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Sudden restructuring of memory 
representations in recurrent 
neural networks with repeated 
stimulus presentations
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While acquisition curves in human learning averaged at the group level display smooth, 
gradual changes in performance, individual learning curves across cognitive domains 
reveal sudden, discontinuous jumps in performance. Similar thresholding effects 
are a hallmark of a range of nonlinear systems which can be explored using simple, 
abstract models. Here, I investigate discontinuous changes in learning performance 
using Amari-Hopfield networks with Hebbian learning rules which are repeatedly 
exposed to a single stimulus. Simulations reveal that the attractor basin size for a 
target stimulus increases in discrete jumps rather than gradual changes with repeated 
stimulus exposure. The distribution of the size of these positive jumps in basin size 
is best approximated by a lognormal distribution, suggesting that the distribution is 
heavy-tailed. Examination of the transition graph structure for networks before and 
after basin size changes reveals that newly acquired states are often organized into 
hierarchically branching tree structures, and that the distribution of branch sizes 
is best approximated by a power law distribution. The findings suggest that even 
simple nonlinear network models of associative learning exhibit discontinuous 
changes in performance with repeated learning which mirror behavioral results 
observed in humans. Future work can investigate similar mechanisms in more 
biologically detailed network models, potentially offering insight into the network 
mechanisms of learning with repeated exposure or practice.
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Introduction

The study of learning is a central topic in psychology, cognitive science, and cognitive 
neuroscience. While analysis of average performance at the group level tends to suggest that 
learning is a smooth, incremental process (Thurstone, 1919; Newell and Rosenbloom, 1993), 
examination of individual learning curves often reveals sudden, discontinuous changes. For 
example, conditioning acquisition in individuals is typically characterized by abrupt transitions 
from low levels of responding to an asymptotic level (Gallistel et al., 2004). Similarly, while 
group average improvement in cognitive skills with practice can be approximated by a smooth 
power law function, individual performance exhibits plateaus punctuated by sudden 
improvements (Donner and Hardy, 2015). Discontinuities in performance also characterize 
language learning (van Dijk and Geert, 2007), the development of sudden cognitive insight 
(Smith and Kounios, 1996), and repetition learning in declarative memory (Musfeld et al., 2023).

Large changes in behavior in response to small changes in input are a hallmark of 
nonlinear systems. Threshold effects, in which smooth responses suddenly give way to 
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dramatic shifts, are observed in simple nonlinear thermodynamic 
systems (Onuki, 2002) as well as highly complex systems such as 
climate (Rial et  al., 2004) and ecosystems (Scheffer et  al., 2001). 
Relatedly, nonlinear generating processes are frequently characterized 
by heavy-tailed distributions (Albert and Barabási, 2002). This implies 
that extreme values occur much more frequently than would 
be expected for Gaussian distributions, which are often generated by 
additive processes in linear systems (Roberts et al., 2015).

In neuroscience, nonlinear features of neural networks, such as 
nonlinear neural activation functions, are believed to play a critical role 
in supporting computational processes such as learning (Dayan and 
Abbott, 2005). One of the simplest neural network models of associative 
learning is the Amari-Hopfield network, a simple version of a recurrent 
neural network (RNN). Traditional Amari-Hopfield networks are fully 
connected single-layer networks consisting of binary neurons with 
simple rules for network evolution inspired by the Ising model of spin 
glasses in statistical mechanics (Hopfield, 1982; Amari, 1972; Amari, 
1977). Using simple Hebbian associative learning rules, Amari-Hopfield 
networks can be trained to form attractors for remembered inputs, which 
cause similar states (within the attractor basin) to converge on these 
remembered states. Despite their simplicity, Amari-Hopfield networks 
have had major impacts on statistical mechanics, neuroscience, and 
machine learning, and modified versions of Amari-Hopfield networks 
with greater storage capacity continue to be investigated (Krotov, 2023).

While the storage capacity of traditional and modified Amari-
Hopfield networks has been extensively studied, the effect of repeat 
stimulus presentations (or, alternatively, of increasing weight for a 
given input stimulus) has been less explored. Studying changes in 
attractor basins in RNNs with repeat stimulus presentations may 
be relevant to a range of cognitive phenomena, such as the effect of 
repetition training on memory performance (Musfeld et al., 2023) and 
the effect of practice on skill development [which may involve retrieval 
of stored procedural memories (Logan, 1988)].

