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Neural oscillation, particularly gamma oscillation, are fundamental to cognitive

processes such as attention, perception, and decision-making. Experimental

studies have shown that the phase of gamma oscillation modulates neuronal

response selectivity, suggesting a direct link between oscillatory dynamics

and cognition. However, there remains a lack of computational models that

can systematically simulate and investigate this e�ect. To address this, we

construct a low-rank spiking neural network (low-rank SNN) based on the

voltage-dependent theta model to explore how structured connectivity shapes

oscillatory dynamics and cognitive function. Using macroscopic model analysis,

we identify di�erent network states, ranging from stationary firing to gamma

oscillation. Our model successfully reproduces phase-dependent response

modulation in a Go-Nogo task, consistent with in vivo findings, providing an

explanation for how neural oscillation influences task performance. Besides

phase dependency, our findings suggest that gamma oscillation can enhance

and prolong signal response. Compared to prior studies that applied low-rank

connectivity to SNNs but remained limited to stationary or weak oscillatory

regimes, our work extends to population-level synchronous activity while

maintaining biological plausibility under Dale’s principle. Our study o�ers a

theoretical framework for understanding how neural oscillations emerge in

structured spiking networks and provides a foundation for future experimental

and computational investigations into oscillatory modulation of cognition.

KEYWORDS

spiking neural networks, recurrent neural networks, gamma oscillation, low-rank, non-

linear dynamics, bifurcation analysis, neural computation, cognitive function

1 Introduction

A central goal in computational neuroscience is to understand how networks of

interconnected neurons give rise to complex cognitive functions. Recent studies suggest

that the brain performs computations through low-dimensional population dynamics

embedded within high-dimensional neural activity (Ko et al., 2011; Vyas et al., 2020;

Sussillo et al., 2015). In this context, low-rank recurrent neural networks (low-rank

RNNs) have emerged as a powerful modeling framework. The work of Mastrogiuseppe

and Ostojic demonstrated that adding low-rank structured connectivity to randomly

connected RNNs can constrain the network’s activity to a low-dimensional subspace,

making it both interpretable and analytically tractable (Mastrogiuseppe and Ostojic, 2018).

These networks can be designed to perform specific tasks, effectively linking connectivity

structure, network dynamics, and function. Moreover, trained RNNs have been shown

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2025.1598138
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2025.1598138&domain=pdf&date_stamp=2025-06-04
mailto:li@neuron.t.u-tokyo.ac.jp
https://doi.org/10.3389/fncom.2025.1598138
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2025.1598138/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2025.1598138

to be well approximated by low-rank models without loss of

performance (Schuessler et al., 2020), highlighting their utility in

modeling cognitive computation.

At the same time, neural oscillations–especially gamma

oscillations (30-100 Hz)–is widely observed in cortical circuits

and play critical roles in cognitive processes such as attention,

working memory, and decision-making (Rodriguez et al., 1999;

Alekseichuk et al., 2016). These oscillations arise from the

synchronized activity of neuronal populations and are thought

to contribute to information routing and integration. Disruptions

in gamma rhythms have been linked to neurological disorders

such as epilepsy (Hughes, 2008) and schizophrenia (Cho et al.,

2006). Notably, electrophysiological recordings have shown that

neuronal selectivity in the visual cortex can vary with the phase of

gamma oscillations (Womelsdorf et al., 2012), suggesting that the

timing of oscillatory activity may modulate sensory processing and

behavioral performance.

Despite growing interest in low-rank network models and their

ability to capture low-dimensional dynamics, their application

to spiking neural networks (SNNs)–which capture biologically

realistic temporal dynamics–remains relatively limited. In

particular, the potential of low-rank SNNs to generate oscillatory

activity and explain phase-dependent modulation of cognitive

tasks has not been fully explored. Some previous models have

extended low-rank connectivity to SNNs, but often without

adhering to biological constraints such as Dale’s principle, which

requires that excitatory and inhibitory neurons exert only positive

or negative synaptic effects, respectively (Cimeša et al., 2023).

