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Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized

by a high rate of misdiagnosis, underscoring the critical importance of

early and accurate diagnosis. Although existing computer-aided diagnostic

systems integrate clinical assessment scales with neuroimaging data, they

typically rely on superficial feature concatenation, which fails to capture the

deep inter-modal dependencies essential for effective multimodal fusion. To

address this limitation, we propose ModFus-PD, Contrastive learning effectively

aligns heterogeneous modalities such as imaging and clinical text, while

the cross-modal attention mechanism further exploits semantic interactions

between them to enhance feature fusion. The framework comprises three key

components: (1) a contrastive learning-based feature alignment module that

projects MRI data and clinical text prompts into a unified embedding space via

pretrained image and text encoders; (2) a bidirectional cross-modal attention

module in which textual semantics guide MRI feature refinement for improved

sensitivity to PD-related brain regions, while MRI features simultaneously

enhance the contextual understanding of clinical text; (3) a hierarchical

classification module that integrates the fused representations through two fully

connected layers to produce final PD classification probabilities. Experiments

on the PPMI dataset demonstrate the superior performance of ModFus-PD,

achieving an accuracy of 0.903, AUC of 0.892, and F1 score of 0.840, surpassing

several state-of-the-art baselines. These results validate the effectiveness of our

cross-modal fusion strategy, which enables interpretable and reliable diagnostic

support, holding promise for future clinical translation.
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early diagnosis of Parkinson’s disease, multimodal representation learning, crossmodal
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1 Introduction

Parkinson’s disease (PD) is a complex neurodegenerative
disorder that can lead to disability and substantially elevate the risk
of developing dementia (Kalia and Lang, 2015), thereby severely
impairing patients’ quality of life. By 2040, the global prevalence of
PD is projected to surpass 12 million individuals (Zhu et al., 2024),
making it the most rapidly increasing neurodegenerative condition
worldwide (Gbd 2016 Parkinson’s Disease Collaborators, 2018). As
no definitive cure exists, early intervention is essential to delay
progression and improve outcomes (Becker et al., 2002). Studies
report an average diagnostic delay of about 1 year after symptom
onset. Economically, PD imposes a substantial burden, with annual
costs in the U.S. exceeding USD 52 billion, including both direct
medical and indirect societal expenses (Breen et al., 2013).

Motor symptoms are primary clinical indicators for PD
diagnosis (Sveinbjornsdottir, 2016), but they often emerge when the
disease has already advanced (Sveinbjornsdottir, 2016). However,
by the time such symptoms become apparent, patients are often
already in an advanced and irreversible stage. Early motor signs
are typically subtle and nonspecific, often misattributed to aging or
other conditions. For example, bradykinesia may present as vague
complaints like “slowed movements” or “poor coordination,” which
may go unrecognized (Bidesi et al., 2021; Höglinger et al., 2024;
Jankovic, 2008). Non-motor symptoms have also gained attention
as early diagnostic markers. Some, such as olfactory loss, may
precede motor signs by years. Monitoring prodromal non-motor
symptoms—like sleep disturbances, cognitive decline, anxiety, and
depression—can enhance early detection of PD (Herz and Brown,
2023; Maggi et al., 2021; Stefani and Högl, 2020).

Despite their clinical utility, both motor and non-motor
symptoms are typically assessed using rating scales, clinical scale
assessments for Parkinson’s disease are often influenced by patients’
personal perceptions, emotional states, or recall bias, while clinician
ratings may vary due to differences in experience, evaluation
criteria, and assessment environments.

These limitations compromise the objectivity and reliability of
assessments. To address this issue, researchers have increasingly
turned to more objective neuroimaging techniques. In PD, distinct
structural and functional brain abnormalities linked to disease
pathology can be detected through imaging. Several studies have
utilized neuroimaging data to characterize the brain alterations
associated with PD, aiming to extract more objective biomarkers
of neurodegeneration. Nevertheless, such structural brain changes
in the early stages of PD are often subtle, and their imaging
profiles may resemble those of other neurodegenerative disorders
(Boonstra et al., 2021), complicating differential diagnosis.

Clinical rating scales offer rich representations of both
motor and non-motor symptoms, while MRI provides objective
imaging evidence of underlying neuropathology. To leverage the
complementary strengths of these two modalities, prior studies
have explored their integration. A central challenge lies in how
to effectively fuse imaging and non-imaging data for accurate
PD diagnosis. Existing multimodal fusion approaches often rely
on simple feature concatenation, without adequately capturing
their synergistic potential. In particular, they tend to overlook a
critical aspect of multimodal learning—cross-modal interactions
and the deep complementary nature of heterogeneous information

sources (Chen et al., 2019). This study addresses the challenge of
heterogeneous data alignment through multimodal representation
learning and employs a cross-modal interaction module to analyze
inter-modal relationships.

In fact, numerous studies have demonstrated strong
associations between clinical assessments and neuroimaging
findings, suggesting that the two modalities can jointly reflect
disease characteristics. For instance, Hanafi et al. (2024) observed
positive correlations between UPDRS scores and regional brain
activity during gait tasks in PD patients. Yoo et al. (2024) conducted
a longitudinal study spanning over 5 years, documenting UPDRS
scores and MRI data, and reported that changes in motor-related
brain regions were significantly associated with UPDRS ratings.
Imaging and non-imaging data capture PD-related pathological
features from different perspectives, offering complementary
insights that can enhance diagnostic accuracy and robustness.
Nevertheless, how to effectively model cross-modal interactions
to fully exploit this complementarity remains an open research
problem.

To this end, we propose a diagnostic framework for Parkinson’s
disease, termed ModFus-PD, which integrates multimodal
representation learning with cross-modal attention to leverage both
clinical scale data and neuroimaging data for improved diagnostic
performance. The framework is composed of three modules:
multimodal representation learning, modality interaction, and
classification. Specifically, the multimodal representation learning
module employs a large language model to transform structured
clinical rating scale scores into semantically enriched textual
prompts, enhancing the interpretability of numerical assessments
and making them compatible with a text encoder. In parallel with
MRI inputs, a contrastive learning strategy is adopted to pretrain
the image and text encoders, aligning the representations of both
modalities within a shared latent space. Subsequently, the modality
interaction module applies a cross-modal attention mechanism
to integrate information from text and imaging features. The
resulting fused features are then used for final classification. The
main contributions of this study are as follows:

(1) This study introduces a novel diagnostic framework,
ModFus-PD, in which the core multimodal representation
learning module leverages contrastive learning to align deep
feature representations from MRI data and clinical rating scale–
derived textual embeddings. This alignment reduces cross-
modal discrepancies and enables the effective integration of
complementary features, facilitating accurate and synergistic
information fusion for Parkinson’s disease diagnosis.

