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Super special relativity
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This paper proposes a new theoretical framework for understanding time 
perception centered on information processing in the brain. We introduce the 
concept of “perceptual time” as distinct from inertial clock time and develop a 
model relating perceptual time experience to the brain’s computational capacity 
and information processing rate. This framework explains phenomena like time 
dilation and compression during intense experiences in terms of neural information 
processing, bridging perceptual time with physical theories of time.
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1 Introduction

Our experience of time is fundamental to consciousness, yet often diverges from inertial 
clock time. Moments can stretch or compress depending on our mental state and environmental 
conditions. While Einstein’s theory of relativity established that inertial time measured by a 
standard clock in a non-accelerating (inertial) reference frame is relative to the observer’s 
position and motion in physical space–time, we propose that inertial time is also relative to the 
observer’s internal frame of reference, which is their neural information processing capacity.

This paper introduces a theoretical framework for “perceptual time” based on information 
theory and computational neuroscience. Perceptual time experience emerges from the brain’s 
information processing and can be modeled as a function of neural computational capacity 
and information processing rate. This relationship provides a quantitative approach to 
characterizing phenomena such as perceptual time compression during intense experiences 
or perceptual time dilation during flow states.

The proposed model holds significant potential for real-world applications. Understanding 
perceptual time variations can help us understand and potentially aid in the development of 
therapeutics for ailments that affect time perception, such as Alzheimer’s and Parkinson’s 
disease. Additionally, time perception plays a crucial role in productivity, as the ability to 
perceive time impacts workload estimation. Understanding the brain’s true capacity to perform 
tasks can help set realistic workplace expectations and optimize business operations.

Moreover, the Perceptual Time Model will also have broad implications with respect to 
brain-computer interfaces (BCIs) and artificial intelligence (AI) systems. Future iterations of 
brain-computer interfaces could leverage the model to modulate an individual’s perception of 
time, potentially enhancing focus or mitigating the perception of time pressure in high-stress 
scenarios by compressing perceptual time. AI systems, on the other hand, could adopt 
perceptual time as a more adaptive metric for measuring a system’s evolution, allowing for a 
granular understanding of task prioritization and decision-making in dynamic environments. 
However, further empirical research is necessary to validate the model and develop practical 
methods for measuring the key cognitive variables that influence perceptual time.

2 Background

The perception of time is a foundational aspect of conscious experience, with time being 
inescapable and pervasive in our individual experiences (Callender, 2017; James, 1890). Time 
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holds a special status as it is the only property that persists in both the 
content and structure of our experiences, making it a strong candidate 
for a minimal unifying model of consciousness (Dainton, 2008; 
Phillips, 2010; Chuard, 2011; Windt, 2015). Understanding how the 
brain processes temporal information and gives rise to our perception 
of time is complex, given the intricate network of billions of neurons 
and trillions of synaptic connections. Given the complexity, extensive 
research has been conducted, some consistent and some conflicting, 
but the challenge remains in developing a comprehensive framework.

2.1 Existing computational models of time 
perception

Various theories, such as the internal clock theory (Church, 1984) 
and the behavioral theory of timing (Killeen and Fetterman, 1988), 
have sought to explain the neural mechanisms underlying time 
perception. Computational and robotic models have been developed to 
study these theories, including the pacemaker-accumulator model 
(Simen et al., 2013) and the memory decay model (Addyman et al., 
2011). The pacemaker-accumulator model provides a framework for 
how time and duration are perceived, insisting that a mechanism in the 
brain (the pacemaker) sends pulses to an accumulator in the brain that 
counts the pulses to deduce time. The theory further suggests the 
presence of a “switch” between the pacemaker and accumulator that 
activates depending on whether the brain is actively paying attention to 
time (Simen et al., 2013). In contrast, the memory decay model of time 
perception posits that our temporal judgments are influenced by the 
gradual weakening of memory traces. As retention intervals increase, 
there is a progressive strengthening of central bias, where individuals 
place greater weight on expected rather than actual duration 
distributions when perceiving incoming sensory stimuli (Addyman 
et al., 2011). Review papers like Basgol et al. (2021) have synthesized 
these works, but there remains a need for a comprehensive framework 
that exploits temporal information to govern agentic behavior.

In addressing the computational mechanisms underlying temporal 
processing, the State-Dependent Network (SDN) model (Karmarkar 
and Buonomano, 2007) demonstrates that temporal information can 
be encoded through intrinsic neural dynamics via short-term synaptic 
plasticity and GABA_B-mediated inhibition, rather than dedicated 
timing mechanisms. This context-dependent framework, wherein 
temporal encoding varies with the network’s initial state, provides a 
mechanistic explanation for how internal mental states influence time 
perception. However, the model’s severe temporal limitations (<500 ms), 
are validation restricted to simple discrimination tasks, and parameter 
sensitivity undermines its explanatory power, particularly as its inability 
to account for longer durations necessitates hybrid approaches that 
reintroduce the dedicated timing mechanisms it sought to replace.

2.2 Neural correlates and behavioral 
evidence for modeling time perception

In the pursuit of a unified model of time perception, numerous 
studies have revealed striking parallels between numerical and 
temporal processing, as evidenced by behavioral, neural, and clinical 
data (Dormal et al., 2006; Feigenson, 2007; Provasi et al., 2011; Dormal 

and Pesenti, 2012, 2013; Vicario et  al., 2013). These parallels, 
supported by behavioral, neural, and clinical evidence, suggest shared 
underlying mechanisms that could form the foundation of such a 
model. Behavioral data indicates that both numerical and temporal 
judgments rely on Weber’s Law, with discrimination being more 
straightforward when quantities differ by a larger ratio (Stevens, 
1957). Weber’s law states that the just-noticeable difference between 
two stimuli is proportional to the magnitude of the stimuli (Fechner, 
1966). For instance, rats and infants have demonstrated the ability to 
generalize rules learned in one area, such as time or numbers, to the 
other (Meck and Church, 1983; de Hevia et al., 2012). However, in the 
case of infants, similar developmental trajectories are observed during 
infancy, but divergence emerges in childhood (Odic, 2017).