Additionally, prior work has rarely examined population-level

oscillatory dynamics or the role of oscillation phase in shaping

network responses.

In this study, we construct low-rank spiking neural networks

using the voltage-dependent theta neuron model, while strictly

enforcing Dale’s principle. We first analyze the macroscopic

dynamics of themodel using bifurcation analysis, revealing how the

probability of recurrent connections and the strength of external

input jointly determine the frequency of emergent oscillations.

We then focus on networks with rank-1 structured connectivity

and examine their behavior in a Go-Nogo task–a well-established

cognitive paradigm testing the ability to respond selectively to

specific stimuli. Our simulations show that the phase of ongoing

gamma oscillation strongly modulates the network’s response

to external inputs, in line with experimental findings. These

results demonstrate how low-rank structure can work under the

gamma oscillation and gamma oscillation influence the functional

output from spiking networks, providing a computational

framework for studying the link between neural synchrony and

cognitive function.

2 Materials and methods

2.1 Low-rank networks and Go-Nogo task

Previous research (Mastrogiuseppe and Ostojic, 2018)

has studied how low-rank connectivity in rate-based

recurrent neural networks (RNNs) contributes to their

computational capabilities. The dynamics of such networks are

described by:

dxi(t)

dt
= −xi(t)+

N
∑

j=1

Jijφ(xj(t))+ Ii (1)

where xi is the internal state of neuron i, interpreted as the input

current; N is the total number of neurons; J ∈ R
N×N is the

connectivity matrix; Jij represents the synaptic weight from neuron

j to i; φ(·) = tanh(·) is the activation function; and Ii denotes

external input to neuron i.

The connectivity matrix J is composed of two parts: a random

matrix χ and a low-rank structured matrix P:

J = λχ + P (2)

P = m · n
T (3)

Here, λ = 1 controls the strength of the random component,

whilem, n ∈ R
N are vectors sampled from a Gaussian distribution,

referred to as right and left connectivity vectors, respectively (mi ∼

N (0, σ 2/N), ni ∼ N (0, σ 2/N)).

We use the Go-Nogo task to evaluate the network’s ability

to distinguish between stimuli. To investigate the network’s

immediate response, we adopted an immediate-response version

of the Go-Nogo task, which differs from the classical paradigm.

In this version, the network is required to generate an output

immediately upon receiving the task signal. The “Go” input is

aligned with n, i.e., Igo = n, while the “Nogo” input is orthogonal

to it, Inogo ⊥ n (Inogo,i ∼ N (0, σ 2/N)). The readout vector is

set to Wout = m, so the network output reflects the projection

of network activity along Wout . This structure ensures a strong

response to “Go” inputs and a weak response to “Nogo” inputs

(Mastrogiuseppe and Ostojic, 2018).

2.2 Voltage-dependent theta model

To simulate biologically realistic oscillatory activity, we adopted

the voltage-dependent theta model derived from the quadratic

integrate-and-fire (QIF) neuron model (Kotani et al., 2014).

This model transforms the membrane voltage into a phase

variable, enabling the description of periodic firing while retaining

biophysical plausibility.

The membrane voltage V
(i)
X of neuron i in population X (either

excitatory or inhibitory) evolves according to:

C
dV

(i)
X (t)

dt
= −gLX

(V
(i)
X (t)−VR)(V

(i)
X (t)−VT )

VT−VR
+ (IX + Itask) (4)

−
∑NE

j=1 g
X(i)
E(j)

[V
(i)
X (t)− VE] (5)

−
∑NI

j=1 g
X(i)
I(j)

[V
(i)
X (t)− VI] (6)

Here, C = 1µF/cm2 is the membrane capacitance; VR = −62

mV and VT = −55 mV are the resting and threshold potentials,

respectively; gLX is the leak conductance for population X; and

IX is the baseline input current sampled from a Cauchy-Lorentz

distribution r(I) = 1
π

1
(I−η)2+12 , where η and 1 represent the
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center and width of the distribution. Task-related input is denoted

as Itask (Igo or Inogo in Go-Nogo task), while g
X(i)
E(j)

and g
X(i)
I(j)

denote the conductance from excitatory and inhibitory presynaptic

neurons, respectively. VE = 0 mV and VI = −70 mV are the

excitatory and inhibitory reversal potentials.

