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System-level brain modeling

Birger Johansson*, Trond A. Tjøstheim and Christian Balkenius

Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden

System-level brain modeling is a powerful method for building computational

models of the brain and allows biologically motivated models to produce

measurable behavior that can be tested against empirical data. System-level

brain models occupy an intermediate position between detailed neuronal circuit

models and abstract cognitive models. They are distinguished by their structural

and functional resemblance to the brain, while also allowing for thorough

testing and evaluation. In designing system-level brain models, several questions

need to be addressed. What are the components of the system? At what level

should these components be modeled? How are the components connected—

that is, what is the structure of the system? What is the function of each

component? What kind of information flows between the components, and

how is that information coded? We mainly address models of cognitive abilities

or subsystems that produce measurable behavior rather than models that to

reproduce internal states, signals or activation patterns. In this method paper, we

argue that system-level modeling is an excellent method for addressing complex

cognitive and behavioral phenomena.
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1 Introduction

System-level brain models are biologically inspired computational frameworks that

aim to replicate selected aspects of brain function from a systems-level perspective—that

is, as a collection of interconnected components with specific computational properties

and interactions (Balkenius et al., 2020, 2010). These models span a spectrum, from

networks that emulate processing in defined brain regions to architectures composed of

computational modules with only a loose resemblance to their biological counterparts.

In either case, there is a structural correspondence to the biological brain, as individual

components of the model are designed to represent specific brain regions rather than

abstract cognitive functions, as is common in many cognitive architectures.

In this methods paper, we present key aspects of brain modeling using a system-

level approach. We address practical questions that modelers should consider during the

construction of brain models and offer insights into model validation.

Systems approaches to design and modeling are well established in engineering

and industrial applications. However, such methodologies have not yet seen widespread

adoption within computational cognitive science or cognitive neuroscience, despite

foundational philosophical work dating back to the 1970s (Laszlo, 2021). Nonetheless,

systems-level modeling offers distinct advantages for brain modeling, particularly in

terms of compositionality and hierarchical organization. Compositionality allows for

the integration of smaller, self-contained models into larger systems in a modular,

plug-and-play fashion. Hierarchical organization, in turn, enables modelers to abstract

complexity by embedding subsystems within higher-level structures, facilitating scalable

and comprehensible model architectures.

System-level brain modeling is a systematic approach that develops brain models by

successive refinement using structural and functional validation. It aims at reproducing
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behavioral data and the main benchmark of a system-level model

is to what extent it reproduces experimental behavioral results in

simulation or in controlling a robot.

A system-level brain model suggests specific functional roles of

different brain regions without necessarily dwelling on the detailed

neuronal processes in those regions. This approach provides some

distinct benefits and challenges compared to approaches that do not

employ systems-thinking or that focus on isolated functions and

networks rather than the brain as a complete and integrated system.

This topic will be given a full treatment below, after we have looked

at modeling in a broader context.

There are several motivations for constructing brain models,

which can broadly be categorized into two main aims. The first

is to enhance our understanding of actual brain processes (Farrell

and Lewandowsky, 2018). Here, models are often intended to

address fundamental questions about cognitive phenomena such

as learning, memory, attention, and motor control by attempting

to replicate underlying neural mechanisms. Additionally, system-

level models serve as valuable tools for theorizing about the neural

bases of psychiatric and neurological disorders.

The second aim is to develop neuromimetic or biomimetic

systems (Vincent and Mann, 2002), where the objective is to design

technical systems that emulate certain properties of the biological

brain. Since the brain is known to solve complex problems

efficiently, it is natural to draw inspiration from its architecture and

processes to inform the design of artificial systems. In the following

sections, we focus specifically on the modeling of cognitive and

neural processes.

2 Computational models

A model can serve as a valuable instrument for verifying the

accuracy of our understanding, particularly when dealing with

complex systems. By analyzing the model’s behavior and outcomes,

we can ensure that the underlying principles and assumptions align

with our expectations and that the model accurately represents

the system in question. Furthermore, by exploring the model

parameters and by providing a wide range of input data yields a

more comprehensive understanding of the model’s inner workings

(Farrell and Lewandowsky, 2018).

Regardless of type, a brain model is always a simplification.

It reproduces some aspects of the real brain while intentionally

disregarding others. It is indeed the case that “the best material

model for a cat is another, or preferably the same cat” as

suggested by Rosenblueth and Wiener (1945), but a model without

simplification typically does not contribute to our understanding.