In this brief report, I  demonstrate that repeated stimulus 
presentations in synchronously updating Amari-Hopfield networks 
with a simple Hebbian learning rule cause intermittent, abrupt jumps 
in the size of attractor basins, rather than smooth incremental growth. 
Furthermore, I  show that the distribution of positive jumps in 
attractor basin size is best approximated by a lognormal distribution, 
suggesting that the distribution is heavy-tailed. Examination of 
transition graphs before and after jumps in basin size reveals that 
newly acquired states tend to be organized into branching structures, 
suggesting that the heavy-tailed distribution of jumps in basin size 
may be related to the heavy-tailed distribution of branch sizes in the 
transition graph structure. The results suggest that even simple 
nonlinear models of associative memory exhibit characteristics of 
discontinuous learning and may have implications for more detailed, 
biologically realistic models of learning in neural networks.

Methods

Attractor basin changes with repeated 
stimulus presentations

Memory storage was modeled with an Amari-Hopfield network 
consisting of 10 binary neurons (± states). Small networks were 
studied to enable full enumeration of the state space (1,024 states for 

a 10-neuron vector). The network weights W were constructed using 
a batch Hebbian learning rule. Given a set of p stored patterns {x1, x2, 
…, xp}, each of length 10, the weight matrix was computed as:

	 = ,TW X X

Where X is the p × 10 matrix whose μth row is the pattern xμ. The 
diagonal elements were set to zero (i.e., Wii  = 0) to eliminate 
self-feedback.

In the experimental paradigm, the network was first “pretrained” 
with a diverse set of 50 random stimuli. To amplify the influence of 
these stimuli (which would later gradually be overcome by repeated 
presentation of the target stimulus), each of these 50 patterns was 
multiplied by 10, then combined into a 50 × 10 matrix which was used 
to produce initial network weights via the Hebbian learning rule. This 
pretraining phase established an initial attractor landscape with a rich 
set of stored memories with which the target stimulus would compete 
to attract states to its attractor basin.

The target stimulus was then generated randomly. In the target 
presentation phase, the network was presented repeatedly with the 
target stimulus, with the number of target presentations being 
incremented one at a time from 0 to 1,000. For each target presentation 
count j ∈ {1, 2, …,1,000}, the complete memory matrix was X was 
constructed by concatenating the pretraining matrix (of size 50 × 10) 
and j copies of the target stimulus. The weight matrix was then 
recomputed using the Hebbian learning rule.

The network dynamics were simulated using synchronous updates:

	 ( ) ( )( )+ =1 ,s t sign W s t

Where sign (·) returns 1 for nonnegative inputs and −1 for 
negative inputs. Convergence was determined when the state no 
longer changed between updates.

At each step during the target presentation phase, the attractor 
basin size was computed corresponding to the target pattern—that is, 
the number of initial states (sampled exhaustively) that converged to 
the target attractor. These basin sizes were stored and used to compute 
increases (or jumps) in attractor basin size during the target 
presentation phase.

Simulations were implemented in R (R Core Team, 2013). The 
experiment was repeated over 100 runs with new random pretraining 
stimuli and target stimulus being generated for each run.

Distribution of basin size jumps

The basin size trajectories for the target stimulus were 
aggregated across runs to analyze the distribution of positive jump 
sizes in the target attractor basin. Jump size for stimulus 
presentation j was defined as the number of initial states that 
converged on the target state after stimulus presentation j minus the 
number of initial states that converged on the target state after 
stimulus presentation j − 1. Discrete jumps were defined as positive 
changes in basin size given that most stimulus presentations did not 
lead to a change in basin size. Excess kurtosis for the empirical 
distribution of positive jump sizes was estimated using the e1071 
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package in R. Several candidate distributions were fit to the 
observed positive jump sizes using maximum likelihood estimation 
implemented in the R package fitdistrplus. The candidate models 
included a lognormal distribution, an exponential distribution, a 
half-normal distribution (centered at 1), and a power law 
distribution (with lower bound xmin = 1 and with the scaling 
exponent α estimated via the R package poweRlaw). Akaike 
information criterion (AIC) was computed for each distribution fit 
and cumulative distribution function (CDF) on a linear scale and 
complementary cumulative distribution function (CCDF) on a log 
scale were plotted for the empirical data and the fitted distributions. 
Parameter stability estimates for distributions were assessed using 
nonparametric bootstrapping (resampling 1,000 bootstrap 
replicates from observed data with replacement).