We transform the membrane voltage to a phase variable via:

V(i)
=

VR + VT

2
+

VT − VR

2
tan

(

θ
(i)
X

2

)

(7)

With the transformation in Equation 7, we convert the

membrane potential V into a phase variable θ . As the properties

of the tangent function, when θ crosses π , the membrane potential

V undergoes a jump from positive infinity to negative infinity. This

allows the continuous evolution of θ to produce a discontinuous

jump in V. For numerical implementation, we employ event

detection: whenever θ ≥ π , we record a spike and reset the phase

according to θ ← θ − 2π , which is mathematically equivalent to

the spike/reset discontinuity in the QIF model (Kotani et al., 2014;

Kopell and Ermentrout, 1986).

Using this transformation and the parameter definitions:

c0 =
2

VT−VR
, (8)

c1 =
2VE−VT−VR

VT−VR
, (9)

c2 =
2VI−VT−VR

VT−VR
, (10)

g
(i)
XE =

∑NE
j=1 g

X(i)
E(j)

, (11)

g
(i)
XI =

∑NI
j=1 g

X(i)
I(j)

(12)

we derive the voltage-dependent theta model:

C
dθ

(i)
X

dt
= −gLX cos θ

(i)
X + c0(1+ cos θ

(i)
X )(IX + Itask) (13)

+g
(i)
XE[c1(1+ cos θ

(i)
X )− sin θ

(i)
X ]

+g
(i)
XI[c2(1+ cos θ

(i)
X )− sin θ

(i)
X ]

Synaptic conductances evolve via a first-order

exponential filter:

dg
(i)
XY

dt
= −

1

τd
g
(i)
XY (t)+

1

τd
g
peak
XY

NY
∑

j=1

Jijδ(t − tj) (14)

where τd is the synaptic decay time constant, g
peak
XY is the

peak conductance from population Y to X, and tj is the spike

time of neuron j. We determine whether a neuron fires by

checking whether its phase variable θ crosses π . Equation 14 is

corresponding to Equation 1 in the construction of our low-rank

SNN. All parameter values used in the model are summarized in

Table 1.

2.3 Bifurcation analysis

To guide parameter selection for oscillatory regimes,

we conduct bifurcation analysis based on a macroscopic

TABLE 1 Parameters in voltage-dependent theta model.

Symbol Property Default value

NX Number of neurons NI = 200

NE = 800

C Membrane capacitance (µF/cm2) 1

τd Synaptic decay time (ms) 2 (excitatory synapse)

5 (inhibitory synapse)

gLX Leakage conductance (mS/cm2) gLI = gLE = 0.1

VR Resting potential (mV) −62

VT Threshold potential (mV) −55

VX Synaptic reversal potential (mV) VI = −70

VE = 0

IX Background input

to population X

(µA/cm2)

IX ∼ Cauchy(η,1)

ηI = ηE = η = 2

1E,I = 0.04

Itask Task-related input (µA/cm2) Igo

or

Inogo

g
peak
XY Peak synaptic conductance

from Y to X

(mS/cm2)

g
peak
EE = 0.00407

g
peak
EI = 0.02672

g
peak
IE = 0.003276

g
peak
II = 0.02138

version of the theta model (Zheng et al., 2021). Unlike

microscopic dynamics where conductances vary by neuron, the

macroscopic model assumes uniform conductance gXY (t) for each

population pair:

dgXY (t)

dt
= −

1

τY
gXY (t)+ g

peak
XY pXYNYAY (t) (15)

where pXY is the connection probability and AY (t) is the firing rate

of population Y .

