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Sudden restructuring of memory
representations in recurrent
neural networks with repeated
stimulus presentations

Jonathon R. Howlett!?*
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of California, San Diego, La Jolla, CA, United States

While acquisition curves in human learning averaged at the group level display smooth,
gradual changes in performance, individual learning curves across cognitive domains
reveal sudden, discontinuous jumps in performance. Similar thresholding effects
are a hallmark of a range of nonlinear systems which can be explored using simple,
abstract models. Here, | investigate discontinuous changes in learning performance
using Amari-Hopfield networks with Hebbian learning rules which are repeatedly
exposed to a single stimulus. Simulations reveal that the attractor basin size for a
target stimulus increases in discrete jumps rather than gradual changes with repeated
stimulus exposure. The distribution of the size of these positive jumps in basin size
is best approximated by a lognormal distribution, suggesting that the distribution is
heavy-tailed. Examination of the transition graph structure for networks before and
after basin size changes reveals that newly acquired states are often organized into
hierarchically branching tree structures, and that the distribution of branch sizes
is best approximated by a power law distribution. The findings suggest that even
simple nonlinear network models of associative learning exhibit discontinuous
changes in performance with repeated learning which mirror behavioral results
observed in humans. Future work can investigate similar mechanisms in more
biologically detailed network models, potentially offering insight into the network
mechanisms of learning with repeated exposure or practice.
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Introduction

The study of learning is a central topic in psychology, cognitive science, and cognitive
neuroscience. While analysis of average performance at the group level tends to suggest that
learning is a smooth, incremental process (Thurstone, 1919; Newell and Rosenbloom, 1993),
examination of individual learning curves often reveals sudden, discontinuous changes. For
example, conditioning acquisition in individuals is typically characterized by abrupt transitions
from low levels of responding to an asymptotic level (Gallistel et al., 2004). Similarly, while
group average improvement in cognitive skills with practice can be approximated by a smooth
power law function, individual performance exhibits plateaus punctuated by sudden
improvements (Donner and Hardy, 2015). Discontinuities in performance also characterize
language learning (van Dijk and Geert, 2007), the development of sudden cognitive insight
(Smith and Kounios, 1996), and repetition learning in declarative memory (Musfeld et al., 2023).

Large changes in behavior in response to small changes in input are a hallmark of
nonlinear systems. Threshold effects, in which smooth responses suddenly give way to
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dramatic shifts, are observed in simple nonlinear thermodynamic
systems (Onuki, 2002) as well as highly complex systems such as
climate (Rial et al., 2004) and ecosystems (Scheffer et al., 2001).
Relatedly, nonlinear generating processes are frequently characterized
by heavy-tailed distributions (Albert and Barabasi, 2002). This implies
that extreme values occur much more frequently than would
be expected for Gaussian distributions, which are often generated by
additive processes in linear systems (Roberts et al., 2015).

In neuroscience, nonlinear features of neural networks, such as
nonlinear neural activation functions, are believed to play a critical role
in supporting computational processes such as learning (Dayan and
Abbott, 2005). One of the simplest neural network models of associative
learning is the Amari-Hopfield network, a simple version of a recurrent
neural network (RNN). Traditional Amari-Hopfield networks are fully
connected single-layer networks consisting of binary neurons with
simple rules for network evolution inspired by the Ising model of spin
glasses in statistical mechanics (Hopfield, 1982; Amari, 1972; Amari,
1977). Using simple Hebbian associative learning rules, Amari-Hopfield
networks can be trained to form attractors for remembered inputs, which
cause similar states (within the attractor basin) to converge on these
remembered states. Despite their simplicity, Amari-Hopfield networks
have had major impacts on statistical mechanics, neuroscience, and
machine learning, and modified versions of Amari-Hopfield networks
with greater storage capacity continue to be investigated (Krotov, 2023).

While the storage capacity of traditional and modified Amari-
Hopfield networks has been extensively studied, the effect of repeat
stimulus presentations (or, alternatively, of increasing weight for a
given input stimulus) has been less explored. Studying changes in
attractor basins in RNNs with repeat stimulus presentations may
be relevant to a range of cognitive phenomena, such as the effect of
repetition training on memory performance (Musfeld et al., 2023) and
the effect of practice on skill development [which may involve retrieval
of stored procedural memories (Logan, 1988)].