Transition graph structure after basin size 
increase

In order to investigate the structure of memory representations 
after a basin size jump, the state transition graph immediately 
after each increase in basin size was examined. After an increase 
in basin size, the set of new states was defined as states belonging 
to the target basin after the jump but not belonging to the target 
basin before the jump. Transitions were based on single updates 
from one state to the next. Transition graphs were then 
constructed where each node represented a state of the network 
and a directed edge connected each state to the state obtained 
after one synchronized update. This yielded a branching tree 
structure in which each state’s “parent” was defined as the next 
state obtained after a synchronous update, and the root node was 
the target attractor state. To quantify the graph structure of the 
new states added after an increase in basin size, these new states 
were sorted into branches, and the size of each branch was 
recorded. To accomplish this, a set of branch heads was first 
identified within the new states, defined as new states whose 
immediate parent was not a new state (i.e., which had belonged to 
the attractor basin prior to the jump). For each of these branch 
head states, the number of its descendants were computed (while 
also counting the branch head state itself ), thus quantifying the 
size of each branch of new states which had been added to the 
target basin. This procedure partitioned all new states into 
branches, with the sum of branch sizes being equal to the total 
number of new states after an increase in basin size. Branch sizes 
were defined as the number of states that eventually flow into a 
node in the state-transition graph. They were measured by 
exhaustively determining the descendent state of each possible 
network state.”

A network with 10 neurons was pretrained with 50 random 
patterns, each being multiplied by 10, and then a randomly 
selected target stimulus was presented 1,000 times, as in the 
previous experiments. Transition graphs were examined after each 
increase in target basin size, and branch sizes of new states were 
recorded. This process was repeated over 100 runs, with new 
random pretraining stimuli and target stimulus being generated 
for each run. The distribution of branch sizes for new states was 
then examined and fit with candidate distributions including a 
lognormal distribution, an exponential distribution, a half-normal 

distribution, and a power law distribution, as in the 
previous experiment.

For comparison purposes, the distribution of branch sizes was 
also examined for all states across a network (i.e., the total number of 
descendant states, also counting the state itself, for all states across a 
network). This was performed for a network with 10 neurons that had 
been pretrained with 50 random patterns, each being multiplied by 
10. For visualization, the graph structure of a target attractor basin 
immediately before and after a basin size jump was plotted for a 
smaller network of 8 neurons.

Sampled initial states in larger networks

In order to examine basin growth in larger networks, networks 
with 100 and 1,000 neurons were examined. Because it is not feasible 
to enumerate all possible starting states in networks of this size, 
starting states were randomly sampled from subsets of states with 
differing Hamming distances (i.e., number of flipped bits) k from the 
target stimulus. Distances k of 1, 2, 3, 5, 10, and 20 were sampled for 
the 100-neuron network and distances 1, 2, 3, 5, 10, 20, 50, and 100 
were sampled for the 1,000-neuron network. For each distance k, 100 
states of distance k from the target stimulus were randomly sampled. 
As in previous experiments, the networks were pretrained with 
random stimuli (one stimulus multiplied by weight 30 for the 
100-neuron network and one stimulus multiplied by a weight of 100 
for the 1,000-neuron network). As before, the target stimulus was 
repeatedly presented to the network (the target was presented 500 
times). For each presentation of the target, the proportion of sampled 
initial states at each distance k which converged on the target (i.e., 
were in the target stimulus basin) was recorded. The same sampled 
starting states were used across stimulus presentations to avoid noise 
caused by resampling starting states.

Effect of interference and stimulus 
degradation on jump distribution

Simulations were performed to investigate the effect of varying 
levels of memory interference (pretraining stimulus presentations) 
and stimulus degradation (distance k of the probe stimulus from the 
target stimulus) on the distribution of sizes of jumps in sampled initial 
states which are in the target stimulus basin. Simulations were 
performed on a network with 100 neurons. In order to examine the 
effect of pretraining stimulus presentations, k was held constant at 20 
and simulations were performed with 1, 2, 3, 4, and 5 pretraining 
stimuli (each multiplied by a weight of 20). In order to examine the 
effect of k, the number of pretraining stimuli was held constant at 1 
(multiplied by a weight of 20), and simulations were run with k of 5, 
10, 15, 20, and 25. For each run, the target stimulus was presented 300 
times. For each condition, 100 runs were performed. All jump sizes 
(with jumps defined as any increase in number of sampled starting 
states which converged on the target) were recorded, and the 
coefficient of variation of the distribution of positive jump sizes was 
calculated for each run. Welch’s ANOVA tests were performed to 
determine whether stimulus degradation (k) or memory interference 
(number of pretraining memories) significantly affected the coefficient 
of variation of jump sizes.
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Results

Attractor basin changes with repeated 
stimulus presentations

Examination of plots of target attractor basin size with repeated 
target stimulus presentations revealed that attractor basin size 
increases in intermittent, abrupt jumps, rather than gradually and 
smoothly increasing (see Figure  1a for an example plot for one 
experimental run). The proportion of all stimulus presentations which 
caused an increase in attractor basin size was 0.0126. See Figure 1b for 
a plot of average increase in target basin size across experimental runs, 
which shows a relatively smooth increase with repeated 
stimulus presentations.