The firing rate AX(t) is derived from the first-order moment

zX(t) using:

AX(t) =
gXL
2πC

[

1+ 2 Re

(

−zX(t)

1+ zX(t)

)]

(16)

The temporal evolution of zX(t) follows:

d

dt
zX(t) = i

[

fXzX(t)
2
+ hXzX(t)+ f ∗X

]

(17)

with complex coefficients fX , hX defined as:

fX =
1

2C

(

−gL + c1(η + i1)+
∑

Y

c2(Y)gXY (t)

)

+ i
1

2C

∑

Y

gXY (t) (18)

hX =
1

C

(

c1(η + i1)+
∑

Y

c2(Y)gXY (t)

)

(19)

By tracking when a Hopf bifurcation occurs, we can determine

the onset of population-level oscillations. All bifurcation diagrams
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are generated using XPPAUT (Ermentrout, 2002). Simulation

code is available at: https://github.com/LiBinUtokyo/LowRank_

ModifiedTheta_SNN.

2.4 Construction of low-rank SNNs

Based on the model introduced in Sections 2.1, 2.2, we propose

our construction of biologically plausible low-rank spiking neural

networks (SNNs) that operate in the gamma oscillation regime and

follow Dale’s principle.

In our model, low-rank structure is applied exclusively to

the excitatory-to-excitatory (E→ E) connections. This choice is

motivated by biological evidence that excitatory neurons serve as

the principal long-range projection cells in cortical circuits, while

inhibitory neurons primarily play a modulatory role. Accordingly,

task-related inputs are applied to the excitatory population, and

the network output is read from the excitatory-to-excitatory

synaptic currents.

The connectivity matrix J governing the interaction strengths

among neurons is constrained to 0 ≤ Jij ≤ 1 and is constructed

through Equation 2. Since excitatory and inhibitory effects are

embedded in the synaptic dynamics (Equations 13, 14), there is

no need to encode sign constraints directly into J. Thus, Dale’s

principle is naturally preserved.

As to the construction of the connectivity matrix J. We first

construct a rank-one matrix P by sampling NE-dimensional

vectors m and n from a Gaussian distribution (µ = 0,

σ = 0.2), and forming P via Equation 3. To ensure the

resulting SNN operates in the gamma range (around 40

Hz), we first estimate average connection strengths between

populations using bifurcation analysis. These estimates are then

used to calibrate the random matrix χ such that the mean

of the final connectivity matrix J = χ + P (Equation 2)

satisfies the required average connection strengths for

specific population activity pattern according to bifurcation

analysis. Random weights in χ are sampled from a Gamma

distribution with standard deviation 0.1. To ensure that

Jij ∈ [0, 1], we truncate values below 0 to 0 and above 1 to

1. For large N, this truncation does not significantly affect the

mean values.

The network output Z(t) is defined as the projection of the total

excitatory synaptic current onto the readout vectorWout :

Z(t) =

NE
∑

i=1

Wi
out · tanh (I

syn,i
EE (t)) (20)

I
syn,i
EE (t) = −giEE(t)(V

i(t)− VE) (21)

where I
syn,i
EE (µA/cm2) denotes the total synaptic current from

the excitatory population to excitatory neuron i, giEE (mS/cm2)

represents the total synaptic conductance from the excitatory

population to excitatory neuron i, and V i(t) is the membrane

potential of excitatory neuron i. Additionally, we define the

output energy as: E(t) = Z(t)2, where Z(t) is the projection

of the excitatory synaptic current vector onto the readout

direction. Using this construction, we analyze how the oscillatory

regime modulates cognitive task performance in a structured

spiking network.