In this brief report, I demonstrate that repeated stimulus
presentations in synchronously updating Amari-Hopfield networks
with a simple Hebbian learning rule cause intermittent, abrupt jumps
in the size of attractor basins, rather than smooth incremental growth.
Furthermore, I show that the distribution of positive jumps in
attractor basin size is best approximated by a lognormal distribution,
suggesting that the distribution is heavy-tailed. Examination of
transition graphs before and after jumps in basin size reveals that
newly acquired states tend to be organized into branching structures,
suggesting that the heavy-tailed distribution of jumps in basin size
may be related to the heavy-tailed distribution of branch sizes in the
transition graph structure. The results suggest that even simple
nonlinear models of associative memory exhibit characteristics of
discontinuous learning and may have implications for more detailed,
biologically realistic models of learning in neural networks.

Methods

Attractor basin changes with repeated
stimulus presentations

Memory storage was modeled with an Amari-Hopfield network

consisting of 10 binary neurons (+ states). Small networks were
studied to enable full enumeration of the state space (1,024 states for
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a 10-neuron vector). The network weights W were constructed using
a batch Hebbian learning rule. Given a set of p stored patterns {x;, x,,
...» X}, each of length 10, the weight matrix was computed as:

w=x"x,

Where X is the p x 10 matrix whose uth row is the pattern x,. The
diagonal elements were set to zero (i.e, W; =0) to eliminate
self-feedback.

In the experimental paradigm, the network was first “pretrained”
with a diverse set of 50 random stimuli. To amplify the influence of
these stimuli (which would later gradually be overcome by repeated
presentation of the target stimulus), each of these 50 patterns was
multiplied by 10, then combined into a 50 x 10 matrix which was used
to produce initial network weights via the Hebbian learning rule. This
pretraining phase established an initial attractor landscape with a rich
set of stored memories with which the target stimulus would compete
to attract states to its attractor basin.

The target stimulus was then generated randomly. In the target
presentation phase, the network was presented repeatedly with the
target stimulus, with the number of target presentations being
incremented one at a time from 0 to 1,000. For each target presentation
count j € {1, 2, ...,1,000}, the complete memory matrix was X was
constructed by concatenating the pretraining matrix (of size 50 x 10)
and j copies of the target stimulus. The weight matrix was then
recomputed using the Hebbian learning rule.

The network dynamics were simulated using synchronous updates:

s(t+1)=sign(Ws(t)),

Where sign (-) returns 1 for nonnegative inputs and —1 for
negative inputs. Convergence was determined when the state no
longer changed between updates.

At each step during the target presentation phase, the attractor
basin size was computed corresponding to the target pattern—that is,
the number of initial states (sampled exhaustively) that converged to
the target attractor. These basin sizes were stored and used to compute
increases (or jumps) in attractor basin size during the target
presentation phase.

Simulations were implemented in R (R Core Team, 2013). The
experiment was repeated over 100 runs with new random pretraining
stimuli and target stimulus being generated for each run.

Distribution of basin size jumps

The basin size trajectories for the target stimulus were
aggregated across runs to analyze the distribution of positive jump
sizes in the target attractor basin. Jump size for stimulus
presentation j was defined as the number of initial states that
converged on the target state after stimulus presentation j minus the
number of initial states that converged on the target state after
stimulus presentation j — 1. Discrete jumps were defined as positive
changes in basin size given that most stimulus presentations did not
lead to a change in basin size. Excess kurtosis for the empirical
distribution of positive jump sizes was estimated using the e1071
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package in R. Several candidate distributions were fit to the
observed positive jump sizes using maximum likelihood estimation
implemented in the R package fitdistrplus. The candidate models
included a lognormal distribution, an exponential distribution, a
half-normal distribution (centered at 1), and a power law
distribution (with lower bound x,;, =1 and with the scaling
exponent a estimated via the R package poweRlaw). Akaike
information criterion (AIC) was computed for each distribution fit
and cumulative distribution function (CDF) on a linear scale and
complementary cumulative distribution function (CCDF) on a log
scale were plotted for the empirical data and the fitted distributions.
Parameter stability estimates for distributions were assessed using
1,000 bootstrap

nonparametric bootstrapping (resampling

replicates from observed data with replacement).