Distribution of basin size jumps

Estimated excess kurtosis for the distribution of all positive jump 
sizes was 11.9, greater than the expected excess kurtosis for a half-
normal distribution (~0.87) and for an exponential distribution 
(Smith and Kounios, 1996). This suggests that the distribution of 
positive jump sizes is heavy-tailed.

Based on AIC, the best-fitting distribution for positive jump sizes 
was the lognormal distribution (mean = 2.58, 95% CI [2.49, 2.67]; 
sd = 1.56, 95% CI [1.51, 1.61]; AIC = 11176.16), which was a superior 
fit to the half-normal (sigma = 73.21, 95% CI [65.11, 81.14]; 
AIC = 12626.58), exponential (rate = 0.026, 95% CI [0.024, 0.029]; 
AIC = 11,653.53), and power law (alpha = 1.39, 95% CI [1.38, 1.40]; 
AIC = 11,382.23) distributions (see Figures  1c,d). The lognormal 

FIGURE 1

Discrete jumps in attractor basin size with repeated stimulus exposures. (a) Increase in basin size with repeated exposure for a single run. The basin size 
for the target stimulus increases in intermittent, discrete jumps. (b) Average increase in basin size over 100 runs. There is a smoother increase in basin 
size when averaging across runs. (c) Cumulative probability distribution for the size of positive jumps. The empirical distribution is best fit by a 
lognormal distribution. (d) Complementary cumulative distribution function (CCDF) for positive jump sizes plotted on a log scale.
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distribution was preferred based on AIC in 999 out of 1,000 
bootstrap replicates.

Transition graph structure after basin size 
increase

Sizes of branch structures of new states belonging to target 
attractor basins were computed after increases in basin size. The 
proportion of branches consisting of a single state was 0.69. Of all 
branches consisting of two or more states, the estimated excess 
kurtosis was 50.3, greater than the expected excess kurtosis for a half-
normal distribution (~0.87) and for an exponential distribution 
(Smith and Kounios, 1996). The best fitting distribution was a power 
law distribution, (AIC = 10501.03), which was a superior fit to the 
half-normal (AIC = 19,054.53), exponential (AIC = 15,130.96), and 
lognormal (AIC = 12,508.08) distributions (see Figures  2a,b). The 
power law fit is further supported by the linear appearance of the 
empirical distribution on the log–log CCDF plot (with the exception 
of decreased frequency for the largest branch sizes, which may 
be  explained by truncation of the tail due to the finite size of 
the network).

For the distribution of branch sizes consisting of two or more 
states across the entire network, estimated excess kurtosis was 
74.0. The best fitting distribution was a power law distribution, 
(alpha = 1.67, 95% CI [1.67, 1.68]; AIC = 1,389,856), which was a 
superior fit to the half-normal (sigma = 28.37, 95% CI [27.87, 
28.84]; AIC = 1,963,401), exponential (rate = 0.088, 95% CI 
[0.087, 0.088]; AIC = 1,657,266), and lognormal (mean = 1.49, 
95% CI [1.48, 1.49]; sd = 1.25, 95% CI [1.25, 1.26]; 
AIC = 1,510,063) distributions (see Figures 2c,d). The power law 
distribution was preferred based on AIC in 1000 out of 1,000 
bootstrap replicates.

A plot of the graph structure of a target attractor basin 
immediately before and after a jump in basin size reveals a branching 
structure of new states (i.e., states which belong to the target basin 
after the jump but did not belong to the target basin prior to the jump; 
see Figure 3).

Sampled initial states in larger networks 
and effect of interference and stimulus 
degradation on jump distribution

Similarly to the small networks, large networks displayed evidence 
of discontinuous jumps in target basin with repeat stimulus 
presentations. The proportion of sampled initial states at various 
distances k from the target stimulus which fell within the target basin 
increased in intermittent, abrupt jumps, rather than gradually and 
smoothly increasing, in networks with 100 and 1,000 neurons 
(Figures 4A,B).