(2) We designed a structured clinical scale–to–text conversion
module, which transforms numerical information from clinical
rating scales into semantically enriched textual descriptions.
This process enhances the semantic representation of clinical
assessments and enables their effective integration into multimodal
semantic alignment analysis.

(3) The model was evaluated on the PPMI dataset, achieving an
accuracy of 90.3%, an AUC of 0.89, and an F1 score of 0.84.

The remainder of this paper is organized as follows: section
2 reviews related work on the diagnosis and progression
of Parkinson’s disease. section 3 introduces the dataset and
preprocessing procedures, and provides a detailed description of
the core components of the proposed algorithm. Section 4 presents
four experiments and evaluates both the overall model performance
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and the impact of modality selection on downstream tasks. Section
5 discusses the significance and limitations of this study. Section 6
concludes the paper by summarizing the main findings.

2 Related works

Clinical rating scales are essential tools for assessing the
severity and progression of Parkinson’s disease (PD). Among
these, the Movement Disorder Society–Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) is currently the most widely adopted
clinical instrument (Goetz et al., 2008). In addition, the State-
Trait Anxiety Inventory (STAI), Epworth Sleepiness Scale (ESS),
and Clock Drawing Test (CDT) are also frequently employed in
PD evaluation (Hazan et al., 2018; Knowles and Olatunji, 2020;
Walker et al., 2020). Several studies have explored the use of clinical
rating scale data in combination with machine learning techniques
to distinguish PD patients from healthy controls. For example,
Martinez-Eguiluz et al. (2023) collected non-motor symptom
data (e.g., autonomic function scores, and olfactory assessments)
and evaluated nine classification algorithms, including support
vector machines (SVMs) and multilayer perceptrons (MLPs). All
models achieved classification accuracies exceeding 80%, with the
best performance (SVM) reaching approximately 86.3%. However,
scale-based assessments are not without limitations. Their
outcomes can be influenced by patients’ subjective perceptions,
demographic factors such as age and educational background,
the evaluator’s clinical experience, environmental conditions, and
inherent subjectivity in scoring criteria.

Compared to clinical rating scales, medical imaging offers more
objective and quantifiable biomarkers, serving as a complementary
diagnostic modality for Parkinson’s disease (PD). These imaging
techniques include structural MRI, Diffusion Tensor Imaging
(DTI), and functional radionuclide imaging methods such as
PET and SPECT. Zheng et al. (2024) employed a deep neural
network trained via contrastive learning to analyze brain MRIs
from hundreds of PD patients and healthy controls, revealing
PD-specific neuroanatomical patterns that effectively distinguish
patients from normal individuals. Khachnaoui et al. (2022)
applied three machine learning algorithms to differentiate
PD patients from healthy controls within the Scan Without
Evidence of Dopaminergic Deficit (SWEDD) cohort, with
hierarchical clustering achieving the highest accuracy, sensitivity,
and specificity.

In recent years, multimodal deep learning approaches have
significantly advanced the field of medical artificial intelligence
by learning joint feature representations from heterogeneous data
sources, thereby enhancing diagnostic performance and model
interpretability. Integrating clinical assessments with neuroimaging
data allows for the combination of symptom-level information
and objective biological markers to improve diagnostic accuracy.
For example, Yang et al. (2021) proposed a two-layer ensemble
learning model that integrates imaging features from MRI and
DTI with clinical evaluation scores to classify Parkinson’s disease
(PD) patients. The model achieved an accuracy of 96.9% under
10-fold cross-validation, substantially outperforming models based
on either clinical or imaging data alone. Beyond diagnostic
classification, clinical score–imaging fusion has also been applied
in prognostic modeling.

Multimodal deep learning, which integrates feature
representations from heterogeneous data sources, is emerging
as a prominent research focus in medical artificial intelligence.
In the diagnosis of Parkinson’s disease and other neurological
disorders, researchers have developed various multimodal
representation learning frameworks to leverage complementary
information across modalities, thereby enhancing diagnostic
accuracy and model interpretability. Heidarivincheh et al. (2021)
proposed MCPD-Net, a variational autoencoder (VAE)-based
architecture that fuses visual silhouette and accelerometer
data for PD classification. The model maintains robustness
under missing modality conditions and achieved an F1 score
improvement of 0.25 over vision-only models and 0.09 over
other multimodal approaches. Chen et al. (2023) introduced
the OLFG model, which integrates MRI, PET, and clinical
data via orthogonal latent space projection and incorporates
a feature weighting matrix along with cross-modal graph
regularization to capture inter-modality relationships. The
method outperformed existing approaches on the ADNI dataset,
demonstrating its diagnostic utility in Alzheimer’s disease (AD)
classification.

Although existing multimodal approaches have achieved
notable improvements in diagnostic performance, their modality
fusion strategies still leave room for enhancement. Many current
methods rely on shallow fusion techniques—such as simple
feature concatenation—where features from different modalities
are directly combined for classification tasks. Such strategies often
overlook the complex, underlying interactions across modalities.
The insufficient modeling of inter-modality complementarity and
correlation may constrain the representational capacity of the fused
features, thereby limiting performance gains in more challenging
diagnostic scenarios. Therefore, developing more effective cross-
modal interaction mechanisms to capture synergistic relationships
between modalities remains a critical direction in multimodal
research for Parkinson’s disease diagnosis.

3 Materials and methods

3.1 Data collection and preprocessing

This study utilizes the Parkinson’s Progression Markers
Initiative (PPMI) database as the primary data source. Initiated by
the Michael J. Fox Foundation in 2010, the PPMI aims to bring
together researchers, medical professionals, and patients to advance
the understanding of Parkinson’s disease (PD). From the PPMI
database, we collected both imaging data and four distinct clinical
assessment scales covering motor function (MDS-UPDRS), anxiety
(STAI), sleepiness (ESS), and cognitive ability (CDT). Detailed
information is provided in Table 1. All MRI scans were acquired
using a 3T Siemens scanner with an MPRAGE sequence. A total
of 383 participants were included, comprising 234 individuals with
PD and 149 healthy controls. Inclusion criteria for PD subjects were
as follows: (1) no prior pharmacological treatment; (2) availability
of MRI scans and complete data for all four clinical assessments;
and (3) age and sex matched with the healthy control group. All
participants were between 45 and 80 years of age.
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TABLE 1 Description of the clinical assessment scales used in this study.

Clinical
assessment
scales

Description

MDS-UPDRS The movement disorder society-unified Parkinson’s disease
rating Scale is an internationally recognized scale for
assessing PD, used to comprehensively evaluate both motor
and non-motor symptoms of PD. This study primarily
utilizes the motor symptoms section.