This highlights the need for a plausible foundational model of 
perceptual time that can accommodate these developmental 
deviations. While our current framework is not age-parameterized, it 
can account for these effects by attributing developmental changes to 
evolving neural architecture, specifically, changes in the effective 
number of processors, efficiency, and power consumption. As cortical 
networks mature and cognitive functions like attention and working 
memory strengthen, the brain’s capacity to process temporal 
information becomes more differentiated. Future empirical work 
could use this framework to map developmental trends in time 
estimation to underlying neural computation parameters.

Additionally, neuroimaging studies have shown intraparietal 
sulcus (IPS) activation during both numerical and temporal 
processing in adults (Dormal et al., 2012; Skagerlund et al., 2016; 
Hayashi et al., 2013), suggesting that the comorbid deficits in quantity 
processing observed in clinical disorders like Turner syndrome—
linked to spatial reasoning and working memory impairments—may 
arise from disruptions in the neural mechanisms supporting these 
overlapping cognitive functions (Vicario et  al., 2013). The overall 
consensus is that the IPS is implicated more strongly in numerical 
than temporal processing (Rammsayer and Classen, 1997; Nenadic 
et al., 2003; Mattel and Meck, 2004; Koch et al., 2009), which led to the 
proposal of a standard magnitude system responsible for processing 
both time and numbers (Meck and Church, 1983; Walsh, 2003; 
Cantlon et al., 2009).

Given the findings from IPS and laboratory studies, the 
correlation between temporal and numerical processing was 
previously a key foundational component of time perception. 
However, inconsistencies in subsequent research have ultimately 
discredited its inclusion in models (Baker et al., 2013; Young and 
Cordes, 2013; Odic, 2017), highlighting the need for a plausible 
foundational model for perceptual time that rectifies inconsistencies 
in existing research.

As research advances in the fields of biology and neuroscience, it 
is increasingly apparent that the brain’s mechanisms for perceiving 
time are highly complex, posing significant challenges for developing 
a comprehensive understanding of these processes. A simplified 
theoretical model that abstracts the complexities of neural 
computation and focuses on critical parameters governing the brain’s 
information processing capacity has the potential to elucidate how 
computational limitations lead to perceptual time distortions. By 
building upon fundamental principles of information processing, 
energy consumption, and physical constraints, such a model can 
capture the essential aspects of perceptual time.
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3 Theoretical framework

3.1 Introduction

In this paper we  propose a simplified theoretical model, the 
Perceptual Model of Time, to explore how the brain’s computational 
limitations might lead to perceptual time distortions. This model 
abstracts the complexities of neural computations and focuses on key 
physical parameters that govern the brain’s information 
processing capacity.

3.2 Fundamental principles and simplifying 
assumptions

Our model is built upon three fundamental principles:

 1 Information Processing: The brain continually processes 
information from sensory inputs, internal signals, and 
cognitive activities. A study by Panagiotaropoulos et al. (2012) 
demonstrated this by showing that visual awareness is reflected 
in power modulations of high-frequency local field potentials 
in the lateral prefrontal cortex of macaque monkeys. This 
finding suggests that neuronal populations in this associated 
cortical area represent the content of conscious 
visual perception.

 2 Energy Consumption: Information processing requires energy, 
with the brain consuming a significant portion of the body’s 
metabolic resources. Neuroimaging studies have shown 
activation of the IPS during both numerical and temporal 
processing in adults, indicating an apparent energy demand 
during these processes (Dormal et al., 2012; Skagerlund et al., 
2016; Hayashi et al., 2013).

 3 Physical Constraints: Physical factors such as neuronal 
transmission speeds, synaptic efficiency, and energy availability 
limit the brain’s information processing capacity. These 
constraints have been explored through computational and 
robotic models, including the pacemaker-accumulator model 
(Simen et al., 2013) and the memory decay model (Addyman 
et al., 2011).

By acknowledging these principles, we can construct a model that, 
while simple, captures the essential aspects of how computational 
limitations affect perceptual time. This approach builds upon the 
existing body of research synthesized in review papers like Basgol et al. 
(2021) while providing a novel framework that exploits temporal 
information to govern agentic behavior.

3.3 Integration with background models

While traditional frameworks such as the pacemaker-accumulator 
(Simen et al., 2013) and memory decay models (Addyman et al., 2011) 
focus on the internal generation of temporal signals or the degradation 
of memory traces over time, our approach shifts emphasis to the 
computational constraints that govern overall neural information 
processing capacity. Rather than relying solely on clock-like 
mechanisms or passive forgetting, our model incorporates fundamental 

physical and metabolic constraints—such as parallel processing 
capabilities, energy consumption, and efficiency factors—to provide a 
broader, capacity-limited perspective on how time perception emerges 
from the brain’s underlying information-processing architecture.

3.4 The basic model

We distinguish perceptual time (t ’) from inertial time (t) and 
introduce the following key variables:

I : Total information processed by the brain (bits)
N : Number of processors (e.g., neurons or functional 

computing units)
P : Power consumption per processor (watts)
η :  Efficiency factor (bits/joule)

T : Absolute temperature of the brain (kelvin)
Step 1: Define the maximum computational rate of the brain (R) 

(in bits/s) as:

 = × ×ηR N P  (1)

Equation 1 represents the total rate at which the brain can 
process information.