Transition graph structure after basin size
increase

In order to investigate the structure of memory representations
after a basin size jump, the state transition graph immediately
after each increase in basin size was examined. After an increase
in basin size, the set of new states was defined as states belonging
to the target basin after the jump but not belonging to the target
basin before the jump. Transitions were based on single updates
from one state to the next. Transition graphs were then
constructed where each node represented a state of the network
and a directed edge connected each state to the state obtained
after one synchronized update. This yielded a branching tree
structure in which each state’s “parent” was defined as the next
state obtained after a synchronous update, and the root node was
the target attractor state. To quantify the graph structure of the
new states added after an increase in basin size, these new states
were sorted into branches, and the size of each branch was
recorded. To accomplish this, a set of branch heads was first
identified within the new states, defined as new states whose
immediate parent was not a new state (i.e., which had belonged to
the attractor basin prior to the jump). For each of these branch
head states, the number of its descendants were computed (while
also counting the branch head state itself), thus quantifying the
size of each branch of new states which had been added to the
target basin. This procedure partitioned all new states into
branches, with the sum of branch sizes being equal to the total
number of new states after an increase in basin size. Branch sizes
were defined as the number of states that eventually flow into a
node in the state-transition graph. They were measured by
exhaustively determining the descendent state of each possible
network state.”

A network with 10 neurons was pretrained with 50 random
patterns, each being multiplied by 10, and then a randomly
selected target stimulus was presented 1,000 times, as in the
previous experiments. Transition graphs were examined after each
increase in target basin size, and branch sizes of new states were
recorded. This process was repeated over 100 runs, with new
random pretraining stimuli and target stimulus being generated
for each run. The distribution of branch sizes for new states was
then examined and fit with candidate distributions including a
lognormal distribution, an exponential distribution, a half-normal
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distribution, and a power law distribution, as in the
previous experiment.

For comparison purposes, the distribution of branch sizes was
also examined for all states across a network (i.e., the total number of
descendant states, also counting the state itself, for all states across a
network). This was performed for a network with 10 neurons that had
been pretrained with 50 random patterns, each being multiplied by
10. For visualization, the graph structure of a target attractor basin
immediately before and after a basin size jump was plotted for a

smaller network of 8 neurons.

Sampled initial states in larger networks

In order to examine basin growth in larger networks, networks
with 100 and 1,000 neurons were examined. Because it is not feasible
to enumerate all possible starting states in networks of this size,
starting states were randomly sampled from subsets of states with
differing Hamming distances (i.e., number of flipped bits) k from the
target stimulus. Distances k of 1, 2, 3, 5, 10, and 20 were sampled for
the 100-neuron network and distances 1, 2, 3, 5, 10, 20, 50, and 100
were sampled for the 1,000-neuron network. For each distance k, 100
states of distance k from the target stimulus were randomly sampled.
As in previous experiments, the networks were pretrained with
random stimuli (one stimulus multiplied by weight 30 for the
100-neuron network and one stimulus multiplied by a weight of 100
for the 1,000-neuron network). As before, the target stimulus was
repeatedly presented to the network (the target was presented 500
times). For each presentation of the target, the proportion of sampled
initial states at each distance k which converged on the target (i.e.,
were in the target stimulus basin) was recorded. The same sampled
starting states were used across stimulus presentations to avoid noise
caused by resampling starting states.

Effect of interference and stimulus
degradation on jump distribution

Simulations were performed to investigate the effect of varying
levels of memory interference (pretraining stimulus presentations)
and stimulus degradation (distance k of the probe stimulus from the
target stimulus) on the distribution of sizes of jumps in sampled initial
states which are in the target stimulus basin. Simulations were
performed on a network with 100 neurons. In order to examine the
effect of pretraining stimulus presentations, k was held constant at 20
and simulations were performed with 1, 2, 3, 4, and 5 pretraining
stimuli (each multiplied by a weight of 20). In order to examine the
effect of k, the number of pretraining stimuli was held constant at 1
(multiplied by a weight of 20), and simulations were run with k of 5,
10, 15, 20, and 25. For each run, the target stimulus was presented 300
times. For each condition, 100 runs were performed. All jump sizes
(with jumps defined as any increase in number of sampled starting
states which converged on the target) were recorded, and the
coeflicient of variation of the distribution of positive jump sizes was
calculated for each run. Welch’s ANOVA tests were performed to
determine whether stimulus degradation (k) or memory interference
(number of pretraining memories) significantly affected the coefficient
of variation of jump sizes.

