: no time delay, regular time 
delay, and irregular time delay conditions. We used electroencephalogram (EEG) 
for human cognitive neural mechanisms in multiple-cue judgment systems to 
understand human decision-making. In the reliability of system usage environment, 
the unreliable system environment significantly creates less memory load by less 
utilization of system rules for decision-making. In terms of time delay, delayed 
information delivery does not significantly affect memory load for decision-making.
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1 Introduction

Humans play an essential role in multi-agent systems (MASs), even though artificial 
intelligence technologies are being developed. MAS is a cooperative system based on the 
interaction among agents to solve problems (Balaji and Srinivasan, 2010). A representative 
example of MAS is the defense system with autonomous agents, such as unmanned ground 
vehicles (UGVs) or unmanned aerial vehicles (UAVs). The MAS-based defense system is 
operated by a multiple-cue judgment system by human agents based on obtained information 
(multiple cues) for appropriate decisions in a dynamic environment (Sokolowski, 2003).
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The human agent is essential to MAS because it makes decisions 
based on evaluating the current system’s performance. The human 
agent inspects the system performance by comparing information 
from autonomous agents and real-world results to check whether the 
system shows valid performance for the goal. The system performance 
can fluctuate due to system errors such as communication network or 
sensor errors in a dynamic environment. The fluctuating system 
performance can cause invalid system performance by receiving and 
transmitting invalid information under uncertain environments. The 
human agent makes decisions after examination of system 
performance, whether it can make valid or invalid system performance 
by checking to make decisions for aimed output. Based on these 
experiences of system usage, the human agent tries to avoid system 
failure due to impaired situational awareness caused by system error 
of autonomous agents in MAS (Tweedale et al., 2007).

1.1 Human decision-making under 
environmental uncertainty

Despite inappropriate decision-making avoidance by the human 
agent, environmental uncertainty affects the MAS performance 
because of an unreliable system usage environment. MAS operates in 
dynamic environments with unexpected situations. The unstable 
environments cause system errors, such as communication network 
errors among agents or physical sensor errors due to geographic or 
weather conditions (Yiu et al., 2022). The incorrect information due 
to the unstable environments causes unreliable system usage contexts, 
resulting in loss by experiences of invalid system performance to 
human agents.

There are two reasons for the non-optimal choice of uncertainty 
from the neurological perspective. The first reason is the neural state 
changes for every decision-making trial, such as the atmosphere under 
a specific environment. The second reason is the noise of input 
observation, such as incorrect information reception (Geng et al., 
2020). For the characteristics of sensitive neural states of humans, the 
non-optimal decision-making can be worse by the negative effect of 
unreliable system usage experiences. Thus, studies of the human 
cognitive process are needed to deal with the impact of environmental 
uncertainty in MAS with human agents’ decision-making 
characteristics for high-level MAS.

1.2 Decision-making under time delay of 
information delivery

Time delays can influence the performance of MAS. The 
communication network in MAS is operated based on a distributed 
network system to control cooperative autonomous agents with 
information sharing. During information sharing, a time delay occurs 
when the communication network system has issues, such as loss of 
packet, uncertain system mode, or unexpected interference among 
agents in MAS (Zhang et al., 2018). The time delay by communication 
system errors can cause low system quality, resulting in performance 
instability due to system degradation (Sumpter et  al., 2019) and 
serious problems, such as system breakdown (Zhang et al., 2018). 
There are some studies on improving communication network 
performances of MAS performances considering time delay in terms 

of mathematical models among autonomous agents (Li et al., 2012; Li 
et al., 2018; Trentelman et al., 2013). Sumpter et al. (2019) considered 
trust aspects based on topology and time delay for agent 
communication to build a mathematical MAS model. In contrast, it is 
difficult to find studies about human cognitive characteristics under 
time delay in MAS. This study focuses on time delay regarding 
information reception by the human agent. Figure 1 shows the concept 
of time delay in information delivery.

In this study, the time delay is assumed to mean that human 
agents can receive at the time “t” if there is no delayed information 
delivery from each agent. In contrast, they will receive information at 
time “t + d” if they receive one information with “d” time delay after 
receiving other information at the time “t.” Based on the experience of 
time delay, we expect an insight into how the human cognitive process 
is performed to deal with the delay in information delivery in MAS.

1.3 Expected and unexpected uncertainties

We used concepts of expected and unexpected uncertainties to 
implement unreliable system usage environments by uncertainty, as 
suggested by Yu and Dayan (2005). The expected and unexpected 
uncertainty is made using stimulus–response–outcome (S-R-O) rules. 
The agent can get benefits or losses (outcome) through learning about 
the relationship between stimulus and response. For example, they see 
different colors of balls, such as green and blue. These balls are stimuli 
(S) information before decision-making. This decision-making, 
choosing one color ball, is response (R), which leads to outcomes (O). 
According to the response, the outcome (O) is getting (positive) or 
loss (negative) of one dollar. For example, if they choose green ball and 
the outcome is getting one dollar, it gives positive feedback. Thus, they 
can learn that green balls are associated with benefits. In contrast, if 
they lose one dollar by choosing the blue ball, the decision policy of 
negative feedback is associated with the blue ball. The experience ratio 
of positive or negative outcomes determines the expected and 
unexpected uncertainty. The expected uncertainty can occur when 
they observe a lot of negative feedback, such as invalid outcomes. In 
contrast, unexpected uncertainty can occur through many 