3 Results

3.1 Predicting population activity patterns
via bifurcation analysis of the macroscopic
model

Exhaustively searching the parameter space of a

neuronal network model to identify activity regimes can

be computationally intensive and inefficient. Alternatively,

macroscopic approximations provide valuable insight into how

network dynamics are shaped by key parameters. In this study,

we performed a bifurcation analysis of the macroscopic model

to investigate how the firing patterns of the inhibitory neuronal

population depend on two parameters: the background input

current η and the inhibitory-to-inhibitory connectivity probability

PII . The resulting two-dimensional bifurcation diagram is shown

in Figure 1A.

The diagram reveals that the parameter space is divided into

three qualitatively distinct dynamical regimes, demarcated by a

Hopf bifurcation boundary. These regimes correspond to: (1) a

stationary asynchronous firing state, (2) a low-frequency oscillatory

state, and (3) a high-frequency oscillatory state. Although both (2)

and (3) are both oscillatory states arising from a Hopf bifurcation,

we categorize them as two distinct states due to differences in

oscillation frequency and the neuronal population required to

sustain the oscillation. For validation of the distinction between

these two oscillatory states, see Supplementary Figure S1.

To validate the predictions of the macroscopic analysis,

we simulated low-rank SNNs using parameter values sampled

from each region. The corresponding raster plots are shown in

Figures 1B–D. When both η and PII are relatively low (green

dot), the network exhibits asynchronous, non-oscillatory activity

(Figure 1B). Increasing η while keeping PII moderate (blue

dot) drives the system into a high-frequency oscillatory regime,

consistent with the onset of a supercritical Hopf bifurcation

(Figure 1D). In contrast, increasing PII while keeping η low

(yellow dot) leads to low-frequency, intermittent population bursts

(Figure 1C). These simulations confirm that the macroscopic

bifurcation analysis accurately predicts the transitions between

population-level dynamic states.

Although some quasi-oscillatory activity can be visually

observed at the beginning and in the middle of the simulation

in Figure 1B, we attribute this behavior to two factors: first,

the simulation is not performed in an ideal infinite-size regime;

second, the chosen parameters lie close to the Hopf bifurcation

line. For simplicity, we did not further adjust other parameters

to drive the network state sufficiently far from criticality.

Nevertheless, power spectral analysis of longer simulations

under this condition reveals the absence of prominent periodic

components, distinguishing this state from genuine oscillatory

regimes (see Supplementary Figure S4).

3.2 Go-Nogo task performance in the
gamma oscillatory regime

Based on the bifurcation analysis results (Figure 1), we

identified a parameter regime that induces gamma oscillation

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2025.1598138
https://github.com/LiBinUtokyo/LowRank_ModifiedTheta_SNN
https://github.com/LiBinUtokyo/LowRank_ModifiedTheta_SNN
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2025.1598138

FIGURE 1

Predictions from bifurcation analysis and validation with SNN simulations. (A) Two-parameter bifurcation diagram showing population dynamics of

inhibitory neurons as a function of background input η and inhibitory recurrent connectivity PII. The diagram reveals three distinct regions: stationary

(green), low-frequency oscillation (yellow), and high-frequency oscillation (blue). (B–D) Raster plots of network activity in a low-rank SNN under the

three sampled conditions indicated in (A): (B) Stationary state for (η,PII) = (0.4, 0.1). (C) Low-frequency oscillation for (η,PII) = (0.1, 0.3). (D)

High-frequency oscillation for (η,PII) = (1.5, 0.2). Each simulation involves 800 excitatory (red) and 200 inhibitory (blue) neurons. See

Supplementary Figure S2 for the validation of computational capability for stationary and low-frequency oscillation states.

in the network. For the following task experiment, we selected

(η = 2, JEE = JEI = JIE = 0.1, JII = 0.2), which

reliably generates gamma-band activity. The oscillatory dynamics

produced under these conditions are classified as ING-type (see

Supplementary Figures S1A, B). During the task, task signal (Igo =

n or Inogo ⊥ n, where ni ∼ N (0, 0.2), Inogo,i ∼ N (0, 0.2)) was

applied for a duration of 10 ms, as indicated by the gray-shaded

regions in Figures 2A, B, D, E.