frontiersin.org


https://doi.org/10.3389/fncom.2025.1601641
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Howlett

Results

Attractor basin changes with repeated
stimulus presentations

Examination of plots of target attractor basin size with repeated
target stimulus presentations revealed that attractor basin size
increases in intermittent, abrupt jumps, rather than gradually and
smoothly increasing (see Figure la for an example plot for one
experimental run). The proportion of all stimulus presentations which
caused an increase in attractor basin size was 0.0126. See Figure 1b for
a plot of average increase in target basin size across experimental runs,
which shows a relatively smooth increase with repeated
stimulus presentations.

10.3389/fncom.2025.1601641

Distribution of basin size jumps

Estimated excess kurtosis for the distribution of all positive jump
sizes was 11.9, greater than the expected excess kurtosis for a half-
normal distribution (~0.87) and for an exponential distribution
(Smith and Kounios, 1996). This suggests that the distribution of
positive jump sizes is heavy-tailed.

Based on AIC, the best-fitting distribution for positive jump sizes
was the lognormal distribution (mean = 2.58, 95% CI [2.49, 2.67];
sd =1.56,95% CI [1.51, 1.61]; AIC = 11176.16), which was a superior
fit to the half-normal (sigma=73.21, 95% CI [65.11, 81.14];
AIC = 12626.58), exponential (rate = 0.026, 95% CI [0.024, 0.029];
AIC = 11,653.53), and power law (alpha = 1.39, 95% CI [1.38, 1.40];
AIC =11,382.23) distributions (see Figures lc,d). The lognormal
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FIGURE 1
Discrete jumps in attractor basin size with repeated stimulus exposures. (a) Increase in basin size with repeated exposure for a single run. The basin size
for the target stimulus increases in intermittent, discrete jumps. (b) Average increase in basin size over 100 runs. There is a smoother increase in basin
size when averaging across runs. (c) Cumulative probability distribution for the size of positive jumps. The empirical distribution is best fit by a
lognormal distribution. (d) Complementary cumulative distribution function (CCDF) for positive jump sizes plotted on a log scale.
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distribution was preferred based on AIC in 999 out of 1,000
bootstrap replicates.

Transition graph structure after basin size
increase

Sizes of branch structures of new states belonging to target
attractor basins were computed after increases in basin size. The
proportion of branches consisting of a single state was 0.69. Of all
branches consisting of two or more states, the estimated excess
kurtosis was 50.3, greater than the expected excess kurtosis for a half-
normal distribution (~0.87) and for an exponential distribution
(Smith and Kounios, 1996). The best fitting distribution was a power
law distribution, (AIC = 10501.03), which was a superior fit to the
half-normal (AIC = 19,054.53), exponential (AIC = 15,130.96), and
lognormal (AIC = 12,508.08) distributions (see Figures 2a,b). The
power law fit is further supported by the linear appearance of the
empirical distribution on the log-log CCDF plot (with the exception
of decreased frequency for the largest branch sizes, which may
be explained by truncation of the tail due to the finite size of
the network).

For the distribution of branch sizes consisting of two or more
states across the entire network, estimated excess kurtosis was
74.0. The best fitting distribution was a power law distribution,
(alpha = 1.67,95% CI [1.67, 1.68]; AIC = 1,389,856), which was a
superior fit to the half-normal (sigma = 28.37, 95% CI [27.87,
28.84]; AIC =1,963,401), exponential (rate =0.088, 95% CI
[0.087, 0.088]; AIC = 1,657,266), and lognormal (mean = 1.49,
95% CI [1.48, 1.49]; sd=1.25 95% CI [1.25, 1.26];
AIC =1,510,063) distributions (see Figures 2c,d). The power law
distribution was preferred based on AIC in 1000 out of 1,000
bootstrap replicates.

A plot of the graph structure of a target attractor basin
immediately before and after a jump in basin size reveals a branching
structure of new states (i.e., states which belong to the target basin
after the jump but did not belong to the target basin prior to the jump;
see Figure 3).

Sampled initial states in larger networks
and effect of interference and stimulus
degradation on jump distribution

Similarly to the small networks, large networks displayed evidence
of discontinuous jumps in target basin with repeat stimulus
presentations. The proportion of sampled initial states at various
distances k from the target stimulus which fell within the target basin
increased in intermittent, abrupt jumps, rather than gradually and
smoothly increasing, in networks with 100 and 1,000 neurons
(Figures 4A,B).