FIGURE 1

Time delay concept in information delivery.
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observations of positive feedback, such as valid outcomes. So, the 
expected uncertainty is knowing that the specific judgment system or 
policy is unstable and unreliable in getting valid results by observing 
many invalid results (e.g., 50% invalid system performance 
observations). If the decision-maker is under the expected uncertainty, 
they will not use the current decision policy to explore another policy 
for their benefit. In contrast, unexpected uncertainty gives intense 
violated experiences by less invalid result observation (e.g., 10% 
invalid system performance observations). Unexpected uncertainty 
occurs in a reliable decision-making environment, so they will exploit 
current decision-policy rather than decision-policy under expected 
uncertainty (Bland and Schaefer, 2012). Based on the concept of 
expected and unexpected uncertainty, we set up the experience of 
environmental uncertainty by showing intended invalid system 
performances to build reliable or unreliable system usage 
performances based on expected and unexpected uncertainty 
concepts, as shown in Figure 2.

1.4 Relationship between trust in system 
and expected and unexpected 
uncertainties

The expected and unexpected uncertainties are related to 
trustworthiness in automated systems with humans. In automation, 
trust refers to the attitude of an agent to use or not use an automated 
system (Lee and See, 2004). Trust in automation is a critical issue. For 
example, suppose human agents would not use information from an 
automated system, such as changing the railroad to avoid a collision 
with a forward train despite correct information because of distrust of 
the system. In that case, they will not change the railroad. Then, 
collisions happen, resulting in system breakdown and loss of lives 
(Dzindolet et al., 2003). Thus, to prevent the disuse of the system in 
appropriate situations, trustworthiness should be  measured by 
human agents.

There are studies that seek to understand human agents’ cognitive 
states regarding the experience of trust or distrust by adjusting invalid 

results. Oh et  al. (2020) implemented invalid result stimulus by 
incorrect action, as invalid system performances. For example, the 
participants decided to drive to the third lane because the vehicle 
existed in front of the first and second lanes. In this case, the invalid 
result is that the vehicle was moved to the first lane, resulting in a 
collision by invalid system action even though they controlled vehicles 
driving to the third lane. Choo and Nam (2022) suggested a classifier 
for trust and distrust situations by showing invalid results based on 
given information to solve the problem with decision-making policy.

In a study of expected and unexpected uncertainty, Kogler et al. 
(2017) experimented with understanding cognitive states in expected 
or unexpected uncertainty using invalid results. They control the ratio 
of invalid results to make expected and unexpected uncertainty 
situations. For example, a cue, such as a star, circle, or triangle, is given 
for decision-making. The valid result is shown with rewards if they 
press the buttons related to each shape. For example, the reward 
(money) is increased by pressing the star shape button when they see 
the star shape. The invalid result is a loss of points by pressing the star 
shape when the cue is also a star shape. The expected uncertainty 
comprised 50% of invalid results, and the unexpected uncertainty 
situation comprised 20% of the invalid results after decision-making. 
Like the studies of trust in automation and expected and unexpected 
uncertainty, trustworthiness or expected and unexpected uncertainty 
depends on the ratio of invalid results. Therefore, this study focuses 
on understanding human cognitive states under different reliability 
levels of system usage environment (decision-making environment) 
under expected and unexpected uncertainty situations in multiple-cue 
judgment systems with a time delay of information delivery.

1.5 Electroencephalogram

Electroencephalogram is a measure of minute brain signals from 
the scalp. There are two types of EEG devices. First is invasive EEG, 
which measures the signal through implanted devices with brain 
surgery. The second is a non-invasive EEG device that wears a cap 
with electrodes to record EEG data. Non-invasive EEG devices show 

FIGURE 2

The explanation of expected and unexpected uncertainty concepts.
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lower EEG data quality than invasive EEG devices, but safety is much 
better than invasive EEG devices because there is no surgery to record 
the signal (Ahmadian et al., 2013). Non-invasive EEG data records 
brain signals through electrodes. These electrodes are mainly located 
on five different lobes, such as frontal (F), central lobe (C), parietal 
lobe (P), temporal lobe (T), and occipital lobe (O). The electrode 
layout is up to the study goal, where they want to know how the neural 
activity operates (Kumar and Bhuvaneswari, 2012; Lim et al., 2018).