Under gamma oscillation, the network successfully performed

the Go-Nogo task (Figures 2B, E). Notably, when comparing the

raster plots for the “nogo” (Figure 2A) and “go” (Figure 2D)

stimuli, we observed that overall spike patterns remained similar,

with only subtle increases in firing density during and after

stimulation. This suggests that network-wide spiking activity does

not substantially differentiate between stimuli at the level of raw

raster plots.

However, when projecting the synaptic current I
syn
EE onto

the readout vector m and computing the output energy as the

square of this projection, we observed a significant distinction:

the output energy in response to the “go” signal exhibited a

large transient increase, whereas no response to the “nogo” signal

(compare Figure 2E vs. Figure 2B). A quantitative comparison of

the peak output energy in response to Go and Nogo stimuli under

the gamma oscillation state is presented in Section 4.1 of the

Discussion.

This difference is further supported by visualizing the trajectory

of synaptic current projections in the m-I plane. In the “go”

condition, the trajectory exhibits larger excursions along the

m direction (Figure 2F), while the “nogo” condition produces

relatively confined movement near the origin (Figure 2C). These

results are consistent with previous findings in low-rank rate

networks (Mastrogiuseppe and Ostojic, 2018), and demonstrate

that even when population spiking activity appears similar across

conditions, meaningful stimulus selectivity can be extracted via

structured readout directions.

3.3 Task performance modulated by the
phase of gamma oscillation

To investigate how gamma oscillation modulate task

performance in low-rank SNNs, we analyzed the network’s

response to stimuli applied at different phases of ongoing

oscillatory activity. Since our spiking model does not explicitly

define firing rate, we used the average excitatory-to-excitatory

(E→ E) synaptic conductance as a proxy for network activity.

Specifically, the instantaneous phase of gamma oscillation was

extracted by applying a Hilbert transform to the E→ E synaptic

conductance signal (Figure 3A, lower panel), which oscillates

rhythmically over time (upper panel).

Figure 3B shows that the peak of synaptic conductance

consistently occurs around phase 0, providing a reference point for

aligning stimuli with different phases of the oscillatory cycle.

We divided each oscillatory cycle into 33 equally spaced

phase bins and delivered 10 ms task-related input to the

excitatory population at each phase point. We then quantified task

performance as the peak output energy (squared readout) following

the stimulus. This procedure was repeated across 50 independently

generated low-rank connectivity matrices to account for variability.

Results show that in response to the preferred (go) stimulus,

the peak output energy exhibits a clear dependence on the phase

of gamma oscillation (Figure 3C). Notably, the response peaks just

after the population burst, around phase π , and diminishes near the

trough (phase−π). This phase-dependence is also clearly visible in

polar coordinates (Figure 3E), where a directional bias in network

responsiveness is observed.
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FIGURE 2

Task-related activity and output of a low-rank SNN under gamma oscillation. (A) Raster plot for a 600 ms trial under a “nogo” stimulus. Blue and red

dots represent spikes from inhibitory and excitatory neurons, respectively. The gray-shaded region indicates stimulus onset and duration (10 ms). (B)

Output energy (squared readout signal) corresponding to the “nogo” condition. Red dots mark energy peaks. (C) Projection of the postsynaptic

current I
syn
EE onto the m-I plane under the “nogo” condition. (D–F) Same as (A–C) but for the “go” stimulus. A strong increase in output energy and

broader projection trajectory are observed, indicating enhanced network response to task-relevant input.

In contrast, when presenting a non-preferred (nogo) stimulus,

the network response shows no systematic variation across

oscillation phases (Figures 3D, F). This suggests that phase-

dependent modulation is specific to task-relevant inputs, consistent

with the role of gamma oscillation in selective information routing.