A Welch’s ANOVA test revealed that the coefficient of
variation of accuracy jump sizes was negatively associated with
distance from the target stimulus (i.e., stimulus degradation)
(F = 184.14, p < 0.001; Figure 4C). Similarly, the coefficient of
variation of accuracy jump sizes was negatively associated with
pretraining stimuli (i.e., memory interference) (F = 195.86,
p < 0.001; Figure 4D).
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Discussion

In this study, I examined the behavior of Amari-Hopfield
networks with a Hebbian update rule with repeated presentations of a
single stimulus. I observed that increases in attractor basin size for the
target stimulus occurred in abrupt, intermittent bursts, rather than
reflecting a smooth, continuous process. I found evidence that the
distribution of positive jump sizes in the target attractor basin was
heavy-tailed and was best fit by a lognormal distribution. Furthermore,
examination of the state transition structure of target attractor basins
after jumps revealed that newly acquired states were frequently
organized into branching structures, with the size of these branches
being best approximated by a power law distribution. These findings
are consistent with the hypothesis that the heavy-tailed distribution of
jumps in the size of the target basin size may be related to the heavy-
tailed distribution of branch sizes in the network state transition
graph, although these distributions are not identical. Additionally,
both stimulus degradation (Hamming distance between start state and
target) and memory interference (number of pretrained memories)
were negatively associated with variability in jump sizes, establishing
qualitative predictions for future behavioral studies of discrete changes
in performance.

Amari-Hopfield networks represent high-level, idealized
models which may be relevant to the implementation of associative
memory in recurrent neural networks (RNNs) in the brain. The
effects observed here, i.e., threshold effects with gradual parameter
changes, may also be observed in more complex, biologically
plausible network models. Such models, which may incorporate
graded or spiking activation, stochasticity and noise, more complex
learning rules (such as spike timing dependent plasticity [Caporale
and Dan, 2008)], complex (rather than full) connectivity patterns,
interneuron populations, and other features of biological networks
may thus be investigated to better understand threshold effects
which are clearly illustrated in the simpler Amari-Hopfield model.
Investigation of biologically realistic mechanisms, such as spike
timing dependent plasticity, may also help to elucidate the role of
precise timing in behavioral paradigms, as well as the effect of
specific neuromodulatory influences on synaptic learning
mechanisms, in altering jumps in performance. Continuous,
spiking recurrent networks with spike timing depending plasticity
mechanisms have been investigated in detail (Seeholzer et al., 2019;
Mongillo et al., 2008; Amit and Brunel, 1997), and future studies
can examine the effect of repeat stimulus presentations in similar
networks. The approach may also be extended by incorporating
additional biological mechanisms such as stimulus specific
adaptation, in which neural responses to common stimuli are
suppressed (Nelken, 2014). Hebbian learning, as studied here, may
underpin the recognition of common stimuli, contributing to the
suppression of response to those stimuli in perceptual systems.
Adaptation itself may also have complex effects on recurrent
network performance (Cortes et al., 2012). The current results may
thus be a stepping stone to investigation of more complex
phenomena in biological systems. Similarly, characterization of
basic phenomena in simple nonlinear models has previously helped
guide more detailed, realistic studies of weather and climate
(Lorenz, 1991), population dynamics (Kendall and Fox, 1998), and
other complex systems. In addition to extension to more detailed
neural network models, the results can also be extended to more
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FIGURE 2
Distribution of branch sizes in network transition graph. (a) Cumulative probability distribution for the size of branches added to the target attractor
basin. The empirical distribution is best fit by a power law distribution. (b) Complementary cumulative distribution function (CCDF) for the size of
branches added to the target attractor basin. (c) Cumulative probability distribution for the size of all branches across the network. The empirical
distribution is best fit by a power law distribution. (d) Complementary cumulative distribution function (CCDF) for the size of all branches across the
network.

detailed cognitive models of particular learning domains. While it
is likely that the specific details of discontinuous changes in
performance with learning in a given domain [e.g., language
learning (van Dijk and Geert, 2007)] are influenced by domain-
specific factors, the ubiquity of these effects across domains
(Donner and Hardy, 2015; Smith and Kounios, 1996; Musfeld et al.,
2023) suggests there may be a common mechanism related to
associative learning in nonlinear networks.