Step 2: Relate perceptual time to the total information processed 
(I ) and the computational rate (R):

 
=

× η
′ =

×
I It
R N P  

(2)

This implies that perceptual time is proportional to the total 
information processed divided by the processing capacity, aligning 
with our conceptual framework.

Examples:
In the context of perceptual time, the relationship between inertial 

time and perceptual time can be represented by various ratios.
A 1:1 ratio indicates that 1 s of perceptual time is equivalent to 1 s 

of inertial time, suggesting a perfect correspondence between the two. 
However, deviations from this ratio can occur, leading to either a 
compression or dilation of perceptual time.

When the ratio is 1:0.5, 1 s of perceptual time is equal to 0.5 s of 
inertial time, indicating a compression of perceptual time (moments 
feel longer or slower).

Conversely, a ratio of 1:2 represents a dilation of perceptual time, 
where 1 s of perceptual time is equal to 2 s of inertial time (moments 
feel shorter or faster).

3.4.1 Analogies

3.4.1.1 Velocity equation
Equation 2 is analogous to the familiar formula = /t d v  (time 

equals distance divided by velocity). Both equations relate a quantity 
to the ratio of two other quantities: in = /t d v, time (t) is related to the 
ratio of distance (d) and velocity (v), while in Equation 2, perceptual 
time ( ′t ) is related to the ratio of total information processed (I ) and 
the computational rate ( η× ×N P ). The structure of the equations is 
also similar, with the “perceived” quantity (perceptual time) being 
equal to the ratio of an “actual” quantity (distance or information) 
divided by another “actual” quantity (velocity or computational rate). 
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This analogy helps to illustrate how the proposed equation relates 
perceptual time to information processing in the brain.

3.4.1.2 Car age
Consider a car as an illustrative analogy. Its “inertial time” can 

be  likened to the number of calendar years since its manufacture 
which is an objective measure independent of usage. In contrast, its 
“perceptual time” is more analogous to the car’s total accumulated 
mileage, which reflects the intensity and frequency of its operation. 
Thus, a vehicle that has existed for many years but has been driven 
minimally may exhibit characteristics suggesting relatively limited 
“aging” in operational terms. Conversely, a newer vehicle subjected to 
extensive and demanding use may demonstrate functional 
degradation that appears disproportionate to its chronological age. In 
this manner, inertial time corresponds to a simple temporal count, 
while perceptual time approximated by mileage, captures the depth 
and complexity of experiential wear.

3.4.1.3 Interpretation
The basic model (Equation 2) provides a foundation for 

understanding how the brain’s computational limitations may 
influence perceptual time. The model reveals several critical 
implications regarding information processing, parallel processing, 
power consumption, cognitive load, and efficiency.

Firstly, perceptual time ( ′t ) is directly proportional to the total 
information processed (I ) by the brain, suggesting that as the brain 
processes more information within a given inertial time frame, the 
perceived time within that inertial time interval may decrease. This 
aligns with empirical studies indicating that increased cognitive load 
often leads to underestimation of inertial time. For instance, Castellotti 
et  al. (2022) found that participants performing more difficult 
cognitive tasks tended to underestimate the duration, perceiving 
inertial time as passing more quickly, suggesting that while more 
information is processed, the allocation of attention to the task reduces 
the awareness of inertial time.

Secondly, the relationship between perceptual time and the 
number of processors (N) is inversely proportional, implying that a 
higher number of parallel processing units in the brain could compress 
perceptual time. This concept is supported by a study conducted by 
Sigman and Dehaene (2008), which examined brain mechanisms of 
serial and parallel processing during dual-task performance. The 
researchers found that certain brain networks, including bilateral 
posterior parietal cortex, premotor cortex, supplementary motor area, 
anterior insula, and cerebellum, were shared by both tasks during 
dual-task performance, suggesting parallel processing. This parallel 
processing capability allows the brain to distribute tasks and could 
lead to a compression of perceptual time, as multiple tasks are 
processed simultaneously.

Lastly, the efficiency factor (η) is inversely proportional to 
perceptual time, implying that individuals with more efficient neural 
computations may experience inertial time passing more slowly 
compared to those with less efficient processing. Factors such as 
attention, emotional state, and memory can affect processing 
efficiency. The study by Castellotti et al. (2022) demonstrates that 
cognitive and motor tasks interfere with time perception, suggesting 
that efficient allocation of cognitive resources influences how time is 
perceived. The efficiency factor (η) should be treated as a variable 
encompassing various cognitive and emotional influences on 

perceptual time, and future work should aim to quantify the impact 
of these factors on (η) and incorporate them into the model 
more explicitly.

These interpretations provide a conceptual framework for 
understanding how the brain’s computational capacity, parallel 
processing, power consumption, and efficiency may contribute to 
perceptual time distortions. The basic model suggests that variations 
in these parameters, either across individuals or within an individual 
over time, could lead to differences in perceived time. Advancing our 
understanding of their influence is valuable for several purposes, such 
as estimating mental capacity in the workplace, and developing 
therapeutics for conditions that affect time perception, such as Turner 
syndrome, Alzheimer’s disease, schizophrenia, and Parkinson’s disease.

However, it is important to recognize that this basic model is a 
simplified representation of the complex neural processes underlying 
time perception. The brain’s information processing is influenced by 
numerous factors, such as attention, emotion, memory, and sensory 
input, which are not explicitly captured in this model. Further 
refinements and extensions to the foundational model will 
be necessary to incorporate various additional factors to provide a 
more comprehensive understanding of perceptual time.

3.5 Incorporating Landauer’s Principle

Landauer’s Principle, proposed by Landauer (1961), states that any 
logically irreversible manipulation of information, such as the erasure 
of a bit, must be accompanied by a corresponding entropy increase in 
non-information-bearing degrees of freedom of the information-
processing apparatus or its environment. More simply put, erasing 
even a single bit of information—such as resetting a computer 
memory from “1” to “0”—requires a small amount of energy. This 
principle establishes a fundamental link between information 
processing and thermodynamics, with the minimum energy required 
to erase one bit of information at temperature T  given by ln2kT , 
where k is the Boltzmann constant (Landauer, 1961).