ESS The Epworth sleepiness scale is a standardized
questionnaire used to assess daytime sleepiness, reflecting
the patient’s sleep quality.

STAI The state-Trait Anxiety Inventory measures anxiety levels,
assessing both emotional state and long-term anxiety traits.

CDT The clock drawing test evaluates cognitive function,
primarily reflecting executive function, visuospatial ability,
and memory.

In this study, T1-weighted MRI scans underwent a series of
preprocessing steps. First, AC-PC alignment was performed using
the SPM12 toolbox, with manual adjustment of the image origin to
the anterior commissure. Next, non-brain tissues such as the neck
were removed using the built-in recon-all command in FreeSurfer,
retaining only brain regions. Finally, all MRI scans were nonlinearly
registered to the MNI152 standard space using the Advanced
Normalization Tools (ANTs) software. We did not apply further
intensity normalization or denoising to maintain the original MRI
contrast patterns for downstream analysis.

3.2 Overview of our framework
ModFus-PD

In this study, we propose a Parkinson’s disease (PD)
diagnostic framework, ModFus-PD, which integrates multimodal
representation learning with a cross-modal attention mechanism.
The framework consists of three key components: (1) a multimodal
representation learning (section 3.3), which includes medical
prompt generation and contrastive learning to extract features
from MRI scans and textual descriptions of clinical rating scores,
and to align their representations in a shared latent space;
(2) a multimodal interaction (MI) module (section 3.4), which
enhances the semantic interaction between imaging and textual
modalities through a cross-modal attention mechanism; (3) a
hierarchical classification module (section 3.5), which aggregates
the fused features for final disease prediction. In the Multimodal
Representation Learning module, scale-derived text and MRI data
are aligned using pre-trained text and image encoders. In the
multimodal interaction module, semantic correlations between
modalities are further strengthened. Upon obtaining the processed
image and text features, the fused multimodal representation is fed
into the classification module for PD diagnosis. An overview of the
framework is presented in Figure 1.

3.3 Multimodal representation learning

Integrating MRI images with clinical rating scale data poses
several challenges due to their inherent differences in data

format, statistical distribution, and information representation.
MRI data are high-dimensional and continuous, capturing
spatial anatomical structures, whereas clinical scale scores
are low-dimensional, discrete, and structured, representing
subjective symptom assessments. These disparities lead to a
substantial distributional gap and semantic mismatch between
the two modalities. Specifically, MRI reflects objective anatomical
alterations, while clinical scores are based on subjective evaluations,
resulting in inconsistent feature semantics. Such heterogeneity
may cause semantic misalignment and informational conflicts
during feature fusion, making it difficult for the model to establish
reliable cross-modal correspondences and ultimately weakening
the effectiveness of multimodal integration.

To address these issues, we propose a multimodal
representation learning (MRL) module, which incorporates
contrastive learning to achieve cross-modal alignment. The MRL
module consists of two components: medical prompt generation
and contrastive learning. An overview of the MRL module is
presented in Figure 2.

3.3.1 Deriving medical prompts from clinical
assessment scales

To enable semantic alignment between clinical rating scale
data and MRI in a shared latent space and fully leverage
their complementary modalities, we employ a large language
model (LLM) to transform the original low-dimensional, discrete
scale scores into high-dimensional, semantically enriched textual
representations. This transformation mitigates the severe mismatch
between clinical scores and MRI data in terms of feature
dimensionality, informational content, and modality compatibility.
Additionally, leveraging LLMs for sentence augmentation enhances
the linguistic diversity of the textual inputs, thereby improving
representational richness and information utilization.

We propose a framework for generating natural language
descriptions from structured clinical rating scale data. The selected
clinical assessments cover multiple symptom dimensions relevant
to Parkinson’s disease, including motor performance, anxiety,
cognition, and sleep disturbance—core aspects frequently used
in clinical evaluations. The text generation process includes the
following steps:

Step 1: Threshold Setting for Clinical Scales—Based on official
reference manuals and expert recommendations (Goetz et al., 2008;
Hazan et al., 2018; Knowles and Olatunji, 2020; Walker et al., 2020),
we define category thresholds for continuous variables and map
them to descriptive labels such as “Mild,” “Moderate,” “Significant,”
and “Serious.”

Step 2: Variable Label Assignment—Each continuous score is
categorized according to the predefined thresholds and assigned a
corresponding text label that reflects symptom severity.

Step 3: Template Sentence Construction—For each clinical
variable, a sentence template is designed [e.g., “The subject noted
(ESS) drowsiness during the day.”], and placeholders are replaced
with the assigned labels to generate interpretable and semantically
clear descriptions.

Step 4: Textual Augmentation Using GatorTron (Yang et al.,
2022)—Each template sentence is expanded into eight semantically
consistent but lexically diverse variants using the GatorTron model.

Appendix A provides the pseudocode implementation of the
aforementioned steps.
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FIGURE 1

Overview of the ModFus-PD framework.

FIGURE 2

Overview of multimodal representation learning. Medical prompt generation takes clinical scales as input by converting structured data into textual
prompts. It then integrates these prompts with magnetic resonance imaging (MRI) to learn more expressive multimodal representations.

Template-based sentences only offer a single form of
expressing clinical scale information, which may restrict the
model’s ability to fully capture semantic meaning and limit
its generalizability. Contrastive learning aims to maximize
the similarity between positive sample pairs. If these pairs are
limited to identical textual inputs, the model is constrained to a
narrow semantic space.

To address this limitation, we leverage the GatorTron module
to generate augmented text variants for each template sentence.
Trained on large-scale clinical corpora, GatorTron is capable of
producing semantically equivalent but lexically diverse clinical
expressions. This diversity enhances the model’s ability to capture
semantic similarity among conceptually related samples, thereby
improving its capability to distinguish and generalize across
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similar instances. In addition, we manually reviewed a subset of
representative augmented samples to ensure that the generated
variants remained semantically consistent with the original
clinical intent.