As another evaluation, we investigated the phase dependence of

the network’s response speed. Specifically, we defined the reaction

time of the task as the duration from stimulus onset to the time

point at which the peak energy is reached. We examined how

the reaction time in the Go-Nogo task varies with the phase of

ongoing gamma oscillation. While the mean reaction time showed

little dependence on the phase, the variability in reaction times

exhibited a clear correlation with the peak output energy evoked

at each phase. We found that the variability in reaction time was

inversely proportional to the magnitude of the peak output energy

(see Supplementary Figure S3). This finding suggests a potential

link between reaction time and peak energy, which merits further

investigation in future studies.

4 Discussion

4.1 Gamma oscillation enhances
task-related performance

Here, by comparing the peak output energy under different

states, we demonstrate that compared to the stationary firing state

or low frequency oscillation state, the low-rank SNNs in gamma

oscillation exhibits stronger response output energy.

Figures 4A–C show the peak output energy and standard

deviations of 50 independently generated low-rank SNNs under

three different network states: gamma oscillation, stationary firing,

and low-frequency oscillation, during the Go-Nogo task. By

comparing the peak responses across these three conditions, we

found that the gamma oscillation state produced the highest peak

output energy in response to Go stimuli, with average values

ranging between 1,500 and 2,000 (µA/cm2)2, followed by the

low-frequency oscillation state, and finally the stationary state. In

contrast, the output energy in response to nogo stimuli remained

low (between 100 and 200 (µA/cm2)2) across all three conditions.

These results indicate that the gamma oscillation state selectively

enhances responses to preferred stimuli.

Furthermore, by comparing the temporal profiles of output

energy following Go stimulation under gamma oscillation and

stationary firing states (Figure 2E vs. Supplementary Figure S2E),

we observed that in the stationary state, the response to Go stimuli

appears as a single transient energy peak that rapidly decays.

In contrast, under gamma oscillation, the output energy exhibits

multiple peaks lasting for approximately 150 ms, corresponding

to about seven oscillation cycles. This finding reveals that gamma

oscillation not only enhance peak output energy but also prolong

the duration of network responses.

These findings suggest that gamma oscillation enable repeated

activation and inhibition of task-relevant excitatory neurons,
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FIGURE 3

Phase-dependent modulation of task performance in low-rank SNNs. (A) Temporal evolution of excitatory-to-excitatory synaptic conductance gEE

(top) and its instantaneous phase extracted via Hilbert transform (bottom), during a representative oscillation window. (B) Average phase distribution

of gEE , showing peak amplitude around phase 0. (C) Dependence of peak output energy ((µA/cm2)2) on stimulus phase for the go signal. Points

represent means across 50 SNNs; error bars indicate standard deviation. (D) Same as (C) but for the nogo signal, showing no significant phase

dependence. (E, F) Polar plots of data in (C, D), respectively, highlighting phase-specific enhancement for the go stimulus and uniform response for

the nogo stimulus.

FIGURE 4

Comparison of low-rank SNN performance under di�erent network states during the Go-Nogo task. (A) Peak output energy in response to Go and

Nogo stimuli across 50 SNNs under the gamma oscillation state. (B) Peak output energy in response to Go and Nogo stimuli across 50 SNNs under

the stationary firing state. (C) Peak output energy in response to Go and Nogo stimuli across 50 SNNs under the low-frequency oscillation state. Error

bars indicate the standard deviation of the data.

amplifying the network’s response to relevant stimuli. This supports

the hypothesis that oscillatory dynamics play an active role in

enhancing cognitive processing, possibly by temporally organizing

neural responsiveness.

PING (pyramidal-interneuron gamma) and ING (interneuron

gamma) are two primary mechanisms underlying the generation of

gamma oscillation (Buzsáki and Wang, 2012). Among them, ING

can arise solely from inhibitory neurons without the involvement

of excitatory neurons, whereas PING requires interactions between

excitatory and inhibitory neurons. Distinguishing whether gamma

oscillation are driven by ING or PING mechanisms is important

for deepening our understanding of their functional diversity.