To refine our model, we incorporate Landauer’s Principle, which 
states that erasing or resetting one bit of information requires a 
minimum amount of energy:

 =min ln2E kT  (3)

Where:

 - min :E  is the minimum energy required to erase one bit (joules)
 - :k  is Boltzmann’s constant (≈ 1.38 × 10^-23 joules/kelvin)
 - :T  is the absolute temperature of the system (kelvin)

To incorporate Landauer’s Principle (Equation 3) into the 
theoretical framework, we need to consider the minimum energy 
required to process information in the brain. We’ll modify the 
efficiency factor η( )  to account for this minimum energy requirement.

Where:

 • ′t : Perceptual time (seconds)
 • t : Inertial time (seconds)
 • k: Boltzmann’s constant (≈1.38 × 10^-23 joules/kelvin)
 • T : Absolute temperature of the brain (kelvin)
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 • η:  Efficiency factor (bits/joule)
 • I : Total information processed by the brain (bits)
 • N : Number of processors (e.g., neurons or functional 

computing units)
 • P : Power consumption per processor (watts)
 • R : Brain’s total computational rate (bits/s)
 • fI : Information processing rate (bits/s)

Step  1: Determine the minimum power required to 
process information.

 = ×min min fP E I  (4)

Step  2: Modify the efficiency factor η( )  to account for the 
minimum power requirement (Equation 4).

 

 ′η = η× + min

P
P P  

(5)

Step 3: Express the total information processed (I ) in terms of the 
information processing rate ( fI ) and inertial time (t).

 = ×fI I t (6)

Step 4: Substitute Equations 5, 6 into Equation 2 for perceptual 
time ( ′t ).

 

×
=

′× ×η
′ fI t

t
N P  

(7)

Step 5: Simplify the Equation 7 by expanding Equation 5.

 

×
=

  
× × η×  +  

′

min

fI t
t

PN P
P P  

(8)

Condensing Equation 8 we get the final equation:

 

( )( )×
′

× + ×
=

× ×η2

ln2f fI t P kT I
t

N P  
(9)

Units simplify to seconds, confirming dimensional consistency 
(see Appendix A).

3.5.1 Interpretation
The incorporation of Landauer’s Principle into our theoretical 

framework offers valuable insights into the relationship between 
perceptual time and the brain’s energy requirements for 
information processing. The final equation reveals two 
critical implications.

First, the inclusion of Landauer’s Principle introduces a term 
( ln2kT ) that accounts for the minimum energy required to process 
information. This term highlights the fundamental physical limit on 
the brain’s computational efficiency. It suggests that even in an ideal 
scenario, the brain must consume a certain amount of energy to 
process and erase information, which may influence perceptual time.

Second, the minimum energy term ( ln2kT ) is directly 
proportional to the absolute temperature of the brain (T ). This implies 
that as the brain’s temperature increases, the minimum energy 
required for information processing also increases. Consequently, 
higher brain temperatures may lead to a dilation of perceptual time. 
This relationship suggests that variations in brain temperature, 
whether due to physiological factors or external influences, could 
modulate our perception of time. A study by Hancock (1993) directly 
investigated the relationship between body temperature and time 
perception. The research found that changes in body temperature, 
particularly increases, led to nonlinear decreases in estimated 
duration. This finding supports the theory that higher temperatures 
can lead to a compression in perceptual time, such as during exercise.
This topic was explored in a review by Behm and Carter but is lacking 
comprehensive investigation (Behm and Carter, 2020).

3.6 Incorporating Bremermann’s Limit

Bremermann’s Limit, proposed by Bremermann (1962), represents 
the maximum computational speed of a self-contained system in the 
material universe. This limit is derived from the mass-energy 
equivalence and Heisenberg’s Uncertainty Principle, and it sets an 
upper bound on the rate at which information can be processed per 
unit of energy (Bremermann, 1962).

Bremermann’s Limit is defined as:

 

×
=

π×
total

max
2 ER

 
(10)

Where:

 - max :R Maximum information processing rate (bits/s)
 - totalE : Total energy available for computation (joules)
 - ℏ: Reduced Planck’s constant (1.05 × 10^-34 joule-seconds)

To account for the physical limitations on the brain’s 
computational speed, we  incorporate Bremermann’s Limit 
(Equation 10) into the theoretical framework. By constraining the 
efficiency factor η( )  using this limit, we  ensure that the model 
adheres to the fundamental principles governing the maximum rate 
of information processing per unit of energy.

Step 1: Define the total power consumption of the system as:

 = ×totalP N P (11)

Equation 11 is power which is equivalent to energy per unit time 
(watts = joules/s), the total energy consumed over a time 
interval ∆( )t  is:

 = ×∆ = × ×∆total totalE P t N P t  (12)
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However, Bremermann’s Limit concerns the maximum 
computational rate at any instant, so in Equation 12 we’ll consider 
∆ =( 1s)t  second for simplicity:

 = × × = ×1totalE N P N P (13)

Step 2: Apply Bremermann’s Limit.
Substitute Equation 13 into Bremermann’s Limit:

 

× ×
=

π×max
2 N PR

 
(14)

Equation 14 represents the maximum computational rate 
achievable by the system based on its total energy consumption.