The measured signals are used to understand neural activity by 
analyzing the amplitude change in the signal. EEG data is interpreted 
using different analysis domains. The first domain is the time domain 
based on the amplitude of potential value in time windows. The 
representative time domain analysis is the event-related potential 
(ERP), which is an analysis of amplitude peaking when a human 
experiences an event (stimulus) (Du et  al., 2013). The second is 
frequency domain analysis through a transformation from a time 
window to a frequency window. The frequency domain analysis is 
used to know brain states, such as sleep, relaxation, or anxiety 
according to the different frequency bands (Firoz et al., 2022). The last 
analysis domain is the time–frequency domain, which is used to 
understand brain activity through frequency change for each time 
window (Al-Fahoum and Al-Fraihat, 2014). This study used a 
non-invasive EEG device with ERP analysis as time domain analysis.

1.6 Event-related potential studies in 
human decision-making

For analysis of neural states under uncertainty in a multiple-cue 
judgment system, we used the ERP. ERP is a temporal analysis that 
measures amplitude (potential value) in a given the time window. 
Generally, neural states are interpreted by positive or negative peaking 
of amplitude from the onset, which is getting feedback timing from 
the event. The representative ERP pattern is P300, which shows 
positive peaking after 300 ms from the onset. The P300 patterns have 
been interpreted in cognitive states. For example, a higher P300 
amplitude means the mental state is superior. In contrast, lower P300 
amplitude occurs when the cognitive state is relatively weak, such as 
alcohol, drug, or nicotine dependence (Sur and Sinha, 2009).

ERP analysis is used in trust in human decision-making. Long 
et  al. (2012) analyzed ERP for trust choice. The ERP pattern was 
shown for “gain,” as a trustful choice, and “no gain,” as a distrustful 
choice. In this study, feedback-related negativity (FRN) and P300 
patterns appeared. FRN is showing a negative peak amplitude from 
200 to 300 ms after onset. P300 amplitude, as the P300 effect, is 
increased for trustful and distrustful choices. FRN effect is decreased 
in distrustful choice. de Visser et al. (2018) measured trust in different 
agent algorithms. The trust or distrust performances were significantly 
distinguished by observational error-related negativity (oERN), 
showing negative peaking after about 44 ms from the onset, and 
observational error positivity (oPe), with positive peaking after about 
150 ms from the onset. The one is shown by detecting unconscious 
errors, and oPe is shown by recognizing errors. Trust states were 
measured when humans have conversations with a chatbot in 
e-commerce by showing P2 (P200), showing positive or negative 
peaking approximately 200 ms after onset, and late positive potential 
(LPP) showing positive peaking approximately 600 ms after onset. P2 
is shown under low-level performance of the system, and LPP is 

shown under conscious control with sustained attention (Wang 
et al., 2023).

ERP studies have been conducted on expected and unexpected 
uncertainty. Kogler et  al. (2017) performed an ERP analysis to 
determine how neural states change when humans are under expected 
and unexpected, uncertain situations by giving positive and negative 
feedback in gambling experiments. FRN, showing negative peaking 
approximately 200–300 ms after onset, was shown when they saw 
negative feedback to their decision-making under uncertainties. P300 
pattern appeared in positive feedback under the expected and 
unexpected uncertainty. Boelaert (2022) performed ERP studies by 
decision-making based on multiple pattern cues under expected and 
unexpected uncertainties. P300 and N2pc, showing negative peaks 
approximately 180–300 ms after onset. N2pc is one of the N2 (N200) 
patterns, and it can appear when humans pay attention to distractors 
instead of targets.

ERP studies show neural states under trust and distrust, or 
expected and unexpected uncertainty. However, it is difficult to find 
ERP studies in the multiple-cue judgment system, such as MAS, with 
time delay issues for information reception. This study focused on 
how neural states operate under expected and unexpected uncertainty 
situations with a time delay in information delivery in the multiple-cue 
judgment system.

This study is about understanding the cognitive process of the 
human agent based on decision-making under uncertainty in the 
multiple-cue judgment system, such as MAS. Based on concepts of 
expected and unexpected uncertainties, the uncertainty is 
implemented by showing the frequency of invalid system performance 
after decision-making. Also, a time delay is added to investigate how 
this issue affects human decision-making by multiple cues 
(information) with time delay. An EEG measures neural 
correspondence after experiencing the multiple-cue judgment system. 
This study will give insight into how an unstable and unreliable 
decision-making environment under uncertainty affects the human 
agent’s decision-making process with time-delayed information 
transmission for developing high-level MAS.

2 Method

2.1 Experimental setup for unreliable 
system performance environment

In this study, the unreliable system usage environment is 
comprised of a ratio of invalid system performances based on multiple 
cues and a real-world result in decision-making. The five agents’ cues 
have information on where the bulb will be located between left and 
right. The agent can detect the bulb’s location and transmit information 
to a human agent. The real-world result shows the bulb’s location with 
feedback, such as correct or wrong prediction based on decision-
making with cues, as shown in Figure 3.

Invalid system performance means that it is not the same between 
given multiple cues from each agent and real-world results after 
decision-making in this study. For example, suppose that the real-
world result is that the bulb is located on the right side when three out 
of five arrows point out left in the cue section. In this case, an invalid 
system performance situation is shown, which can result in the wrong 
consequences for the bulb location in the real world for the system 
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aim. In the experiment process for each trial in Figure 4, fixation is 
shown for 1 s to refresh. Then, multiple cues (arrows) are shown. For 
decision-making based on multiple cues, we let decision-makers know 
they should press keypad “1” if they think the bulb will appear on the 
left side and that they should press keypad “2” if they predict the bulb 
will be on the right side.