The current results are consistent with the hypothesis that the
branching state transition structure of attractor basins in the
Amari-Hopfield network are related to the discontinuous changes
in attractor basin size with repeated stimulus presentations. The

Frontiers in Computational Neuroscience

branch size, i.e., number of descendant nodes, across all states in
the network is best approximated by a power law distribution, as
are the branch sizes of newly acquired states after a jump in
attractor basin size. The distribution of increases in attractor basin
size also appears to be heavy-tailed, although best fit by a
lognormal rather than power law distribution. The difference in
distributions between jump sizes and branch structures is likely
explained by the fact that more than one branch can be added to
the attractor basin in a single step, including a relatively large
number of single states. A full theoretical analysis of the observed
discontinuous changes in attractor size is beyond the scope of this
brief report. Future work can apply theoretical techniques such as
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FIGURE 3
Branching structure of states added to network with a single stimulus presentation. Network transition graph shown immediately before and after a
jump in size of the target stimulus attractor basin. Newly added states are organized into a branching structure.

mean field approximations to improve understanding of the
observed behaviors.

The results highlight the importance of examining individual,
in addition to average, behavior to develop models of the
mechanistic underpinnings of cognitive performance. Fitting
average rather than individual data can obscure the true
generating process, especially when this process is nonlinear
(Busemeyer and Diederich, 2010). Thus, while many studies of
learning report smooth acquisition curves when behavior is
averaged at the group level, studies examining individual behavior
often report discontinuous, step-like acquisition (Musfeld et al.,
2023). This distinction between individual and group learning
curves mirrors the current results, in which a single run of the
Amari-Hopfield
(Figure la), while an average of multiple runs appears to show a

network displays discontinuous jumps
smooth expansion in basin size (Figure 1b). Employing an
individual-differences approach can help constrain and validate
cognitive theories (Vogel and Awh, 2008). Fitting models to
individual vs. group data represents a tradeoff, with consideration
of individual data being necessary to maximize accuracy (Estes
and Todd Maddox, 2005). Bayesian hierarchical approaches have
become an increasingly popular tool to mitigate the tradeoff
between group and individual fitting (Scheibehenne and
Pachur, 2015).

Frontiers in Computational Neuroscience

Future research can further investigate individual differences
by examining the effect of network parameters (e.g., representing
neuromodulatory influences or individual differences in network
wiring) on the distribution of jumps and the transition graph
structure. Another limitation is that the analyses were limited to
classical Amari-Hopfield networks with a traditional Hebbian
learning rule. Future research can also examine jump behavior in
the context of alternative network architectures or learning rules,
such as dense associative memories (Krotov and Hopfield, 2016).
Additionally, the current results pertain to deterministic
networks. Future research can examine these effects in stochastic
associative networks (Pantic et al., 2002). These studies can
examine whether alternative network structures evidence
different distributions of jump sizes and branch sizes. Another
what the
phenomenon of discrete jumps in performance in human

interesting question is under circumstances
memory is adaptive (e.g., by facilitating rapid memory
consolidation with stimulus exposure) or maladaptive (e.g., by
destabilizing performance).

In sum, the present results provide evidence that even the
simplest network models of associative learning can exhibit
sudden, discontinuous jumps in learning performance. Similar
threshold effects, in which small input changes can trigger large
alterations in attractor structure, may also occur in biological
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FIGURE 4
Discrete jumps in accuracy in larger networks. (A) Increase in accuracy (percent of states converging to true target) with repeated stimulus
presentations for different Hamming distances between target and initial states, in a network with 100 neurons. (B) Increase in accuracy (percent of
states converging to true target) with repeated stimulus presentations for different Hamming distances between target and initial states, in a network
with 1,000 neurons. (C) Effect of Hamming distance (i.e., stimulus degradation) on the variability (coefficient of variation) of positive jump sizes. Error
bars represent standard error of the mean. (D) Effect of number of pretrained memories (i.e., interference) on the variability (coefficient of variation) of
positive jump sizes. Error bars represent standard error of the mean.

RNNs and could have important implications for cognitive
functions such as declarative and procedural memory. Future work
using more biologically plausible neural models is warranted to
further explore these dynamics and to develop more detailed
accounts of the mechanisms underlying discontinuous learning
in humans.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at: https://github.com/jonhowlett/
hopfield-jumps.