3.3.2 Contrastive learning
Directly fusing image and text modalities can lead to

challenges such as heterogeneous feature distributions and
semantic misalignment between modalities. To address these
issues, we adopt contrastive learning to pretrain the text and
image encoders. This approach encourages matched image–
text pairs to be projected closer together, while pushing apart
mismatched pairs in a shared embedding space. By learning
modality-invariant representations, the encoders achieve cross-
modal semantic alignment and better capture inter-modality
correlations, thereby enhancing the effectiveness of multimodal
fusion. An overview of the Contrastive learning module is
presented in Figure 3. The specific training procedure is described
as follows:

In this study, we utilize Swin UNETR as the image feature
extractor. Swin UNETR is a Transformer-based encoder specifically
designed for 3D medical imaging, consisting of a Patch Embedding
layer and four hierarchical Swin Transformer Blocks. The
Patch Embedding layer performs image partitioning and linear
projection. The first Swin Transformer Block focuses on capturing
low-level features such as edges and textures, which are generally
task-invariant and thus do not require fine-tuning. The second
to fourth blocks (stages 2–4) are responsible for modeling high-
level semantic representations. Accordingly, we freeze both the
Patch Embedding layer and the first Swin Transformer Block, while
fine-tuning the remaining blocks (stages 2–4) to adapt to our
downstream task.

We utilize PubMedBERT as the text feature extractor.
PubMedBERT consists of a word embedding layer followed by
12 transformer blocks and is pretrained on a large corpus of
biomedical literature from PubMed. The lower nine transformer

layers are primarily responsible for capturing general linguistic
representations, which are robust and domain-invariant, thus
requiring no additional fine-tuning. In contrast, the upper three
layers are more sensitive to task-specific contextual semantics.
Accordingly, we freeze the first nine layers and fine-tune the top
three layers to better adapt the model to our downstream task.

In this study, we pretrain the encoders via contrastive learning,
with the objective of maximizing the similarity between positive
pairs (i.e., matching text and image) while minimizing the
similarity between negative pairs (i.e., mismatched text and image).
Contrastive learning also serves as the foundation for achieving
cross-modal feature alignment (Walker et al., 2020).

During mini-batch training, we define two types of contrastive
loss terms: Text-to-Image Loss and Image-to-Text Loss. For the b
sample in a mini-batch, the text input is denoted as xtb and the
image input as xib.

The text input xtb is processed by the text encoder Etext

to extract the corresponding text feature vector as defined in
Equation 1:

ftb = Etext(xtb) (1)

Similarly, the image input xib is passed through the image encoder
Eimg to generate the corresponding image feature vector as defined
in Equation 2:

fib = Eimg(xib) (2)

Let ftb and fib denote the feature vectors of the text and image
inputs, respectively. The temperature parameter τ controls the
sharpness of the cosine similarity distribution in contrastive
learning. A smaller τ emphasizes hard negatives but may cause
training instability, while a larger τ improves stability at the
potential cost of reduced feature discriminability. This study
conducted ablation experiments on the τ values, with results
demonstrating that τ = 0.1 achieves an optimal balance between
training stability and model performance.

FIGURE 3

Overview of contrastive learning.
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The text-to-image contrastive loss is defined as follows The
text-to-image contrastive loss is defined as follows Equation 3:

Lt→i =

B∑
b = 1

−log
exp

(
cos

(
ftb, fib

)
/τ
)∑B

k = 1 exp
(
cos

(
ftb, fik

)
/τ
) (3)

Similarly, the image-to-text contrastive loss is defined as follows
Equation 4: for each image feature vector fib and its corresponding
text feature vector ftb as follows:

Li→t =

B∑
b = 1

−log
exp

(
cos

(
fib, ftb

)
/τ
)∑B

k = 1 exp
(
cos

(
fib, ftk

)
/τ
) (4)

The total contrastive loss is computed as follows Equation 5: the
average of the two individual losses defined above:

L =
1
2

(Lt→i+Li→t) (5)

By optimizing the above loss functions, the similarity between
positive sample pairs is increased, encouraging them to be closer in
the shared latent space. Conversely, the similarity between negative
pairs is reduced, ensuring they remain well-separated. This process
facilitates semantic alignment between the text and image feature
representations.

3.4 Multi-modal interaction

In the task of Parkinson’s disease (PD) diagnosis, MRI images
and medical prompt texts encode complementary dimensions of
pathological information. MRI captures structural abnormalities
in the brain (e.g., reduced signal intensity in the substantia nigra
or, cortical atrophy), while medical prompts describe clinical
symptoms (e.g., sleep disturbances, anxiety, cognitive decline).
These two modalities exhibit inherent semantic correlations.
To enhance their interaction, we introduce a cross-modal
attention (CMA) module that reinforces semantic alignment
between modalities. Specifically, symptom descriptions in the
textual prompts guide the extraction of salient imaging features,
helping to highlight PD-related brain regions. Simultaneously,
the imaging data provide objective evidence to support clinical
observations, thereby mitigating the subjectivity of rating scales.
This bidirectional reinforcement improves both the accuracy
and robustness of the diagnostic model: image features serve as
objective references for textual descriptions, while text features
provide semantic labels that facilitate clinical interpretation of
neuroimaging changes. The detailed computation process is as
follows:

Text-guided image enhancement is computed as follows
Equation 6:

I∗ = softmax

(
Q1KT

T
√
d

)
VT (6)

Here, the query, key, and value of image features are computed as
follows Equation 7:

QI = WQI,KI = WK I,VI = WV I (7)

We use 8-head cross-modal attention and project both MRI and
text features into a shared 512-dimensional space using linear

layers. This ensures that the attention query, key, and value vectors
are dimensionally aligned for stable interaction between modalities.

This bidirectional attention mechanism enables mutual
enhancement: text semantics refine image representations (I∗),
while image-derived cues refine text embeddings (T∗), forming
a closed loop of cross-modal guidance. In this process, the
semantic information provided by the textual features guides
the image features to focus on brain regions associated with
Parkinson’s disease, thereby improving the discriminative power of
the image features.

Image-guided text enhancement is computed as follows
Equation 8:

T∗ = softmax

(
QTKT

I
√
d

)
VI (8)

Here, the query, key, and value of text features are computed as
follows Equation 9:

QT = WQT,KT = WKT,VT = WVT (9)

In this process, the image features (KI, VI) serve as prior
knowledge to constrain the text features (QT), making them more
consistent with the image modality, thereby reducing subjective
errors in scoring.

Finally, the enhanced features I∗ and T∗ after fusion are
obtained and used for the subsequent classification task to improve
the diagnostic performance for Parkinson’s disease.

3.5 Classification

After the modality interaction step, the resulting MRI image
features I∗ and medical prompt text features T∗ may still
contain redundant or less informative components. Moreover,
directly concatenating high-dimensional representations can lead
to substantial computational overhead. To address this, we
introduce an attention-based reduction module, which computes
attention weights to adaptively select the most discriminative
feature components, thereby enhancing generalization capability.
We perform a self-attention operation on the fused features F̂, as
computed by the following Equations 10, 11:

α = softmax

(
QKT
√
d

)
(10)

F̂ =
m∑

i = 1

αiVi (11)

QKT
∈ Rm×m computes the pairwise similarity between the

query and key vectors, reflecting the importance of each feature
dimension. A scaling factor

√
d is applied to prevent overly large

values and ensure training stability. The attention weight matrix
α ∈ Rm×m, obtained via Softmax normalization, represents the
relative importance of the features.