The expected and unexpected uncertainty situation consists of the 
different ratios of invalid system performances to build three different 
system usage environments. The invalid system performance is when 
multiple cues and real-world results are different. The first is the 
perfect system environment (PF) with no invalid system performances. 
Second is the expected uncertainty environment (EX) with a 50% ratio 
of invalid system performances. Finally, the unexpected uncertainty 
environment (UX) is a 10% ratio of invalid system performances. 
There are 60 decision-making trials for each environment. The invalid 
system performance is manipulated intently for reliable or unreliable 
system usage environments.

2.2 Experimental design for time delay

The time delay is implemented by showing each arrow with 
specific interval times with three types of conditions. The first is no 
time delay (NO), showing all five arrows simultaneously. The second 
is regular time delay (RE), showing the four arrows with 0.25-s 
intervals after showing the first arrow. The last is the irregular time 
delay (IR), showing one arrow after 1.5 s, while the other four arrows 
are shown with a 0.25-s delay. The first arrow is shown after 0.25 s 
from the empty display for all conditions, and the arrows are not 
shown simultaneously in RE and IR conditions. The order of the 
arrows shown is random, not shown from top to bottom, as shown in 
Figure 5.

The experiment is conducted in nine conditions combined with 
three types of system usage environments and three types of time 

delay situations, as shown in Table 1. We first experimented, showing 
NOPF. After the NOPF condition, the other eight conditions were 
randomly presented to participants. This study used PsychoPy 
(2023.2.3) as an experiment tool based on Python code.

The perfect system situations, such as no time delay under the 
perfect system (NOPF), the regular time delay under the perfect 
system (REPF), and the irregular time delay under the perfect system 
(IRPF), have a 0% ratio of invalid system performance (i.e., 0 invalid 
system performance out of 60 decision-making trials) as most reliable 
system usage environment for decision-making.

The expected uncertainty situations, such as no time delay under 
the unexpected uncertainty situations (NOEX), the regular time delay 
under the expected uncertainty (REEX), and the irregular time delay 
under the expected uncertainty situations (IREX), have a 50% ratio of 
invalid system performance (i.e., 30 invalid system performances out 
of 60 decision-making trials) as unreliable system usage environment 
for decision-making.

The unexpected uncertainty situations, such as no time delay 
under the unexpected uncertainty situations (NOUX), the regular 
time delay under the unexpected uncertainty (REUX), and the 
irregular time delay under the unexpected uncertainty situations 
(IRUX) have a 10% ratio of invalid system performance (i.e., six 
invalid system performances out of 60 decision-making trials) as a 
reliable system usage environment for decision-making.

2.3 Electroencephalogram instrumentation

We used EEG to understand the cognitive process based on 
decision-making in a multiple-cue judgment system. EEG measures 
human electrical signals as brain activity from the scalp. The cognitive 
process is interpreted by changes in electrical signals when humans 
experience specific stimuli. The electrical signal data is measured and 
collected by electrodes (channel). We  used a 10–20 system. The 

FIGURE 3

Experiment design for the valid and invalid results according to decision-making.
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common mode sense (CMS) and driven right leg (DRL) are located, 
respectively, AFz and FCz, and two mastoid electrodes (TP9 and 
TP10) are offline re-referenced to improve EEG quality (Fong et al., 

2012; Stopczynski et al., 2014). Thus, 30 electrodes were used (Fp1, 
Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, 
CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and PO10) for 

FIGURE 4

Experiment process in one decision-making trial.

FIGURE 5

Experiment with the design of time delay conditions by time flow.
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EEG data analysis. The EEG device was an Emotiv EpocFlex get kit, 
and the data sampling size was 128 Hz.

2.4 Demographic information of 
participants

The experiment was conducted with 19 participants. The 
participants’ ethnicity was 11 Africans, two African Americans, three 
Asians, and two Caucasian Americans. The average age is 32.1, and all 
participants are older than 18. All participants had no physical or 
psychological disorder to conduct experiments. For every experiment 
session, we asked whether they needed a rest. The average experiment 
time is 63.85 min. This study proceeded with institutional review 
board (IRB) approval with received consent from all participants.

2.5 Electroencephalogram data 
preprocessing

Data preprocessing is necessary for EEG data because of noise and 
artifacts, such as eye or muscle movement, in raw EEG data. The EEG 
data were filtered by the higher edge of the frequency at 30 Hz and 
epoched before 200 ms to after 1,000 ms from the onset as the timing 
when participants see the feedback after the decision-making. 
We referenced EEG data based on two mastoids (TP9 and TP10), and 
the baseline was removed before 200 ms to remove noise and 
normalize EEG data (Fong et  al., 2012). We  used independent 
component analysis (ICA) to remove artifacts and only retained brain 
activities after ICA. Finally, we removed EEG epochs when the voltage 
is higher than 75 μV or lower than −75 μV to remove EEG data 
having extremely high or low voltage. We used EEGLAB (v2022.1) as 
an EEG data preprocessing and analysis software tool based on 
MATLAB for EEG data preprocessing. ERP analysis was performed 
according to ERP epochs for nine conditions (3 uncertainty situations 
× 3 time delay conditions), as shown in Table 1.