A Welch’s ANOVA test revealed that the coefficient of 
variation of accuracy jump sizes was negatively associated with 
distance from the target stimulus (i.e., stimulus degradation) 
(F = 184.14, p < 0.001; Figure  4C). Similarly, the coefficient of 
variation of accuracy jump sizes was negatively associated with 
pretraining stimuli (i.e., memory interference) (F = 195.86, 
p < 0.001; Figure 4D).

Discussion

In this study, I  examined the behavior of Amari-Hopfield 
networks with a Hebbian update rule with repeated presentations of a 
single stimulus. I observed that increases in attractor basin size for the 
target stimulus occurred in abrupt, intermittent bursts, rather than 
reflecting a smooth, continuous process. I found evidence that the 
distribution of positive jump sizes in the target attractor basin was 
heavy-tailed and was best fit by a lognormal distribution. Furthermore, 
examination of the state transition structure of target attractor basins 
after jumps revealed that newly acquired states were frequently 
organized into branching structures, with the size of these branches 
being best approximated by a power law distribution. These findings 
are consistent with the hypothesis that the heavy-tailed distribution of 
jumps in the size of the target basin size may be related to the heavy-
tailed distribution of branch sizes in the network state transition 
graph, although these distributions are not identical. Additionally, 
both stimulus degradation (Hamming distance between start state and 
target) and memory interference (number of pretrained memories) 
were negatively associated with variability in jump sizes, establishing 
qualitative predictions for future behavioral studies of discrete changes 
in performance.

Amari-Hopfield networks represent high-level, idealized 
models which may be relevant to the implementation of associative 
memory in recurrent neural networks (RNNs) in the brain. The 
effects observed here, i.e., threshold effects with gradual parameter 
changes, may also be  observed in more complex, biologically 
plausible network models. Such models, which may incorporate 
graded or spiking activation, stochasticity and noise, more complex 
learning rules (such as spike timing dependent plasticity [Caporale 
and Dan, 2008)], complex (rather than full) connectivity patterns, 
interneuron populations, and other features of biological networks 
may thus be  investigated to better understand threshold effects 
which are clearly illustrated in the simpler Amari-Hopfield model. 
Investigation of biologically realistic mechanisms, such as spike 
timing dependent plasticity, may also help to elucidate the role of 
precise timing in behavioral paradigms, as well as the effect of 
specific neuromodulatory influences on synaptic learning 
mechanisms, in altering jumps in performance. Continuous, 
spiking recurrent networks with spike timing depending plasticity 
mechanisms have been investigated in detail (Seeholzer et al., 2019; 
Mongillo et al., 2008; Amit and Brunel, 1997), and future studies 
can examine the effect of repeat stimulus presentations in similar 
networks. The approach may also be extended by incorporating 
additional biological mechanisms such as stimulus specific 
adaptation, in which neural responses to common stimuli are 
suppressed (Nelken, 2014). Hebbian learning, as studied here, may 
underpin the recognition of common stimuli, contributing to the 
suppression of response to those stimuli in perceptual systems. 
Adaptation itself may also have complex effects on recurrent 
network performance (Cortes et al., 2012). The current results may 
thus be  a stepping stone to investigation of more complex 
phenomena in biological systems. Similarly, characterization of 
basic phenomena in simple nonlinear models has previously helped 
guide more detailed, realistic studies of weather and climate 
(Lorenz, 1991), population dynamics (Kendall and Fox, 1998), and 
other complex systems. In addition to extension to more detailed 
neural network models, the results can also be extended to more 
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detailed cognitive models of particular learning domains. While it 
is likely that the specific details of discontinuous changes in 
performance with learning in a given domain [e.g., language 
learning (van Dijk and Geert, 2007)] are influenced by domain-
specific factors, the ubiquity of these effects across domains 
(Donner and Hardy, 2015; Smith and Kounios, 1996; Musfeld et al., 
2023) suggests there may be  a common mechanism related to 
associative learning in nonlinear networks.