In the classification stage, we employ a two-layer fully
connected network that takes the reduced-dimensional fused
representation as input. The hidden layer uses ReLU activation to
introduce nonlinearity and capture deeper semantic features, while
the output layer applies the Softmax function to map feature scores
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into a categorical probability distribution, thereby estimating the
likelihood that each sample belongs to a specific class based on
multimodal inputs.

To further alleviate the effects of distributional discrepancies
between different modalities in multimodal feature fusion, we
introduce two complementary objective functions: a modality
alignment loss (Lalignment) to reduce inter-modal differences, and
classification loss (Lclassification) to guide the final prediction task.

We use the cosine similarity loss function to define the modality
alignment loss as follows Equation 12:

Lalignment = 1−
I∗ · T∗

‖ I∗ ‖‖ T∗ ‖
(12)

I∗· T∗ represents the dot product between the image feature vector
I∗ and the text feature vector T∗, which measures the directional
similarity between the two.
‖ I∗ ‖ ‖ T∗ ‖ represents the product of the L2 norms (Euclidean

norms) of the image feature vector I∗ and the text feature vector T∗,
which is used to normalize the result of the dot product.

We use the binary cross-entropy loss function as follows
Equation 13:

Lclassification = −
1
N

N∑
i = 1

[
yilog(pi)+ (1− yi)log(1− pi)

]
(13)

where N denotes the total number of samples, yi is the ground-
truth label of the iii-th sample (1 for the positive class and, 0 for
the negative class), and pi is the predicted probability that the iii-th
sample belongs to the positive class.

To balance the contribution of the alignment loss and the
classification loss, we introduce a trade-off coefficient λ in the total
loss function. The final loss is computed as follows Equation 14:

L = λ · Lalignment + (1− λ) · Lclassification (14)

We set λ = 0.54, which is empirically verified to achieve an
optimal balance between cross-modal alignment and classification
performance. The validation process is demonstrated in the
ablation study section.

4 Experiments and results

4.1 Cross-validation

To ensure the robustness and reliability of the experimental
results, and considering the size of the dataset, we employed five-
fold cross-validation to evaluate the model’s performance.

The final average performance Mk is computed as follows
Equation 15:

M =
1
K

K∑
k = 1

Mk (15)

To assess the stability of the results, we also computed the standard
deviation of the performance across the five folds using the
following equation as follows Equation 16:

σM =

√√√√ 1
K

K∑
k = 1

(Mk−M)2 (16)

Furthermore, to avoid potential bias arising from imbalanced class
distributions, we adopted stratified cross-validation, which ensures
that the class proportions in each fold are consistent with those in
the original dataset.

4.2 Experimental configuration

We employed the AdamW optimizer (Zhuang et al., 2022),
setting the learning rate to 1 × 10−5, which is well-suited
for training visual backbone models and Transformer-
based architectures. The batch size was set to 128 to balance
computational efficiency and training stability.

All experiments were conducted on a single Tesla V100 GPU,
with mixed precision training enabled to optimize GPU memory
usage and accelerate computation.

4.3 Evaluation metrics

To quantitatively evaluate the performance of PD diagnosis,
three commonly used evaluation metrics were employed: accuracy
(ACC), F1-score (F1), and the area under the receiver operating
characteristic curve (AUC). The definitions of these metrics are as
follows Equations 17, 18:

Accuracy =
TP+TN

TP+TN+FP+FN
(17)

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

, F1 = 2
Precision·Recall

Precision+ Recall
(18)

where the terms are defined as follows:
TP, true positive; TN, true negative; FP, false positive;

FN, false negative.

4.4 Performance comparison

To justify the performance of our proposed ModFus-D for PD
diagnosis using multi-modality data, in this study, we compared
the performance of the proposed method with several competing
approaches using the same dataset. The results are summarized in
Table 2. A brief overview of these baseline methods is provided
below.

Feature Concatenation (Early Fusion): This is the most
basic form of multimodal fusion, where MRI image features

TABLE 2 Performance comparison between MODFus-PD and
comparative methods.

Models ACC AUC F1

Concatenation 0.794± 0.31 0.869± 0.12 0.822± 0.07

DF 0.821± 0.21 0.837± 0.23 0.801± 0.11

LXMERT 0.864± 0.24 0.816± 0.15 0.776± 0.12

VilBERT 0.881± 0.08 0.925± 0.14 0.792± 0.31

ModFus-PD 0.903± 0.14 0.892± 0.12 0.840± 0.16
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and medical prompt text features are directly concatenated at
the feature extraction stage and then passed through a unified
classifier for prediction.

Decision-Level Fusion (DF): Also known as late fusion, this
approach first trains independent classifiers for each modality,
and then fuses their outputs during the inference phase to make
the final decision.

LXMERT: Originally developed for vision-and-language tasks,
LXMERT employs a dual-stream Transformer architecture that
encodes visual and textual inputs separately and achieves semantic
alignment through cross-modal attention. In this study, LXMERT
is adapted to capture semantic interactions between MRI scans and
medical prompts, facilitating improved classification performance
for PD diagnosis (Tan and Bansal, 2019).

ViLBERT: Based on BERT, ViLBERT adopts a dual-pathway
Transformer design that supports the parallel encoding and cross-
modal integration of heterogeneous modalities. While initially
proposed for image-text matching, it is extended here to the
medical domain to align features and jointly model MRI and
medical prompt data, thereby enhancing diagnostic accuracy in
Parkinson’s disease classification (Lu et al., 2019).

For fair comparison, LXMERT and ViLBERT were fine-tuned
on the PPMI dataset using central axial MRI slices (224 × 224)
and clinical prompts derived from score templates. Inputs were
fed into the original model architectures. Training was conducted
for 20 epochs using AdamW (1e-5, batch size 32) with binary
cross-entropy loss and early stopping based on validation AUC.

ModFus-PD achieved superior performance compared to the
baseline models in both classification accuracy (0.903) and F1-
score (0.840), demonstrating the effectiveness of the proposed
medical prompt generation and contrastive learning strategies. we
calculated 95% confidence intervals for all models based on five-
fold cross-validation. Results show that ModFus-PD outperforms
all baselines with non-overlapping CIs in at least two of the three
metrics (ACC, AUC, F1), supporting the statistical significance of
its improvements.