2.6 Statistical analysis

For significant analysis of the effect of uncertainty situations and 
time delay issues, we conducted an analysis of variance (ANOVA) by 
using the SAS program (Version 9.41) for ERP amplitude. The 
dependent variables are uncertainty situations (EX, PF, and UX) and 

time delay conditions (IR, NO, and RE). The significance level is 0.05 
(α < 0.05). For the post-hoc test, we used Tukey’s test.

3 Results

3.1 Data visualization of event-related 
potential analysis

We used the ERP analysis to understand how reliable or unreliable 
system usage environment and time delay affect human decision-
making. ERP is the interpretation of change in recorded electrical 
signal data based on the time domain from the onset when humans 
see or experience specific stimuli. The EEG analysis of this study 
shows a P300 (or P3) pattern showing a positive peak amplitude 
(potential value) of approximately 300 ms. The time range is 
350–450 ms for each of the nine conditions around the parietal lobe 
part with six channels (Cz, CP1, P3, O1, Pz, Oz, O2, P4, and CP2) 
based on Pz. Also, P300 patterns are shown in terms of system usage 
environment by systems usage reliability, as shown in Figure 6.

For eye inspection of the ERP plot in Figure 6, the grand averaged 
ERP plot shows positive peaking approximately 300 ms (350 ~ 450 ms) 
after onset. In the ERP plot, the expected uncertainty situations (IREX, 
NOEX, and REEX) seem to have the highest amplitude rather than the 
unexpected uncertainty situations (IRUX, NOUX, and REUX) and 
perfect system situations (IRPF, NOPF, and REPF). In the time delay 
conditions, no delay seems to have the highest amplitude in the 
expected uncertainty situation and perfect system.

We plotted EEG data as averaged topography to know how 
different system performance environments change brain activity and 
time delay conditions by showing averaged potential values. The 
positivity’s tone is warm, and the color becomes thicker when the 
potential value increases, as shown in Figure  7. Positivity means 
having an area of positive amplitude (microvolts).

In visual inspection, the positivity of NO, RE, and IR conditions 
seem to have similar positivity in the expected uncertainty (EX) (see 
Figures 7B,E,H) and perfect system (PF) (see Figures 7A,D,G). In the 
unexpected uncertainty (UX) situation, NO conditions look to have 
the smallest positivity (see Figure 7C).

Table  2 shows the grand averaged amplitude by system usage 
environment and time delay conditions (nine conditions). Table 2 also 
shows the mean of the grand average by three different system usage 
environments (uncertainty situations) and three different time 
delay types.

TABLE 1 The number and ratio of invalid system performance to build three different system usage environments (uncertainty situations) and nine 
experiment conditions with three different time delay issues.

No time 
delay (NO)

Regular time 
delay (RE)

Irregular 
time delay 
(IR)

The number of invalid 
system performances 
(trials)

Ratio of invalid 
system 

performances (%)

Perfect System (PF) NOPF1) REPF2) IRPF3) 0 out of 60 trials 0%

Expected Uncertainty situations (EX) NOEX4) REEX5) IREX6) 30 out of 60 trials 50%

Unexpected Uncertainty situations (UX) NOUX7) REUX8) IRUX9) 6 out of 60 trials 10%

NOPF1): no time delay under the perfect system; REPF2): regular time delay under the perfect system; IRPF3): irregular time delay under the perfect system; NOEX4): no time delay under the 
expected uncertainty situations; REEX5): regular time delay under the expected uncertainty situations; IREX6): irregular time delay under the expected uncertainty situations; NOUX7): no time 
delay under the unexpected uncertainty situations; REUX8): regular time delay under the uncertainty situations; IRUX9): irregular time delay under the uncertainty situations.
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In grand averaged amplitude, no time delay under expected 
uncertainty shows the highest amplitude (3.021 μV). We  used 
two-way ANOVA for P300 potential values (amplitude) in nine 
conditions. The different uncertainty situations significantly affected 
P300 amplitude differences (F = 7.76, p = 0.0006 < 0.05). The grand 
averaged P300 amplitude was calculated for the parietal lobe part 
channels (Cz, CP1, P3, O1, Pz, Oz, O2, P4, and CP2) for 350–450 ms. 
The means of amplitude by uncertainty situations and time delay 
conditions is the mean of the grand averaged P300 amplitude value. 
In Tukey’s test for the post-hoc test, the expected uncertainty 
situation makes a significant amplitude difference from other 
situations, such as perfect system (p  = 0.0004) and unexpected 
uncertainty situations (p = 0.0203). However, there is no significant 
difference in amplitude change between unexpected uncertainty 
situations and a perfect system (p = 0.4568). In time delay conditions, 
different time delay conditions did not significantly affect P300 
amplitude differences (F  = 0.04, p  = 0.9562). Also, there is no 
interaction effect between uncertainty situations and time delay 
conditions (F  = 0.22, p  = 0.9297). It means these two dependent 
variables have no relationship to affect amplitude change.