The current results are consistent with the hypothesis that the 
branching state transition structure of attractor basins in the 
Amari-Hopfield network are related to the discontinuous changes 
in attractor basin size with repeated stimulus presentations. The 

branch size, i.e., number of descendant nodes, across all states in 
the network is best approximated by a power law distribution, as 
are the branch sizes of newly acquired states after a jump in 
attractor basin size. The distribution of increases in attractor basin 
size also appears to be  heavy-tailed, although best fit by a 
lognormal rather than power law distribution. The difference in 
distributions between jump sizes and branch structures is likely 
explained by the fact that more than one branch can be added to 
the attractor basin in a single step, including a relatively large 
number of single states. A full theoretical analysis of the observed 
discontinuous changes in attractor size is beyond the scope of this 
brief report. Future work can apply theoretical techniques such as 

FIGURE 2

Distribution of branch sizes in network transition graph. (a) Cumulative probability distribution for the size of branches added to the target attractor 
basin. The empirical distribution is best fit by a power law distribution. (b) Complementary cumulative distribution function (CCDF) for the size of 
branches added to the target attractor basin. (c) Cumulative probability distribution for the size of all branches across the network. The empirical 
distribution is best fit by a power law distribution. (d) Complementary cumulative distribution function (CCDF) for the size of all branches across the 
network.
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mean field approximations to improve understanding of the 
observed behaviors.

The results highlight the importance of examining individual, 
in addition to average, behavior to develop models of the 
mechanistic underpinnings of cognitive performance. Fitting 
average rather than individual data can obscure the true 
generating process, especially when this process is nonlinear 
(Busemeyer and Diederich, 2010). Thus, while many studies of 
learning report smooth acquisition curves when behavior is 
averaged at the group level, studies examining individual behavior 
often report discontinuous, step-like acquisition (Musfeld et al., 
2023). This distinction between individual and group learning 
curves mirrors the current results, in which a single run of the 
Amari-Hopfield network displays discontinuous jumps 
(Figure 1a), while an average of multiple runs appears to show a 
smooth expansion in basin size (Figure  1b). Employing an 
individual-differences approach can help constrain and validate 
cognitive theories (Vogel and Awh, 2008). Fitting models to 
individual vs. group data represents a tradeoff, with consideration 
of individual data being necessary to maximize accuracy (Estes 
and Todd Maddox, 2005). Bayesian hierarchical approaches have 
become an increasingly popular tool to mitigate the tradeoff 
between group and individual fitting (Scheibehenne and 
Pachur, 2015).

Future research can further investigate individual differences 
by examining the effect of network parameters (e.g., representing 
neuromodulatory influences or individual differences in network 
wiring) on the distribution of jumps and the transition graph 
structure. Another limitation is that the analyses were limited to 
classical Amari-Hopfield networks with a traditional Hebbian 
learning rule. Future research can also examine jump behavior in 
the context of alternative network architectures or learning rules, 
such as dense associative memories (Krotov and Hopfield, 2016). 
Additionally, the current results pertain to deterministic 
networks. Future research can examine these effects in stochastic 
associative networks (Pantic et  al., 2002). These studies can 
examine whether alternative network structures evidence 
different distributions of jump sizes and branch sizes. Another 
interesting question is under what circumstances the 
phenomenon of discrete jumps in performance in human 
memory is adaptive (e.g., by facilitating rapid memory 
consolidation with stimulus exposure) or maladaptive (e.g., by 
destabilizing performance).

In sum, the present results provide evidence that even the 
simplest network models of associative learning can exhibit 
sudden, discontinuous jumps in learning performance. Similar 
threshold effects, in which small input changes can trigger large 
alterations in attractor structure, may also occur in biological 

FIGURE 3

Branching structure of states added to network with a single stimulus presentation. Network transition graph shown immediately before and after a 
jump in size of the target stimulus attractor basin. Newly added states are organized into a branching structure.
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RNNs and could have important implications for cognitive 
functions such as declarative and procedural memory. Future work 
using more biologically plausible neural models is warranted to 
further explore these dynamics and to develop more detailed 
accounts of the mechanisms underlying discontinuous learning 
in humans.
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FIGURE 4

Discrete jumps in accuracy in larger networks. (A) Increase in accuracy (percent of states converging to true target) with repeated stimulus 
presentations for different Hamming distances between target and initial states, in a network with 100 neurons. (B) Increase in accuracy (percent of 
states converging to true target) with repeated stimulus presentations for different Hamming distances between target and initial states, in a network 
with 1,000 neurons. (C) Effect of Hamming distance (i.e., stimulus degradation) on the variability (coefficient of variation) of positive jump sizes. Error 
bars represent standard error of the mean. (D) Effect of number of pretrained memories (i.e., interference) on the variability (coefficient of variation) of 
positive jump sizes. Error bars represent standard error of the mean.
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