For the AUC metric, ModFus-PD slightly underperformed
VilBERT (0.892 vs. 0.925), which may be attributed to VilBERT’s
parallel encoder architecture and cross-attention mechanism,
well-suited for modeling global cross-modal dependencies. This
advantage is particularly evident in scenarios where modality
distributions are relatively balanced, enabling more comprehensive
integration and thus improved AUC performance.

The ACC of the decision-level fusion method (DF) reached
0.821, which is lower than that of feature concatenation
(0.794), suggesting that fusing independent model predictions
at the decision stage may be insufficient to capture cross-
modal complementarities, leading to suboptimal performance
in PD diagnosis.

4.5 Ablation experiment

To better understand the contributions of different
components, we conducted the following three ablation studies:
(1) We compared the performance of models using a direct fusion
of numerical scale values and imaging features with those using
text-converted scales, to assess the necessity of transforming

structured numerical data into medical text prompts. (2) We
examined the effect of using different individual scales and scale
combinations to determine which configuration most effectively
enhances model performance. (3) We evaluated how the number
of augmented sentences generated during the text enhancement
process influences the final classification performance.

4.5.1 Evaluating the effectiveness of the clinical
scale-to-text conversion module

In this experiment, we directly used the original clinical scale
data in structured tabular format along with 3D MRI data to train
the model, by passing the intermediate step of converting numerical
values into textual descriptions. The goal was to examine whether
directly leveraging numerical clinical scores alongside imaging
features can yield competitive performance in distinguishing
Parkinson’s disease patients from healthy controls, and to assess
the impact of clinical score-to-text conversion on classification
accuracy. The results are summarized in Table 3.

In terms of classification accuracy, the combination of
generated clinical Tabular data + MRI and MRI features (Text
+ MRI) achieved an accuracy of 0.903, representing a modest
improvement over the Tabular data + MRI setting (0.874). This
suggests that enhancing the semantic richness of scale data through
text generation can improve the model’s ability to integrate and
classify multimodal inputs. Interestingly, for the AUC metric,
Tabular data + MRI + MRI yielded a slightly higher score
(0.892 vs. 0.860), indicating that the model using raw tabular
inputs may exhibit stronger robustness across varying classification
thresholds. However, in terms of F1-score, the Text + MRI setting
significantly outperformed Tabular data + MRI + MRI (0.840
vs. 0.793), demonstrating ModFus-PD’s superior balance between
precision and recall, particularly in capturing features of the
positive (patient) class.

Clinical scale data are typically represented in discrete
numerical format, while MRI scans encode high-dimensional
continuous spatial information. The direct concatenation of
such heterogeneous modalities can lead to poor alignment
and limited cross-modal interaction. By transforming structured
numerical inputs into natural language descriptions, the textual
representations become semantically aligned with high-level
visual features extracted from MRI, thereby facilitating cross-
modal alignment.

We further applied contrastive learning to pre-train the text
and image encoders, encouraging both modalities to align in
a shared embedding space and enhancing the complementarity
between them. Additionally, we implemented a text augmentation
strategy by converting each clinical scale record into a template
sentence, and then generating multiple semantically equivalent
descriptions. This not only enriches the model’s understanding
of clinical symptoms but also effectively augments the training

TABLE 3 Comparison of performance between tabular data + MRI and
text data + MRI.

Mode ACC AUC F1

Tabular data + MRI 0.874± 0.17 0.867± 0.35 0.793± 0.14

Text data + MRI 0.903± 0.14 0.892± 0.12 0.840± 0.16
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set, mitigating the challenge of data scarcity—a common issue in
medical AI tasks.

4.5.2 Analysis of the impact of different clinical
scale combinations on model performance

In this experiment, we investigated how various combinations
of four clinical rating scales affect classification performance
within the text–MRI multimodal framework for Parkinson’s disease
diagnosis. The selected scales encompass four key dimensions:
motor function (MDS-UPDRS), anxiety levels (STAI), sleep quality
(ESS), and cognitive function (CDT). From a clinical perspective, in
this study, we aimed to assess the relative diagnostic contribution
of each dimension and determine which combinations most
effectively support accurate PD classification. We implemented two
primary experimental configurations:

(1) Single-modality baseline
To evaluate the individual diagnostic value of each clinical scale,

we conducted four single-scale experiments. In each experiment,
the model was trained and tested using only the corresponding
clinical scale in combination with MRI data. This setting enables a
direct comparison of the classification performance contributed by
each scale, thereby quantifying its standalone diagnostic utility and
providing a reference for subsequent multi-scale fusion strategies.
The results are summarized in Figure 4 and Table 4.

As illustrated in Table 3, when each clinical scale was
evaluated individually, the motor function scale (MDS-UPDRS)
demonstrated the highest diagnostic performance, with an accuracy
of 0.845, an AUC of 0.817, and an F1 score of 0.808. These results
suggest that motor-related symptoms offer the most discriminative
information for identifying Parkinson’s disease.

In contrast, when using the CDT scale—which assesses
cognitive function—alone, the performance dropped to 0.697
(ACC), 0.703 (AUC), and 0.771 (F1). This may be attributed
to the fact that cognitive impairments typically manifest in the

middle-to-late stages of PD, and thus may not be apparent in early-
stage patients, limiting the effectiveness of CDT as a standalone
diagnostic indicator.

(2) Multi-scale combination performance
We first adopted the image-only model as a baseline and then

sequentially incorporated the four clinical scales—MDS-UPDRS,
STAI, ESS, and CDT—to evaluate the incremental benefit of each
additional modality. With this experiment, we aimed to assess how
different scale combinations contribute to classification accuracy
and to identify the most effective fusion strategy for PD diagnosis.
The results are summarized in Figure 5 and Table 5.

As illustrated in Table 4, the model’s classification performance
improved progressively with the inclusion of additional clinical
scales. The most substantial gain was observed with the
introduction of MDS-UPDRS, while CDT contributed a modest yet
noticeable improvement.

These findings consistently highlight the pivotal role of MDS-
UPDRS in the diagnostic task. To further assess its impact, we
conducted an experiment excluding MDS-UPDRS and retaining
only STAI, ESS, and CDT. The model achieved an accuracy of
merely 70.2%, which was even lower than that obtained using any
single scale alone.

One possible explanation is that the non-motor scales may
contain conflicting or redundant information. Although STAI,
ESS, and CDT each capture different aspects of a patient’s mental
and physiological state, they may lack strong complementarity.
Instead, overlapping content, measurement noise, or semantic
inconsistencies could arise.

For instance, one patient may present with high anxiety (high
STAI score) but no signs of sleepiness (normal ESS score), while
another may show the opposite pattern. In the absence of motor
symptom information, such variation may prevent the model from
learning stable and discriminative decision boundaries.