3.2 Event-related potential analysis by 
three uncertainty situations

Figure  8 shows the grand averaged ERP analysis by three 
uncertainty situations. There is a difference between the nine-
condition analysis and the three uncertainty situations analysis.

In the nine-condition analysis, the mean of grand averaged 
amplitude was calculated for the 19 subjects for uncertainty 
situations. The analysis is visualized in a grand averaged ERP plot 
before 200 to after 1,000 ms from the onset in Figure 8A, 350–450 ms 
from the onset, and topography with grand averaged amplitude in 
Figure 8B.

In visual inspection, EX shows the largest positivity (see 
Figure 8C), and PF shows the smallest (see Figure 8D). In grand 
averaged potential values by system usage environments, such as 
the grand average of no time delay, regular time delay, and irregular 
time delay under the uncertainty environment, the expected 
uncertainty environment (the grand average of NOEX, REEX, and 
IREX environments) shows the highest potential value (2.903 μV). 
The unexpected uncertainty environment (the average of NOUX, 
REUX, and IRUX) shows the second-highest amplitude (1.196 μV). 
The perfect system environment (the average of NOPF, REPF, and 
IRPF) shows the lowest amplitude (0.6439 μV), as shown in 
Table 3.

We performed a one-way ANOVA to determine the significant 
differences in the grand averaged P300 amplitude under uncertainty 
situations. The amplitude size is significantly different in uncertain 
situations (F = 3.34, p = 0.0429). In the Tukey post-hoc test, the 
perfect system and the expected uncertainty situations have 
significant amplitude differences (p = 0.0425). In contrast, expected 
and unexpected uncertainty situations have no significant 
amplitude differences (p = 0.1564). Also, the perfect system and 
unexpected uncertainty situations have no significant difference 
(p = 0.8173).

FIGURE 6

Event-related potential plot for nine conditions and system usage environments. (A) 9 conditions; (B) Perfect systems (PF); (C) Expected uncertainty 
situations (EX); (D) Unexpected uncertainty situations (UX).
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3.3 Event-related potential analysis by three 
time delay conditions

Figure 9 shows the ERP analysis by three time delay conditions. 
The analysis is visualized in the grand averaged ERP plot before 
200 ms to after 1,000 ms from the onset, 350–450 ms from the onset, 
and topography with grand averaged amplitude.

In averaged potential values by time delay conditions, such as 
the grand average of the perfect system, expected uncertainty, 

and unexpected uncertainty environments with no time delay, the 
no time delay conditions (the grand average of NOPF, NOEX, and 
NOUX conditions) show the highest potential value (1.592 μV). 
The grand average of irregular time conditions (the grand average 
of IRPF, IREX, and IRUX conditions) shows the second-highest 
potential value (1.568 μV). The average of regular time conditions 
(the grand average of REPF, REEX, and REUX conditions) has the 
lowest potential value (1.514 μV), as shown in Table 4. In one-way 
ANOVA in time delay conditions, there is no significant 

FIGURE 7

The grand averaged topography plot by system usage environment and time delay conditions: (A) no time delay under perfect system (NOPF); (B) no 
time delay under the expected uncertainty situations (NOEX); (C) no time delay unexpected under the unexpected uncertainty situations (NOUX); 
(D) regular time delay under perfect system (REPF); (E) regular time delay under the expected uncertainty situations (REEX); (F) regular time delay under 
the unexpected uncertainty situations (REUX); (G) irregular time delay under perfect system (IRPF); (H) irregular time delay under the expected 
uncertainty situations (IREX); (I) irregular time delay under the unexpected uncertainty situations (IRUX); (J) potential value (amplitude) range.
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TABLE 2 The grand averaged amplitude is determined by the system usage environment and time delay conditions.

Perfect system (PF) Expected 
uncertainty (EX)

Unexpected uncertainty 
(UX)

Mean of grand averaged 
amplitude by NO/RE/PF

No time delay (NO) NOPF1) 0.6958 NOEX2) 3.401 NOUX3) 1.059 NOPF &

NOEX &

NOUX

1.7186

Regular time delay (RE) REPF4) 0.518 REEX5) 2.57 REUX6) 1.532 REPF &

REEX &

REUX

1.5402

Irregular time delay (IR) IRPF7) 0.6811 IREX8) 2.804 IRUX9) 1.412 IRPF &

IREX &

IRUX

1.6322

Mean of grand averaged 

amplitude by EX/PF/UX

NOPF &

REPF &

IRPF

NOEX &

REEX&

IREX

NOUX &

REUX&

IRUX

0.6317b10) 2.9248a 1.3344b

Three different system usage environments (uncertainty situations) and three different time delay types (unit: microvolts (μV)). NOPF1): no time delay under the perfect system; NOEX2): no 
time delay under the expected uncertainty situations; NOUX3): no time delay under the unexpected uncertainty situations; REPF4): regular time delay under the perfect system; REEX5): regular 
time delay under the expected uncertainty situations; REUX6): regular time delay under the unexpected uncertainty situations; IRPF7): irregular time delay under the perfect system; IREX8): 
irregular time delay under the expected uncertainty situations; IRUX9): irregular time delay under the unexpected uncertainty situations; 10) means of the grand averaged amplitude with 
different letters in a row are different at 5% significance level by Tukey’s test by three uncertainty situations of nine conditions.