Step 3: Constrain the efficiency factor η( ).
From Equation 2:

 = × ×ηR N P  (15)

According to Bremermann’s Limit, (R) must satisfy:

 ≤ maxR R  (16)

Substitute the expressions for (R) (Equation 15) and (R max) 
(Equation 14) into Equation 16:

 

× ×
× ×η≤

π×
2 N PN P

 
(17)

Simplify both sides of Equation 17 ( ×N P ) (assuming × ≠ 0N P ):

 
η≤

π×
2

 
(18)

Step 4: Update the Perceptual Time Equation (Equation 2).
The original expression for perceptual time is:

 
=

× ×η
′ It

N P  
(2)

With the constraint on Equation 18, the minimum perceptual 
time ( ′

mint ) is achieved when η( )  is at its maximum value:

 
η =

π×max
2

 
(19)

Substituting Equation 19 into Equation 2:

 

′ =
× ×ηmin

max

It
N P  

(20)

Units simplify to seconds, confirming dimensional consistency. 
(see Appendix A).

3.6.1 Interpretation
The proposed model incorporates Bremermann’s Limit, which 

introduces a fundamental constraint on the efficiency of information 
processing in the brain. This limit, derived from quantum mechanical 

principles, has significant implications for understanding the physical 
bounds of time perception.

As shown in the updated model (Equation 20), the efficiency 
factor (η) is subject to an absolute upper limit:

 π
η =

×max
2

Where   is the reduced Planck’s constant. This maximum 
efficiency is determined by fundamental physical constants and 
represents the theoretical ceiling on how efficiently the brain can 
convert energy into information processing. The inclusion of this limit 
in the model highlights a key link between the quantum world and the 
neurophysiological processes that underlie time perception.

A key consequence of the bounded efficiency factor is the 
existence of a lower limit to perceptual time ( ′t ) for a given amount of 
information (I). This implies that the brain cannot perceive or process 
information instantaneously; instead, there is a minimum time 
required, dictated by the fundamental laws of quantum mechanics. 
This insight sheds new light on the temporal resolution of human 
cognition and suggests that our subjective experience of time is 
ultimately constrained by the fundamental physical laws that 
govern reality.

By integrating Bremermann’s Limit into the theoretical 
framework, we  have established a fundamental quantum physical 
constraint on the brain’s information processing capabilities. This 
constraint affects the perception of time by introducing a minimum 
perceptual time required to process a given amount of information. 
The updated model now accounts for the ultimate efficiency limits 
imposed by quantum mechanics, providing deeper insights into how 
physical laws shape cognitive processes.

3.7 The combined model: integrating 
Landauer’s Principle and Bremermann’s 
Limit

Given:

 - ′t : Perceptual time (seconds)
 - t : Inertial time (seconds)
 - k: Boltzmann’s constant (≈1.380649 × 10^-23 joule/kelvin)
 - T : Absolute temperature of the brain (kelvin)
 - η:  Efficiency factor (bits/joule)
 - I : Total information processed by the brain (bits)
 - N : Number of processors (e.g., neurons or functional 

computing units)
 - P : Power consumption per processor (watts)
 - R : Brain’s total computational rate (bits/s)
 - fI : Information processing rate (bits/s)
 - : Reduced Planck’s constant (1.0545718 × 10^-34 joule-seconds)

Step 1: Substitute Equation 19 into Equation 9:

 

( )

π

× × + ×
=

 × × ×

′


2

ln2
2

f fI t P kT I
t

N P
 

(21)
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Step 2: Simplify Equation 21:

 

( ) π× × + × × ×
=

× ×
′



2

ln2

2
f fI t P kT I

t
N P  

(22)

Reduce Equation 22 to get the final comprehensive equation:

 

( )π × × × × +
′

×
=

× ×



2

ln2

2
f fI t P kT I

t
N P  

(23)

Units simplify to seconds, confirming dimensional consistency 
(see Appendix A).

3.7.1 Interpretation
This final equation integrates both Landauer’s Principle and 

Bremermann’s Limit into the original model, providing a 
comprehensive understanding of how physical limits affect perceptual 
time. Equation 23 further suggests that perceptual time is a function 
of inertial time, modulated by the brain’s information processing rate, 
power consumption, and efficiency; all of which are constrained by 
the fundamental physical limits of thermodynamics and 
quantum mechanics.

The proposed model has several important implications for 
understanding the nature of time perception. First, it suggests that 
higher information processing rates ( fI ) lead to an increase in the 
speed of perceptual time relative to inertial time. This is consistent 
with the subjective experience of time “flying” when one is actively 
engaged in demanding mental tasks. Second, the model indicates that 
higher power consumption (P ) and a greater number of processors 
(N) contribute to a deceleration of perceptual time, which aligns with 
the notion that non-metabolically expensive neural activity, can make 
time feel as though it is passing slowly.

While metabolic demand and information throughput usually 
rise together, perceptual time depends on how efficiently that 
energy becomes useful information. When higher power per 
processor (P ) is coupled with equal-or-better conversion 
efficiency η),(  throughput R  = N  × ×P  η  increases and perceptual 
time compresses. Conversely, if additional energy is dissipated as 
overhead η(  falls), total power can rise without a proportional 
gain in useful throughput, shortening perceived duration. The 
model therefore distinguishes between raw energy expenditure 
and informational work.

Importantly, the inclusion of Landauer’s Principle and 
Bremermann’s Limit in the model underscores the idea that even 
the brain’s perception of time is ultimately constrained by the 
immutable laws of physics. This highlights the deep connections 
between the physical world and our perception of it. Additionally, 
it suggests that a complete understanding of consciousness and 
perceptual experience must take into account the fundamental 
physical limitations imposed by the universe. Moreover, the 
integration with Landauer’s Principle and Bremmerman’s Limit 
demonstrates that the Perceptual Model of Time is compatible 
conceptually and mathematically with existing well established 
physical models of the world.