FIGURE 4

Heatmap of model performance using different single scales.
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TABLE 4 Comparison of model performance using different single
scales.

ACC AUC F1

MDS-UPDRS 0.845± 0.07 0.817± 0.12 0.808± 0.13

STAI 0.776± 0.14 0.782± 0.23 0.736± 0.11

ESS 0.745± 0.28 0.734± 0.18 0.752± 0.12

CDT 0.697± 0.17 0.703± 0.17 0.771± 0.15

These inconsistencies across non-motor scales may ultimately
hinder feature coherence, resulting in diminished classification
performance when these scales are fused without MDS-UPDRS.

4.5.3 Analysis of the impact of different clinical
scale combinations on model performance

With this experiment, we investigated the effect of the number
of augmented sentences (i.e., the number of sentences expanded
from each template sentence) on model performance, in order

to determine the optimal amount of textual augmentation. The
model’s performance under different numbers of augmented
sentences N was compared, where N = 1 indicates using only the
template sentence, and N = 4, N = 8, N = 16, and N = 32 indicate
increasing levels of augmentation.

As shown in Figure 6 and Table 6, the model yields the lowest
performance when N = 1 (i.e., using only the template sentence),
significantly underperforming compared to configurations with
augmented text. When N = 4, classification performance improved,
suggesting that a moderate degree of text augmentation increases
the semantic diversity of positive samples and enhances the model’s
ability to distinguish between classes. At N = 8, the model
achieved peak accuracy. However, further increasing the number of
augmented sentences (N = 16; N = 32) led to a slight improvement
in AUC and F1-score, while accuracy began to decline.

These results suggest that the ModFus-PD framework benefits
from limited text augmentation in enhancing discriminative
capability. Beyond a certain point, however, excessive
augmentation may introduce noisy or semantically inconsistent

FIGURE 5

Performance changes with the sequential addition of individual scale models.

TABLE 5 Performance changes with the sequential addition of individual scale models.

MRI MDS-UPDRS STAI ESS CDT ACC AUC F1
√

0.765± 0.07 0.768± 0.18 0.768± 0.08
√ √

0.845± 0.14 0.812± 0.37 0.801± 0.06
√ √ √

0.881± 0.21 0.836± 0.08 0.838± 0.08
√ √ √ √

0.893± 0.18 0.854± 0.11 0.833± 0.15
√ √ √ √ √

0.903± 0.08 0.8924± 0.17 0.840± 0.09
√ √ √ √

0.702± 0.04 0.834± 0.23 0.728± 0.17
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FIGURE 6

The impact of text enhanced sentence expansion on model performance.

TABLE 6 The impact of text enhanced sentence expansion on
model performance.

N ACC AUC F1

1 0.878± 0.07 0.862± 0.21 0.783± 0.15

4 0.890± 0.11 0.874± 0.31 0.817± 0.11

8 0.903± 0.14 0.892± 0.12 0.840± 0.16

16 0.891± 0.09 0.901± 0.09 0.831± 0.22

32 0.889± 0.19 0.881± 0.08 0.842± 0.18

samples, blurring the alignment between textual prompts and
corresponding MRI features, thereby impairing the formation of
clear positive and negative pairs during contrastive learning.

Nevertheless, the slight continued gains in AUC and F1 -
score with larger N indicate that, in some scenarios, additional
augmented data may still contribute to improved class separability.
Therefore, when computational resources are constrained, it
is essential to balance performance gains with the associated
computational cost to identify an optimal augmentation strategy.

4.5.4 Parameter ablation
(1) Effect of loss weight λ on cross-modal fusion
To explore the influence of balancing alignment and

classification objectives in our multimodal diagnostic framework,
we conducted experiments by varying the loss weight coefficient λ

in the total loss formulation:

L = λ · Lalignment + (1− λ) · Lclassification

The results, summarized in Table 7 and illustrated in Figure 7, show
that model performance improves as λ increases from 0.40 and

TABLE 7 Effect of loss weight λ on classification performance.

λ Accuracy AUC F1-score

0.40 0.868 0.859 0.812

0.44 0.885 0.874 0.823

0.48 0.894 0.884 0.836

0.50 0.901 0.882 0.837

0.52 0.900 0.890 0.839

0.54 0.903 0.892 0.840

0.56 0.900 0.891 0.833

0.60 0.890 0.879 0.822

The bold values in the table indicate the optimal performance metrics.

peaks at λ = 0.54, with noticeable gains in accuracy, AUC, and
F1-score. These findings confirm that moderately increasing the
influence of the alignment objective leads to more effective fusion of
image and text modalities. The choice of λ = 0.54 in our final model
is thus empirically justified and reflects a well-calibrated balance
between representation alignment and task-specific supervision.

(2) Effect of learning rate and weight decay on optimization
performance

To determine appropriate values for the learning rate and
weight decay coefficient, we conducted grid search experiments
within the following ranges, which were selected based on
commonly used settings for fine-tuning Transformer-based
architectures reported in prior literature:

Learning Rate: {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4
}

Weight Decay: {1× 10−6, 1× 10−5, 1× 10−4
}

We systematically evaluated combinations of these
hyperparameters using a grid search strategy. Experimental
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FIGURE 7

Effect of loss weight λ on classification performance.

FIGURE 8

Effect of learning rate and weight decay on optimization performance.

results showed that setting both values to 1× 10−5 yielded the best
validation performance in terms of accuracy, AUC, and F1-score.
The results are illustrated in Figure 8. Therefore, this configuration
was adopted in all subsequent experiments.

(3) Effect of CMA layer depth on modality interaction
To evaluate the impact of cross-modal attention depth, we

conducted ablation experiments with 1, 2, and 3 stacked Cross-
Modal Attention (CMA) layers. As summarized in Table 8,
increasing the depth to 2 layers slightly improved the accuracy
(from 0.903 to 0.905), but resulted in noticeable declines in

TABLE 8 Effect of cross-modal attention (CMA) depth on
model performance.

CMA depth
(layers)

ACC AUC F1-score

1 0.903 0.892 0.840

2 0.905 0.878 0.831

3 0.902 0.882 0.832

The bold values in the table indicate the optimal performance metrics.

AUC (from 0.892 to 0.878) and F1-score (from 0.840 to 0.831).
Further increasing the depth to 3 layers slightly recovered F1-score
(0.832) but still underperformed the single-layer model overall.
These results suggest that deeper attention layers may introduce
redundancy and degrade the model’s ability to maintain class-wise
balance. To ensure robustness and efficiency, we adopt a single
CMA layer in the final model configuration.