FIGURE 8

Event-related potential analysis by three time delay conditions with amplitude values: (A) grand averaged event-related potential plot by uncertainty 
situations (−200 to 1,000 ms); (B) grand averaged event-related potential plot uncertainty situations (350–450 ms); (C) topography of the expected 
uncertainty situations (EX); (D) topography of perfect system (PF); (E) topography of the unexpected uncertainty situations (UX); (F) potential value 
(amplitude) range.
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amplitude difference by different time delay conditions (F = 0.00, 
p = 0.9958).

4 Discussion

The P300 pattern can be interpreted as memory load. Memory 
load (or working memory load) is the cognitive ability to temporarily 
store and use information to support decision-making (Baddeley, 2003; 
Cowan, 1999; Scharinger et  al., 2017). High memory load makes 
impairment of cognitive reappraisal of emotional responses for specific 

situations (Gan et  al., 2017). In memory load, positive peaking or 
deflection for 300–600 ms after onset (Kok, 1997; Kramer et al., 1986; 
Mecklinger et al., 1992). Wang et al. (2015) set up 450–550 ms in terms 
of memory load. Thus, 350–450 ms is a reasonable time window to 
know the impact of expected and unexpected uncertainty in memory 
load. In studies on memory load with P300, memory load can 
be increased when P300 amplitude is decreased (Wang et al., 2015).

4.1 Memory load by nine conditions

The no time delay under the expected uncertainty condition (NOEX) 
shows the highest amplitude (3.021 μV), as shown in Figure 10.

This result can be interpreted as the memory load being reduced 
in the unreliable system usage environment (expected uncertainty 
situation) when information delivery has no time delay. In terms of 
uncertainty situations, the expected uncertainty situations (NOEX, 
IREX, and REEX) show the highest amplitude values. The unexpected 
uncertainty situations (REUX, IRUX, and NOUX) show the second-
highest amplitude values. Finally, the lowest amplitude is shown in the 
perfect system situations (NOPF, IRPF, and REPF).

TABLE 3 The grand averaged ERP amplitude for three uncertainty 
situations from 350 to 450 μV.

Expected 
uncertainty 

situation 
(EX)

Perfect 
system 

situation 
(PF)

Unexpected 
uncertainty 

situation 
(UX)

Amplitude (μV) 2.903a1) 0.6439b 1.196ab

1)Means of the grand averaged amplitude with different letters in a row are different at 5% 
significance level by Tukey’s test by three uncertainty situations of nine conditions.

FIGURE 9

Event-related potential analysis by three time delay conditions with amplitude values: (A) grand averaged event-related potential plot by time delay 
(−200 to 1,000 ms); (B) grand averaged event-related potential plot by time delay (350–450 ms); (C) topography of irregular time delay (IR); 
(D) topography of no time delay (NO); (E) topography of regular time delay (RE); (F) potential value (amplitude) range.
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FIGURE 10

Comparison graph for the mean of grand averaged P300 amplitude from 350 to 450 ms under nine conditions.

In two-way ANOVA, there is a significant amplitude change by the 
uncertainty situations (p = 0.0006). There is also a significant amplitude 
difference between the expected uncertainty and two other uncertainty 
situations. The expected uncertainty situations showed a higher mean of 
grand averaged P300 amplitude (2.9248 μV) than two other uncertainty 
situations, such as the unexpected uncertainty situation (1.3344 μV) and 
perfect system (0.6317 μV), as shown in Table 2. This means that an 
unreliable system usage environment can cause a less memory load that 
shows a higher P300 amplitude than a reliable system usage environment.

4.2 Memory load under reliable or 
unreliable system usage environment

The expected uncertainty environment shows the highest 
amplitude (2.903 μV) when compared with the other two system 
usage environments, such as unexpected uncertainty (1.196 μV) and 
the perfect system (0.6439 μV) environments, as shown in Table 3. In 
Tukey’s post-hoc analysis after one-way ANOVA analysis, there is a 
significant difference in amplitude between the expected uncertainty 
situation and the perfect system (p = 0.0425). In contrast, there are no 
significant differences between expected and unexpected uncertainty 
situations (p = 0.1564) or between unexpected uncertainty situations 
and perfect systems (p = 0.8173).