4 Discussion

4.1 Implications of the basic theoretical 
model

The proposed theoretical model, which integrates Landauer’s 
Principle and Bremermann’s Limit, provides a novel perspective on 
how the brain’s computational limitations may lead to perceptual time 
distortions. By abstracting the complexities of neural computations 
and focusing on key parameters governing information processing 
capacity, this model offers valuable insights into the fundamental 
physical constraints that shape our perception of time.

The basic model, as described by Equation 2, establishes a direct 
proportionality between perceptual time ( ′t ) and the total information 
(I ) processed by the brain:

 
=

× ×η
′ It

N P

where (N) denotes the number of parallel processors, (P ) represents 
the power consumption per processor, and η( )  signifies the 
computational efficiency. This relationship implies that an increase in the 
cognitive load, manifested as a higher (I) can lead to a dilation of 
perceptual time within a given inertial time interval. This phenomenon 
aligns with empirical observations where heightened cognitive 
engagement results in the underestimation of time duration, as 
individuals allocate more attentional resources to processing information, 
thereby reducing their temporal awareness (Castellotti et al., 2022).

Furthermore, the model highlights an inverse relationship 
between perceptual time with respect to both the number of 
processors (N) and the efficiency η( ).  An increase in (N) facilitates 
parallel processing, effectively distributing the cognitive load and 
potentially leading to a compression of perceptual time. This is 
corroborated by neuroimaging studies demonstrating that parallel 
processing networks in the brain contribute to more efficient task 
performance and altered time perception (Sigman and Dehaene, 
2008). Similarly, higher computational efficiency η( )  implies that the 
brain requires less energy to process a given amount of information, 
which will result in a compression of perceptual time.

4.2 Integration of Landauer’s Principle

Incorporating Landauer’s Principle introduces a thermodynamic 
constraint on the minimum energy ( minE ) required for 
information processing:

 =min ln2E kT

where (k) is the Boltzmann constant and (T ) is the absolute 
temperature of the brain. By embedding this principle into the model, 
we  recognize that energy consumption is not merely a biological 
parameter but is fundamentally limited by thermodynamics. The 
modified equation (Equation 9) accounts for the energy-temperature 
dependence, suggesting that increases in brain temperature (T ) raise 
the minimum energy threshold ( minE ), potentially leading to a 
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dilation of perceptual time. This theoretical insight is supported by 
experimental findings indicating that elevated body temperatures can 
accelerate the subjective passage of time (Hancock, 1993; Behm and 
Carter, 2020).

4.3 Incorporation of Bremermann’s Limit

Bremermann’s Limit imposes a quantum mechanical ceiling on 
the rate of information processing, constraining the maximum 
computational efficiency ηmax( ) :

 π
η =

×max
2

where (ℏ) is the reduced Planck constant.
This quantum constraint introduces a lower limit to temporal 

resolution in cognitive processes, suggesting that our subjective 
perceptual experience of time is inherently quantized and bounded by 
the universe’s fundamental properties (Buice and Cowan, 2009; 
Atmanspacher and Filk, 2002). In turn, this limit underscores that 
there is an absolute bound on how efficiently energy can be converted 
into information processing, dictated by fundamental physical 
constants. The implication is profound: there is a minimum perceptual 
time ( ′

mint ) necessary for the brain to process a given amount of 
information (I), precluding the possibility of instantaneous perception 
(Bruza et al., 2009).

4.4 The combined model and its 
significance

By synthesizing the basic model with both Landauer’s Principle 
and Bremermann’s Limit, we arrive at a comprehensive equation that 
captures the complex dependencies of perceptual time:

 

( )π × × × + ×
=

×
′

×



2

ln2

2
f fI t P kT I

t
N P

This final expression emphasizes that perceptual time is a function 
of inertial time, modulated by the brain’s information processing rate, 
power consumption, and constrained by both thermodynamic and 
quantum mechanical limits.

The integration of fundamental physical principles into the model 
not only bridges the gap between psychology, neurophysiology and 
physics but also highlights that cognitive processes are ultimately 
governed by universal laws. The recognition that perceptual time is 
constrained by Landauer’s Principle and Bremermann’s Limit provides 
a novel perspective on the limitations of the human brain.

4.5 Relation to existing literature

Our theoretical findings resonate with and extend existing 
research on time perception and cognitive load. Studies have 
consistently shown that increased cognitive demands can distort time 

perception, leading to either an underestimation or overestimation of 
elapsed time (Block et al., 2010). The incorporation of thermodynamic 
and quantum constraints offers a foundational explanation for these 
phenomena, rooted in the physical limitations of 
information processing.

Moreover, the model’s implication that temperature influences 
perceptual time is supported by experimental work demonstrating 
that physiological states affecting body temperature can alter time 
perception (Wearden et  al., 2007). By framing these observations 
within the context of Landauer’s Principle, we  provide a 
thermodynamically grounded rationale for such effects.

4.6 Implications for time perception in AI 
systems

Building on this capacity-limited framework, one can draw 
parallels between biological time perception and the emergent 
“perceptual time” within artificial intelligence (AI) systems. Just as the 
brain’s finite information-processing capabilities constrain the 
subjective flow of time (Panagiotaropoulos et al., 2012; Dormal et al., 
2012), advanced AI models configured with hardware, energy budgets, 
and algorithmic constraints must also operate within strict 
computational limits. The result is that AI “experiences” a form of time 
not solely governed by an external clock but by the interplay of 
processing throughput and energy considerations, akin to the rate-
limiting factors in human neural tissue (Simen et al., 2013; Addyman 
et al., 2011). Though the notion of AI consciousness remains a topic 
of debate and investigation, these capacity-driven constraints imply 
that any sufficiently complex system might develop an emergent 
internal chronometry that parallels human perceptual time (Basgol 
et al., 2021). In this sense, AI becomes “aware” of temporal progression 
insofar as it encodes and updates internal states according to a rate of 
information processing that is fundamentally constrained by power 
consumption, efficiency, and the number of parallel processing units. 
Thus, whether in cortical networks or digital architectures, perceptual 
time can be viewed as an adaptive byproduct of computational limits, 
providing a unified theoretical perspective on how systems biological 
or artificial come to register, track, and even subjectively experience 
the flow of time.