Instead, we need to make informed decisions about what aspects of

the real brain to keep in the model and which to keep out.

The rationale for such decisions depends on the model’s

intended purpose. Typically, this involves producing a measurable

output, whether in the form of internal neural signals or

observable behavior. If the goal is scientific understanding, then

the model output should be compared to corresponding outputs

from empirical studies of the brain. Conversely, in engineering

applications, the model’s performance should align with specific

technical requirements.

It is important to acknowledge that all models are to

some extent imperfect except possibly in very simple cases. As

stated by Box (1976), “All models are wrong, some are useful.”

Thus, modeling should be viewed as an iterative process of

approximation, with models continuously updated to incorporate

new data. Evaluating a model involves assessing both how well

it reproduces known phenomena and the extent to which it can

generate testable predictions.

Crucially, a model must be capable of generating predictions

that could potentially be incorrect, andwhen they are, it is necessary

to have criteria for deciding whether it is because the model is

incomplete or simply wrong. This is often very challenging to

determine and puts a light on the need to have a clear scope for

the model. The model should make correct predictions within that

predefined scope, but may be inaccurate when tested outside it.

Ideally, the predictions made by a model should be used to

devise new experiments that can confirm or falsify the model

and lead to a revised model that can hopefully explain the new

conflicting data. However, this is seldom achieved in practice.

There are two main reasons for this. First, the researchers

designing computational models are often not the ones doing the

experiments. They may not even communicate with them, possibly

because they have different goals in their research and different

understanding of what is important in research. Second, the time

scales of modeling and experimental work are very different. A

model can be changed in an instant, but experimental work usually

take months or even years. Even if the experimenters try to test

predictions made by a model, the modelers cannot realistically wait

for years before refining their model.

An alternative approach involves ensuring that a model

accounts for as much existing empirical data as possible while

relying on a minimal set of assumptions. Furthermore, the

assumptions made should as much as possible be motivated by

other factors than the data it is trying to reproduce. There is a

critical difference between a model of the data, and a model of the

process that generated the data. The former is usually approached

by standard statistical modeling techniques while the latter requires

some form of a process model.

2.1 Models, parameters and predictions

Parameters can be categorized into two main types: free

parameters and fixed parameters (Kline, 2023). Free parameters

are estimated from the data, with the goal of ensuring that the

model accurately fits the data. On the other hand, fixed parameters

are not derived from the data set; rather, they are predetermined

constants that provide meaningful information to the model. For

instance, fixed parameters can include the number of neurons in

an artificial neural network (ANN) layer. While the number of free

parameters is often a primary concern for modelers due to their

direct impact on model performance, fixed parameters generally

receive less attention, as they are meant to establish the foundation

of the model without influencing adaptability based on input data

(Farrell and Lewandowsky, 2018). Note, however, that there are

cases where fixed parameters, such as network size are optimized

for best performance, for example, in many deep-learning models.

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2025.1607239
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Johansson et al. 10.3389/fncom.2025.1607239

We can further distinguish between the following types of

parameters: Fundamental constants are parameters that are not

a function of any other constants, such as Avogadro’s number.

They are also to reflect some aspect of physical reality such as

the gravitational constant, G. Empirical constants are parameters

that are set to reflect an empirically measured value such as the

resting potential of a neuron or the velocity of an action potential

through the axon. Scaling parameters scale the input or output of

model to measured magnitudes or to real time. These parameters

do not influence the processing of predictions of the model in

any other way and only serve to map values from one range to

another, for example, between arbitrary values and standard units.

Metaparameters are sometimes also called hyperparameters and

are values that control the processing in the model such as the

learning rate. Weights are the free parameters that change during

the simulation of the model. In brain models and artificial neural

networks, these are typically synaptic weight or connection weights.

Sometimes, these are called just “parameters.” Myung and Pitt

(1997) identified three factors that determine a model’s flexibility,

with the number of free parameters being the first factor. They

asserted that a model with a greater number of free parameters

would fit the data better than a model with fewer parameters.