In two-way ANOVA for the mean of grand averaged P300 
amplitude in nine conditions, the expected uncertainty situations and 
the other two are significantly different (p = 0.0004 for PF; p = 0.0203 
for UX). The expected and perfect systems are significantly different 
in one-way ANOVA for grand averaged P300 amplitude in three 
uncertainty situations. The expected uncertainty situations (EX) show 
a higher P300 amplitude for the other two uncertainty situations. This 
means that expected uncertainty situations lower memory load. Based 
on this result, we can conclude that the observation of an invalid 
result, which affects unreliable environment construction by expected 
or unexpected uncertainty situations, requires less memory load.

The reason for showing high P300 amplitude under unreliable 
system usage would be  that humans will not follow the decision 

support system by distrusting the unreliable system usage 
environment. The expected or unexpected uncertainty environment 
makes an unreliable environment, unlike a perfect system showing no 
invalid result after decision-making. The experience of invalid 
performance can make human agents not trust the decision support 
system and information because of invalid results, despite following 
system rules for decisions. By distrusting the systems, the human 
agents will make decisions without considering information from 
agents. In the perfect system, it shows no invalid result if they follow 
the decision policy of the multiple-cue judgment system. So, the 
perfect system shows valid performance when human agents follow 
system rules. For this reason, they need to remember the rules to get 
valid results with the memory load increase. Thus, it can be considered 
that unreliable system environments result in less remembering rules 
for utilizing the system due to distrustful experiences by expected or 
unexpected uncertainty, so a low memory load is shown in the 
multiple-cue judgment environments. However, we need to study the 
relationship between memory load and human behavior that does not 
follow the decision policy of the system.

4.3 Memory load under time delay issue

The NO condition shows the highest amplitude (1.592 μV) in the 
time delay issue. The IR condition shows the second-highest amplitude 
(1.568 μV), and the RE shows the lowest amplitude (1.514 μV) in 
Table 4. In two-way ANOVA and one-way ANOVA, there are no 
significant amplitude changes by time delay conditions (F  = 0.00, 
p = 0.9958 in a one-way ANOVA; F = 0.04, p = 0.9562 in two-way 
ANOVA). Thus, it can be concluded that delayed information delivery 
does not affect memory load.

In the time delay aspect, the error-related negativity (ERN or Ne) 
patterns were shown in specific electrodes. ERN is shown during a 
0–100-ms time window after onset. ERN can reflect cognitive states for 
mismatching expected and real-world results (Larson et al., 2010). In 
this study, there were ERN patterns during 0–100 ms. One of the ERN 
studies mentioned that this ERN amplitude is negatively increased when 
emphasizing the accuracy of matching between result and decision-
making rather than emphasizing reaction time, such as notifying “your 
decision is slow” (Mattes et al., 2023). Based on this study, the time delay 
aspect can be interpreted as pressure on accuracy or reaction time for 
decision-making. Also, we will approach different analysis methods, 
such as frequency domain analysis, to find how the cognitive process 
operates by delayed information delivery.

TABLE 4 The grand averaged ERP amplitude for three time delay 
conditions from 350 to 450 μV.

No time 
delay (NO)

Irregular time 
delay (IR)

Regular time 
delay (RE)

Amplitude (μV) 1.592 1.568 1.514
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5 Conclusion

This study is about understanding the cognitive process under the 
reliability of system usage environment with environmental 
uncertainty and time delay issues in multiple-cue judgment systems, 
such as MASs. We used the EEG for the neurological analysis of this 
study. The EEG analysis shows that P300 appears, and we interpret this 
result in terms of memory load. We can conclude that the memory 
load is significantly reduced under unreliable system usage 
environments because the decision policy of a system is less considered 
when making decisions to use the system. In this case, we need to 
perform a study to understand how memory load changes when 
humans do not follow the decision policy of the system for decision-
making. In the time delay issue in information delivery, we could find 
that delayed information delivery does not significantly affect memory 
load for decision-making in multiple-cue judgment systems.

The significant finding of this study is about differences in memory 
load by unreliable or reliable system usage environment (expected or 
unexpected uncertainty situations), not the measurement of cognitive 
states by valid or invalid feedback, as prior studies have been studied. 
However, the participants of the ethnicity group were imbalanced, so 
there is a weakness in normalized analysis by specific ethnicity groups. 
Also, this study proceeded with a theoretical approach to the visual 
aspect of the user interface. For practical analysis of cognitive states, 
the practical experiment can be  conducted using a practical user 
interface for a specific automated system. The time delay of information 
delivery will be conducted with another ERP pattern, such as ERN, to 
interpret cognitive states. Also, we will perform other domain analyses 
for EEG data, such as frequency domain analysis, to determine which 
cognitive process operates due to delayed information delivery.

This study is about understanding cognitive states in an unreliable 
MAS usage environment with multiple sources of information. This 
study focuses on an unreliable system usage environment, which is not 
a valid (good) or invalid (poor) system performance. This unique 
study aspect can give insight into measuring and monitoring human 
cognitive states and whether users are trapped in unreliable MAS. Thus, 
we expect insight into an index of categorization of neural states under 
a reliable or unreliable decision-making environment to use a 
multiple-cue judgment system with information delivery delays from 
this study.
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