Frontiers in Computational Neuroscience

Author contributions

JH: Investigation, Funding acquisition, Formal analysis, Writing —
original draft, Visualization, Methodology, Conceptualization,
Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was
supported by the Veterans Health Administration Office of Research
and Development Career Development Award IK2CX001887 and
Merit Award IK4CX003030 (to JH).

frontiersin.org


https://doi.org/10.3389/fncom.2025.1601641
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://github.com/jonhowlett/hopfield-jumps
https://github.com/jonhowlett/hopfield-jumps

Howlett

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author declares that Gen Al was used in the creation of this
manuscript. In editing to improve readability, mainly in the
Method section.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the

References

Albert, R., and Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Rev.
Mod. Phys. 74, 47-97. doi: 10.1103/RevModPhys.74.47

Amari, S. I. (1972). Learning patterns and pattern sequences by self-organizing nets of
threshold elements. IEEE Trans. Comput. C-21, 1197-1206. doi: 10.1109/T-C.1972.223477

Amari, S. I. (1977). Neural theory of association and concept-formation. Biol. Cybern.
26, 175-185. doi: 10.1007/BF00365229

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237-252.
doi: 10.1093/cercor/7.3.237

Busemeyer, J. R., and Diederich, A. (2010). Cognitive modeling. Thousand Oaks,
CA: Sage.

Caporale, N., and Dan, Y. (2008). Spike Timing-dependent plasticity: a hebbian learning
rule. Annual Review of Neuroscience 31, 25-46. doi: 10.1146/annurev.neuro.31.060407.125639

Cortes, J. M., Marinazzo, D., Series, P., Oram, M. W.,, Sejnowski, T. J., and van
Rossum, M. C. (2012). The effect of neural adaptation on population coding accuracy.
J. Comput. Neurosci. 32, 387-402. doi: 10.1007/s10827-011-0358-4

Dayan, P, and Abbott, L. E. (2005). Theoretical neuroscience: Computational and
mathematical modeling of neural systems. Cambridge, MA: MIT Press.

Dijk, M, and Geert, P. (2007). Wobbles, humps and sudden jumps: a case study of
continuity, discontinuity and variability in early language development Infant Child Dev.
16, 7-33. doi: 10.1002/icd.506

Donner, Y., and Hardy, J. L. (2015). Piecewise power laws in individual learning

curves. Psychon. Bull. Rev. 22, 1308-1319. doi: 10.3758/s13423-015-0811-x

Estes, W. K., and Todd Maddox, W. (2005). Risks of drawing inferences about
cognitive processes from model fits to individual versus average performance. Psychon.
Bull. Rev. 12, 403-408. doi: 10.3758/BF03193784

Gallistel, C. R., Fairhurst, S., and Balsam, P. (2004). The learning curve: implications of a
quantitative analysis. Proc. Natl. Acad. Sci. USA 101, 13124-13131. doi: 10.1073/pnas.0404965101

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. 79, 2554-2558. doi: 10.1073/pnas.79.8.2554

Kendall, B. E., and Fox, G. A. (1998). Spatial structure, environmental heterogeneity,
and population dynamics: analysis of the coupled logistic map. Theor. Popul. Biol. 54,
11-37. doi: 10.1006/tpbi.1998.1365

Krotov, D. (2023). A new frontier for Hopfield networks. Nat. Rev. Phys. 5, 366-367.
doi: 10.1038/542254-023-00595-y

Krotov, D., and Hopfield, J. J. (2016). Dense associative memory for pattern
recognition. Adv. Neural Inf. Proces. Syst. 29.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychol. Rev. 95,
492-527. doi: 10.1037/0033-295X.95.4.492

Frontiers in Computational Neuroscience

09

10.3389/fncom.2025.1601641

support of artificial intelligence and reasonable efforts
have been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please

contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Lorenz, E. N. (1991). Dimension of weather and climate attractors. Nature 353,
241-244. doi: 10.1038/353241a0

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working memory.
Science 319, 1543-1546. doi: 10.1126/science.1150769

Musfeld, P, Souza, A. S., and Oberauer, K. (2023). Repetition learning is neither a
continuous nor an implicit process. Proc. Natl. Acad. Sci. USA 120:€2218042120. doi:
10.1073/pnas.2218042120

Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the auditory
system: experiments and models. Biol. Cybern. 108, 655-663. doi:
10.1007/s00422-014-0585-7

Newell, A., and Rosenbloom, P. S. (1993). Mechanisms of skill acquisition and the law
of practice. The Soar papers (vol 1): research on integrated intelligence. Cambridge, MA:
MIT Press. 81-135.