However, it is essential to consider the trade-off between model

complexity and generality. While fewer parameters can increase

the generality of the model, allowing it to be more applicable to

a wider range of scenarios, using too few parameters may lead

to an opposite effect, decreasing the model’s generality. Therefore,

striking a balance between the number of free parameters and the

model’s generality is crucial for achieving optimal performance in

various applications. When the number of parameters increases, so

does the risk of overfitting. Is the behavior of the model the result

of the actual model or the large degrees of freedom introduced by

the free parameters? In the words of Stanislaw Ulam, “Give me 15

parameters and I can make an elephant; give me 16 and I can make

it dance” (Weiss et al., 2003). In statistics there are methods such as

the Akaike information criterion that weigh the predictive ability of

a model against its complexity (Akaike, 1973, 1974). Brain models

usually afford no such luxury. Instead it is the good judgment

of the modeler that must determine how complex the model

must be.

In general, there should also be as few degrees of freedom

as possible. This means minimizing the number of parameters

as much as possible and if possible motivate the parameters

independently of the data that the model sets out to explain. This

is a well-know problem with many artificial neural network models

that have a very large number of parameters and thus can be trained

to do almost anything. Although a network like this can be useful

as a technical tool, it is not necessarily very useful as a model of a

biological brain. Thus, connectionist neural network models may

offer limited explanatory power (but see Whittington et al., 2021

for an intriguing example of how transformer architectures used

for large language models have commonalities with a model of the

hippocampus).

When testing a model, the number of predictions should be

maximized. This means that the model should ideally be tested on

all data that is available within the explanatory scope of the model.

The evaluation of a model can be either qualitative or

quantitative. Qualitative evaluation often takes the form of

FIGURE 1

The model produces measurable behavior that also influences the

environment that can either be simulated together with the model

or consists of the real world influenced by the actions of a robot.

The state of the environment changes as the result of the behavior

or the model and produces new sensory input to the mode.

inequalities, such as checking whether the output of the model is

higher for one condition than another without looking at the actual

value. This is especially useful in models where the output is not

precisely scaled to empirical data and also have the advantage that it

limits the number of parameters that need to be used. Quantitative

evaluation can either use direct comparison with empirical data

using some form of distance metric or a full statistical comparison

of the model output and the dataset.

In either case, it is essential that the output produced by the

model can be compared to measured behavior (Wilson and Collins,

2019). This may entail putting the model inside a simulated agent

that can act in a simulated environment. This is also true in cases

where a brain model is used to control the actions of a robot

(Figure 1). In this case, it is usually not possible to expect perfect

scaling to empirical data, but qualitative measures are still possible.

It is also critical that the predictions of the model can be

experimentally tested in new experiments. As new data becomes

available, it can be compared to the predictions made by the model.

We have to accept the fact that this data is mostly not a result

of predictions made by the model but motivated by other factors.

Although experimental data are often collected independently

of model-derived predictions, they can still serve as valuable

validation points when assessing model robustness.

However, it is important to remember that not all published

results are correct (Ioannidis, 2005; Open Science Collaboration,

2015). This is a consequence of the empirical method where there

is always a probability that an incorrect results was obtained by

chance. It is therefore of essence to take care to avoid overfitting

the model to data. In fact, one very useful aspect of models is that

they can suggest what experimental results need further scrutiny

(Cf. Barry, 2006). If a model is able to reproduce a large number

of experimental results except one, then there is reason to try to

empirically reproduce the results of that experiment. Similarly, if

additional assumptions are needed just to account for a single

phenomenon, then the model is likely to suffer from overfitting.

We do not claim that a model on its own can invalidate empirical

results. However, it can point out what results do not fit within the

framework of the model. Experimental work is always necessary

to determine whether the model or the experimental results are

incorrect and will ideally lead to subsequent revision of the model

to accommodate the data if necessary.
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A successful model should be able to reproduce all (correct)

data using the same parameters. It should not be necessary to adapt

these for each data set unless it can be motivated independently of

the data. An interesting example is the famous Rescorla-Wagner

model (Rescorla, 1972) that reproduces the results of a range of

classical conditioning experiment. Although the model provides

some fundamental insights into the interaction between different

stimuli during learning, it is necessary to change the parameters

to fit the particular experimental protocol which makes the model

less suitable as a general explanation of the phenomenon (Gallistel,

1990).

2.2 Computational soundness

Another important factor in a computation model is that it is

computationally sound. One way to approach this is through David

Marr’s three levels (Marr, 1982). He presented a framework of how

the brain processes information and three levels of analysis can be

applied to understanding cognitive functions. The highest level of

analysis is the computational level and concerns the goal of the

cognitive system. The intermediate level is the algorithmic level that

relates to the specific steps or operation that the cognitive system

uses to achieve its goals. At the lowest level, the implementation

level, concerns the physical implementation such as neurons and

neuron circuits.