In our model, although excitatory neurons are involved during

gamma oscillation, we argue that the oscillation is primarily

generated by recurrently coupled inhibitory neurons–characteristic

of the ING mechanism. A key piece of evidence is that
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when the excitatory-to-inhibitory and inhibitory-to-excitatory

connections are removed, inhibitory neurons alone are able to

sustain gamma oscillation, which is a hallmark of the ING

mechanism (see Supplementary Figures S1A, B). While our current

focus is on ING-type oscillation, the involvement of excitatory

neurons suggests that extending this framework to PING or even

mixed PING/ING regimes represents an interesting direction for

future research.

4.2 Conclusion and future perspectives

Neural oscillations, particularly in the gamma band, are

widespread in the brain and play a fundamental role in cognition. In

vivo studies have reported that the orientation selectivity of visual

cortical neurons varies systematically with the phase of gamma

oscillation (Womelsdorf et al., 2012; Vinck et al., 2010), suggesting

that the phase of oscillatory activity modulates sensory processing.

Inspired by this, we used low-rank SNNs based on the voltage-

dependent theta neuron model to systematically investigate the

effects of gamma oscillation on cognitive task performance.

Through bifurcation analysis of a macroscopic model, we

characterized several distinct network states–from asynchronous

stationary activity to robust gamma-band oscillation. We then

applied the Go-Nogo task to evaluate performance across these

regimes. Our results show that low-rank SNNs under gamma

oscillation not only exhibit stronger responses to preferred stimuli

but also display clear phase-dependent modulation of output

energy. These findings align with experimental observations

and suggest a functional role of oscillation phase in enhancing

stimulus selectivity.

Importantly, while previous works have extended low-rank

connectivity to spiking networks (Cimeša et al., 2023), they were

typically limited to non-oscillatory regimes or did not rigorously

enforce Dale’s principle. In contrast, ourmodel adheres to Dale’s law

and captures gamma-range population synchrony in biologically

plausible excitatory-inhibitory (E-I) networks. This enables us to

bridge structured connectivity, population-level oscillation, and

cognitive function in a unified framework.

In particular, our simulations reproduce the experimentally

observed phase-dependent responsiveness to stimuli (Figures 3C,

E). Conceptually, this can be interpreted as follows: when a

spontaneous population burst is imminent, external stimuli may

be masked by ongoing activity, reducing network responsiveness.

Conversely, following a burst–when neurons are more excitable

and inhibition is reduced–external inputs are more likely to

elicit a strong response. This explanation is supported by phase

response function (PRF) analyses in similar models (Yoshikai

et al., 2023). Moreover, such phase-dependent effects are not

unique to gamma oscillation; for instance, alpha-phase has

also been shown to modulate visual attention in humans

(Mathewson et al., 2009).

In conclusion, our study provides a computational framework

for interpreting how structured spiking networks encode and

process information under oscillatory regimes. Future work could

extend this framework to more complex tasks such as working

memory or decision-making, to explore whether phase-dependent

modulation generalizes across cognitive domains. For example, in

the detection of noisy stimulus task introduced by Mastrogiuseppe

and Ostojic (2018), the network should decide whether the

noisy input has its average value exceeding a threshold. We can

choose the vectors m and n to have a sufficiently large overlap.

This configuration enables the low-rank network to integrate

the stochastic stream, determine whether the running average

exceeds a preset threshold, and generate the corresponding output.

Because the task requires the network to retain accumulated

information in the face of ongoing noise, it engages not only

perceptual decision-making but also short-term working memory.

A promising direction for future work is to test how delivering the

stimulus at different phases of the ongoing oscillation influences

success rates in this kind of evidence-integration task. Extending

to higher rank would allow the network to exhibit richer

dynamics, thereby enabling it to perform more complex tasks,

such as multiple-choice tasks or decision-making tasks under

different contents. Therefore, it is also a promising direction.

Furthermore, our results may have practical implications for

neurotechnology and brain-machine interfaces (BCIs). Designing

stimulation protocols and decoding strategies that account for

oscillation phase could enhance the efficacy and precision of neural

control systems.
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