Onuki, A. (2002). Phase transition dynamics. Cambridge: Cambridge University Press.

Pantic, L., Torres, J. J., Kappen, H. J., and Gielen, S. C. (2002). Associative memory
with  dynamic  synapses.  Neural — Comput. 14,  2903-2923.  doi:
10.1162/089976602760805331

R Core Team (2013). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rial, J. A., Pielke, R. A., Beniston, M., Claussen, M., Canadell, J., Cox, P., et al.
(2004). Nonlinearities, feedbacks and critical thresholds within the earth's climate
system. Clim. Chang. 65, 11-38. doi: 10.1023/B:CLIM.0000037493.89489.3f

Roberts, J. A., Boonstra, T. W., and Breakspear, M. (2015). The heavy tail of the human
brain. Curr. Opin. Neurobiol. 31, 164-172. doi: 10.1016/j.conb.2014.10.014

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B. (2001). Catastrophic
shifts in ecosystems. Nature 413, 591-596. doi: 10.1038/35098000

Scheibehenne, B., and Pachur, T. (2015). Using Bayesian hierarchical parameter
estimation to assess the generalizability of cognitive models of choice. Psychon. Bull. Rev.
22,391-407. doi: 10.3758/s13423-014-0684-4

Seeholzer, A., Deger, M., and Gerstner, W. (2019). Stability of working memory in
continuous attractor networks under the control of short-term plasticity. PLoS Comput.
Biol. 15:¢1006928. doi: 10.1371/journal.pcbi.1006928

Smith, R. W,, and Kounios, J. (1996). Sudden insight: all-or-none processing revealed
by speed-accuracy decomposition. J. Exp. Psychol. Learn. Mem. Cogn. 22, 1443-1462.
doi: 10.1037/0278-7393.22.6.1443

Thurstone, L. L. (1919). The learning curve equation. Psychol. Monogr. 26, i-51. doi:
10.1037/h0093187

Vogel, E. K., and Awh, E. (2008). How to exploit diversity for scientific gain: using
individual differences to constrain cognitive theory. Curr. Dir. Psychol. Sci. 17, 171-176.
doi: 10.1111/§.1467-8721.2008.00569.x

frontiersin.org


https://doi.org/10.3389/fncom.2025.1601641
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1109/T-C.1972.223477
https://doi.org/10.1007/BF00365229
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1007/s10827-011-0358-4
https://doi.org/10.1002/icd.506
https://doi.org/10.3758/s13423-015-0811-x
https://doi.org/10.3758/BF03193784
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1006/tpbi.1998.1365
https://doi.org/10.1038/s42254-023-00595-y
https://doi.org/10.1037/0033-295X.95.4.492
https://doi.org/10.1038/353241a0
https://doi.org/10.1126/science.1150769
https://doi.org/10.1073/pnas.2218042120
https://doi.org/10.1007/s00422-014-0585-7
https://doi.org/10.1162/089976602760805331
https://doi.org/10.1023/B:CLIM.0000037493.89489.3f
https://doi.org/10.1016/j.conb.2014.10.014
https://doi.org/10.1038/35098000
https://doi.org/10.3758/s13423-014-0684-4
https://doi.org/10.1371/journal.pcbi.1006928
https://doi.org/10.1037/0278-7393.22.6.1443
https://doi.org/10.1037/h0093187
https://doi.org/10.1111/j.1467-8721.2008.00569.x

	Sudden restructuring of memory representations in recurrent neural networks with repeated stimulus presentations
	Introduction
	Methods
	Attractor basin changes with repeated stimulus presentations
	Distribution of basin size jumps
	Transition graph structure after basin size increase
	Sampled initial states in larger networks
	Effect of interference and stimulus degradation on jump distribution

	Results
	Attractor basin changes with repeated stimulus presentations
	Distribution of basin size jumps
	Transition graph structure after basin size increase
	Sampled initial states in larger networks and effect of interference and stimulus degradation on jump distribution

	Discussion

	References