Unlike biological observers, current AI architectures process time 
exclusively through deterministic clock cycles and algorithmic 
scheduling; they lack the affective states and memory distortions that 
generate human temporal illusions. Consequently, any divergence 
between ‘perceptual’ and inertial time in today’s AI is not 
phenomenological but purely computational (e.g., variable task-queue 
latency or throttled throughput). Whether future systems develop a 
genuinely subjective temporality and thus exhibit a true perceptual 
inertial gap, remains an open empirical question.

4.7 Implications for brain computer 
interface systems

As we  begin to integrate neurotechnology more deeply the 
concept of perceptual time becomes increasingly critical. By directly 
interfacing with neural pathways, BCIs could augment or even 
override the brain’s intrinsic temporal dynamics, opening up the 
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possibility of effectively hyper compressing or “freezing” inertial time 
for the user. In principle, if the processing and resource constraints are 
optimized correctly, one could create intervals of experience where 
large amounts of cognitive operations occur while external time 
appears to stand still.

4.8 Implications for the finite range of 
human computation

The proposed theoretical model, which establishes fundamental 
physical limits on the brain’s computational capacity, raises intriguing 
questions about the existence of a finite range of computation within 
which all humans operate. If the brain’s information processing is 
indeed constrained by thermodynamic and quantum mechanical 
bounds, as suggested by the integration of Landauer’s Principle and 
Bremermann’s Limit, it implies that there may be  a universal 
“cognitive envelope” that defines the boundaries of all human 
thought and perception. Further research and development of the 
model may elucidate other fundamental physical characteristics of 
the universe bounded by human perception rather than 
traditional physics.

4.9 Limitations and future directions

While the model offers significant insights, it remains a 
simplification of the complex neural processes underlying time 
perception. The brain’s information processing is modulated by a 
myriad factors, including attention, emotional state, memory, and 
sensory inputs, which are not explicitly captured in the current 
framework. Additionally, parameters such as the number of processors 
(N) and efficiency (η ) are treated abstractly, without precise 
quantification in neurobiological terms.

Future research should aim to empirically validate the model’s 
predictions by quantifying these parameters using neuroimaging and 
neurophysiological techniques. Investigations into how variations in 
brain temperature, metabolic rates, and neural efficiency affect time 
perception could further refine the model. Incorporating stochastic 
elements to account for the probabilistic nature of quantum mechanics 
may also enhance the model’s applicability to real-world 
cognitive processes.

5 Proposed methodology to assess 
computational load and subjective 
time

This methodology provides a means to assess whether the brain’s 
“computational energy”—inferred through EEG measures such as 
power spectral density (PSD), event-related desynchronization (ERD), 
and global field power (GFP)—correlates with shifts in perceived time. 
By contrasting baseline resting-state EEG data with recordings 
obtained during low-and high-load cognitive tasks, researchers can 
estimate the degree of “extra” neural activity or energy the brain 
expends under more demanding conditions. These EEG-based indices 
serve as proxies for the overall information-processing rate (R), which, 
directly influences perceptual time (t′). Participants then estimate or 

reproduce the duration of each task, allowing for a comparison 
between actual clock time (t) and perceived time (t′). If the data 
reveals that higher EEG-derived energy correlates with a greater 
discrepancy in time judgments, it would suggest that computational 
load meaningfully contributes to time dilation or compression—
thereby supporting the idea that (t′ ) scales with changes in 
information-processing in the brain.

To systematically manipulate the brain’s total computational 
capacity (R), participants first complete maximal-performance 
baseline tests (linguistic/mathematical) establishing peak cognitive 
throughput. Following overnight sleep deprivation—a physiologically 
validated method for degrading neurocognitive capacity (Durmer and 
Dinges, 2005)—subjects repeat identical testing protocols. This 
fatigue-conditioned replication introduces controlled variation in 
global computational resources, complementing task-evoked (R) 
modulations. The resultant dataset (rested/high-load, rested/low-load, 
fatigued/high-load, fatigued/low-load) enables differentiation between 
transient neural energy expenditure and sustained capacity constraints 
in temporal perception.

Such outcomes would indicate that the underlying neural 
mechanisms responsible for advanced cognitive processing might 
transiently distort time perception, in line with the hypothesis that 
perceptual time depends on both total information processed (I) and 
the brain’s total capacity to process it (R). Conversely, a weak or null 
correlation would imply that factors beyond energy expenditure—
such as attention, arousal, or emotional state—may play a larger role 
in shaping temporal judgments. Further research might refine this 
approach by integrating more direct measures of metabolic 
consumption (e.g., fMRI or PET) to confirm how closely EEG-based 
“energy” metrics track actual cortical resource usage. Ultimately, 
combining task paradigms of varying complexity with multimodal 
imaging could clarify not only how computational load influences 
perceptual time but also whether individual differences in efficiency 
(η) mitigate or amplify subjective distortions.

5.1 Parameter interpretability and neural 
correlates

To facilitate furtherempirical validation and integrate our model 
with existing neuroscientific literature, we  propose potential 
neurobiological correlates for each parameter:

Parameter Neurobiological correlate

I (Information Processed)
Mutual information, spike entropy, synaptic 

throughput

N (Processors)
Number of concurrently active neural 

ensembles (via EEG/fMRI coherence)

P (Power Consumption)
Cerebral metabolic rate (e.g., fMRI BOLD, 

PET glucose uptake)

η  (Efficiency)
Bits per joule; derived from entropy-to-

energy ratios

This mapping allows for direct empirical testing of the model. For 
example, researchers could manipulate cognitive load while measuring 
both neural activation and subjective time estimates. According to our 
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model, changes in activation should correlate with distortions in 
perceived duration proportional to the ratio between information 
processed (I ) and computational capacity (R).