5 Discussion

In this section, we visualize the MRI embeddings extracted
by the trained image encoder using t-SNE decomposition.
As shown in Figure 9 the resulting low-dimensional feature
spaces are color-coded according to individual clinical rating
scales, namely, MDS-UPDRS, ESS, STAI, and CDT, allowing
us to assess the degree to which the image encoder captures
scale-specific distinctions. Despite converting continuous
clinical variables into categorized textual prompts, the
ModFus-PD image encoder was still able to learn semantically
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FIGURE 9

t-SNE was used to visualize MRI representations generated by the trained image encoder. The visualization includes four clinical assessment scales
used during model training: (A) The movement disorder society-unified Parkinson’s disease rating Scale (MDS-UPDRS). (B) The Epworth sleepiness
scale (ESS). (C) The state-Trait Anxiety Inventory (STAI). (D) The clock drawing test (CDT).

meaningful feature representations, particularly in association with
three scales: (1) MDS-UPDRS, (2) STAI, and (3) ESS.

The experimental results on the PPMI dataset demonstrate
that ModFus-PD outperforms several competitive methods. These
results validate the critical importance of leveraging cross-modal
complementarity in complex medical tasks—especially for diseases
like Parkinson’s, where clinical symptoms and MRI features are
highly interdependent.

The t-SNE visualization results in Figure 9 demonstrate that
MRI-derived features exhibit a well-structured distribution in
the reduced-dimensional space. Notably, features associated with
MDS-UPDRS scores form distinct clusters, indicating that the
MRI representations effectively capture motor symptom patterns
and are well aligned with MDS-UPDRS annotations in the shared
multimodal space.

Figure 10 presents text-guided attention heatmaps on
axial MRI slices from six representative subjects, illustrating
the spatial focus of the proposed cross-modal diagnostic
model. The highlighted regions reflect areas where the
model attends most when guided by clinical symptom
prompts. Notably, the attention consistently concentrates on
Parkinson’s disease-relevant regions such as the basal ganglia,
substantia nigra, and motor cortex, supporting the model’s
ability to align semantic information with neuroanatomical
pathology.

These findings further validate the effectiveness of multimodal
representation learning. The contrastive pretraining strategy
enables the encoder to establish a unified cross-modal embedding
space, where MRI and clinical scale data are meaningfully

aligned, thereby enhancing the robustness of PD diagnosis.
It is important to note that the effectiveness of modality
alignment is largely influenced by the degree of association
between clinical scale information and the pathological
features captured by MRI. Among the evaluated scales, MDS-
UPDRS achieves the most robust alignment, likely due to its
strong correlation with motor-related structural abnormalities
observable in MRI scans.

In contrast, CDT exhibits weaker alignment performance, as
cognitive impairments assessed by this scale are more challenging
to represent accurately through structural imaging alone.

Despite promising results, this study has several limitations.
The model is trained and evaluated solely on the PPMI
dataset, which may limit generalizability to broader clinical
populations. Future work will focus on validating the model in
multicenter settings and enhancing its robustness across diverse
clinical scenarios.

From a computational perspective, ModFus-PD introduces
a certain degree of overhead, particularly in the contrastive
learning pretraining and cross-modal attention stages. Processing
a single 3D MRI input involves approximately 120 GFLOPs,
and the average training time is approximately 9 min per
epoch (batch size = 4) on a Tesla V100 GPU, totaling around
8 h for 50 epochs. The contrastive learning stage incurs
additional cost due to dual-stream encoding and similarity
computation, while the cross-modal attention module increases
complexity through feature alignment between modalities.
Despite these demands, inference per subject remains efficient
at approximately 0.4 s, supporting clinical usability. Overall,
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FIGURE 10

Text-guided attention heatmaps on axial MRI slices from six subjects.

although the computational cost is not minimal, it is justified
by the substantial performance improvements in accuracy,
AUC, and F1-score. Future work may explore lightweight
designs to further improve deployment feasibility in real-world
healthcare settings.

6 Conclusion

In this study, we proposed ModFus-PD, a multimodal
diagnostic framework for early-stage Parkinson’s disease (PD),
which integrates MRI data and clinical rating scales. Given the
inherent distributional differences between MRI and structured
clinical data, our multimodal representation learning module
is designed to align features from both modalities within a
shared embedding space. Both the image and text encoders are
pretrained using contrastive learning to ensure high-quality feature
extraction for downstream tasks such as cross-modal interaction
and classification. To effectively leverage the complementary
nature of imaging and clinical data, we introduced a cross-
attention mechanism that enables the model to dynamically
exchange information between the MRI and textual modalities.
This facilitates richer cross-modal interactions and allows the
final classifier to make more informed predictions by combining
both structural and clinical cues. Experimental results on the
PPMI dataset show that ModFus-PD consistently outperforms
several competitive baselines. These findings underscore the

importance of modeling cross-modal complementarity in complex
medical tasks, particularly for conditions like PD where clinical
manifestations are closely tied to neuroanatomical changes
observable in MRI.
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Appendix

Appendix A

Algorithm: Deriving medical prompts from clinical scales

Input: Clinical assessment scale scores, template sentences, and corresponding thresholds.

Output: Expanded sentence variations

1 For each clinical assessment scale:
2 Define threshold mappings:
3 THRESHOLDS[scale]← [(lower1, upper1, label1), (lower2, upper2, label2),...]
4 End For
5 If scale_name is not in THRESHOLDS:
6 Return “Unknown Scale”
7 For each (lower, upper, label) in THRESHOLDS[scale_name]:
8 If lower ≤ score ≤ upper:
9 Return label
10 End For
11 Return “Unknown Score”
12 Define template sentences:
13 TEMPLATES← {
14 “MDS-UPDRS”: “The subject’s MDS-UPDRS assessment indicates {label}.”
15 “STAI”: “The subject reports {label} anxiety based on the STAI scale.”
16 “ESS”: “The subject noted {label} drowsiness during the day.”
17 “CDT”: “|The cognitive assessment places the subject in the {label} category.”
18 }
19 If scale_name is in TEMPLATES:
20 Replace {label} in TEMPLATES[scale_name] with assigned label
21 Return the generated sentence
22 Else:
23 Return “No template available for this scale.”
24 Create an empty list for sentence variations
25 For i from 1 to 8:
26 Append “(Variation i)” to the sentence
27 End For
28 Return the list of variations
29 For each (scale, score) in [(“MDS-UPDRS,” 15), (“STAI,” 100), (“ESS,” 12), (“CDT,” 5)]:
30 Generate base sentence using the assigned label
31 Expand the base sentence into multiple variations
32 Output base sentence and expanded variations
33 End For
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