Our model’s emphasis on temporal processing networks aligns 
with the “time-domain brain” framework recently proposed by 
Cariani and Baker (2022), which posits that the brain’s signals 
themselves are fundamentally composed of temporal patterns. Their 
framework highlights how neural spike timing serves as the raw 
material for information coding, describing multiple temporal 
representation strategies including linear, cyclical, ordinal, wave, and 
anticipatory time processing. This perspective complements our 
model by providing neurobiological mechanisms through which 
parameters like information processing rate (R) might 
be implemented. Specifically, Baker and Cariani’s emphasis on phase-
locking as a “workhorse of temporal coding” and their description of 
neural integration windows defining temporal coincidence offers 
potential neural substrates for our efficiency parameter η( ).  Their 
work on temporal coherence supporting large-scale coordination 
further illuminates how our parameter (N) might be realized through 
distributed neural assemblies that maintain precise temporal 
relationships. Incorporating this time-domain perspective strengthens 
the neurobiological plausibility of our computational model and 
suggests additional EEG measures such as phase synchrony and cross-
frequency coupling—that could serve as physiological correlates of the 
Perceptual Model of Time.

Building on Baker and Cariani’s (2025) “time-domain brain” 
framework, which formalises how time-delay networks, nested 
oscillatory cascades, and correlation-based wave-interference 
(holographic-like) processes cooperate to yield distributed, content-
addressable codes. Another potential mapping of their mechanisms 
onto our parameters is as follows: information throughput (I ) scales 
with the density and multiplexing of spike-time patterns; parallel 
processing power (N) is realised by ensembles of delay-tuned 
coincidence detectors whose phase-aligned outputs mutually 
reinforce; and energetic efficiency η( )  depends on constructive 
interference, minimal destructive cancellation, and the metabolic 
savings of multiplexing. Baker & Cariani identify measurable meso-
scale markers—high-order phase synchrony, cross-frequency phase-
amplitude coupling, and potentially rapid microstate transitions—
whose presence or absence can test whether perceptual-time dilation 
or compression tracks not only gross power changes but also the 
emergence of new carrier-mixing products and sharpened delay-
specific phase relations. Thus the time-domain framework supplies 
concrete biophysical substrates and testable signal-level indices for 
every parameter of our perceptual-time model, deepening its 
explanatory reach and empirical falsifiability.

A complementary theoretical perspective worth considering is the 
controversial holographic proposal advanced by Fields et al. (2021), 
which conceptualizes neurons as quantum reference frames (QRFs) 
within an active-inference free-energy framework. This approach 
posits that neural ensembles implement holographic encoding 
wherein information exchange across a “holographic screen” between 
observer and environment is fundamentally classical, despite 
underlying quantum processes. Within this paradigm, our parameter 
number of processors (N) could be reinterpreted as the dimensionality 
of available QRFs that define measurement contexts, while efficiency 
η( )  might reflect the thermodynamic costs of maintaining stable 

reference frames—costs that Fields et  al. demonstrate scale with 
ln2NkBT . Their formalism suggests that temporal coherence emerges 
from phase-aligned QRFs whose stability requires energy expenditure 
proportional to information stored, offering a potential explanation 
for why higher computational loads (increased I ) might distort 
perceptual time. Although speculative, this perspective aligns with our 
model by suggesting that perceptual time compression may arise 
when neural systems deploy additional reference frames to process 
complex information, thereby breaking symmetries in the underlying 
quantum description and inducing measurable changes in EEG 
coherence patterns. Future work could test this hypothesis by 
examining whether tasks that distort perceptual time also produce the 
specific cross-frequency coupling signatures predicted when 
additional QRFs are recruited during cognitive processing.

Moreover, theoretical work by Fields et al. (2022) reframes each 
neuron as a hierarchy of QRFs that must be actively stabilised “at 
Landauer-limited energetic cost” to support Bayesian model selection 
over its local micro-environment. Within this holographic, active-
inference picture, the rate at which QRFs are written, erased, and 
refreshed sets an upper bound on the neuron’s information-throughput 
and, by extension, on the brain-wide processing rate (R) that is 
fundamental to our Perceptual Model of Time. Crucially, the 
maintenance of multiple, mutually-compatible QRFs is predicted to 
(i) elevate electrophysiological power in the beta–gamma range, (ii) 
shorten effective neural integration windows as decoherence 
accelerates, and (iii) exaggerate subjective time dilation when tasks 
demand finer system identification. By augmenting our EEG protocol 
with microstate-transition density, phase-slip counts, and fronto-
parietal permutation entropy we  can test whether spikes in 
“computational energy” reflect the hidden cost of sustaining these 
frames. A positive correlation between QRF-sensitive metrics, elevated 
R , and expanded estimates of elapsed duration would therefore 
provide convergent evidence that perceptual time is co-determined by 
both classical metabolic load and the quantum-informational 
bookkeeping required to keep the nervous system’s internal coordinate 
systems coherent.

6 Public significance

This study introduces a novel theoretical framework for 
understanding how the brain’s information processing capacity shapes 
our perception of time. By distinguishing “perceptual time” from 
inertial clock time, the model explains phenomena like time dilation 
and compression during intense experiences as outcomes of neural 
computational limits. These insights not only enhance our 
understanding of human cognition but also have implications for 
artificial intelligence systems and brain-computer interfaces, 
potentially paving the way for technologies that could manipulate or 
augment our experience of time.
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