The primary contribution of this work is that it stresses that it

is necessary to understand the problem that the brain is trying to

solve before looking for the solution in the brain (Gallistel, 1990;

Balkenius et al., 2023). What are the ecologically valid problems the

brain is trying to solve, and what are their properties? As important

as this question is, it is not always easy to answer. It is also easy to

design a model that does not in fact take the physical properties

of reality into account. Even Marr himself is guilty of this when

he proposed a model of visual depth processing that assumes that

all surfaces have a fixed orientation relative to the eye, which is

obviously not the case in nature (Marr and Poggio, 1979).

Numerous research paradigms have demonstrated a tendency

for findings to align closely with researchers’ initial hypotheses.

When conditioning is thought to be behind all control of behavior

then we find the brain is filled with associative mechanisms. When

cognition is thought to be controlled by different modules with

names such as memory, attention and motor control, those become

the boxes found in the brain. This in turn carries over to the models

that are built that will contain exactly those components.

This exemplifies the risk of confirmation bias, wherein

expectations may inadvertently shape both experimental design

and interpretation and is something to be cautious about when

designing system-level brainmodels. It is necessary to be very aware

of the actual scope of the model and to decide on an appropriate

level of abstraction.

3 System-level brain modeling

System-level brain models represent a specific class of network

models that emphasize the computational roles of each of the

including brain regions, and treat the brain as a functional

network of interconnected components that produces a measurable

behavioral output.

System-level modeling is used in various fields to analyze

complex systems such as airplanes, space rockets, biological

processes and financial systems. For these complex systems,

predicting the impact of component modifications on overall

system performance can be challenging. By using system-level

modeling, the focus is on the complete behavior of the system rather

than the details of its components. Each component in the system

is modular and together with all other components make up the

system as a whole.

Using a system-level modeling approach for the human brain,

refers the process of creating a computational model of the brain

that simulates the overall patterns of neural activity in different

brain regions. This representation of the activity in the neural

networks and their interaction in the brain can shed light on how

the brain processes information and generates behavior. Adopting

a system-level approach can also be highly effective for developing

robotic behaviors inspired by the human brain.

System-level brain modeling is ideal for simulating or analyzing

systems composed of multiple interacting subsystems, such as in

robotics. For instance, in robotics, this approach can integrate

sensory inputs, motor controls, and decision-making algorithms to

create a cohesive and functional robot.

Furthermore, system-level brain modeling employs a modular

architecture, wherein distinct components are responsible for

specific functions. This modularity facilitates the testing of various

submodels against one another. For example, the behavior of a

robot can be assessed by interchanging different cerebellummodels.

This approach enhances the ability to evaluate and compare the

performance of diverse brain models within the context of the

entire system.

The goal of system-level brain modeling is to create a

comprehensive model of the brain that can be used to study various

aspects of brain function, such as perception, attention, executive

functions or reflexes. These models can be used to test hypotheses

about the human brain, predict the effects of brain damage or

disease, and design and optimize brain-machine interfaces or

as control system in robots. It should be emphasized that the

functions under investigation arise from the interactions of the

different components in the model without there being any one-

to-one correspondence between components and functions. For

example, “attention” may be the result of interaction between a

large number of computational components, none of which can be

labeled “attention.” Developing a system-level model of the human

brain remains a significant challenge. In engineering, a system-level

model can increase the understanding of a complex system such

as an aircraft as the model can help identify potential issues, and

design optimization that meets performance and safety criteria,

resulting in enhanced aircraft performance, safety, and efficiency.

In these complex systems, both component details and predicted

system behavior are known. Completeness is a major difference

between engineering system-level models andmodels of the human

brain. Our comprehension of the brain’s inner workings is far from

complete, particularly in modeling how different brain regions

influence each other.

Other challenges include modeling the intricate interactions

between various subsystems, such as neural networks, sensory
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inputs, and motor outputs, which are highly complex. Modeling

the dynamic and non-linear nature of these interactions requires

advanced algorithms and computational methods.

Integrating data from different sources and scales (e.g.,

molecular, cellular, and system-levels) is challenging. Ensuring that

the data is compatible and accurately represents the biological

processes is crucial for the model’s validity.

To be able to create a system-level model of the brain, there are

a number of questions that need to be considered (Balkenius et al.,

2010):

What are the components of the system? In system-level

brain modeling, the components are typically represented as a

network of interconnected nodes. The relationships between these

components are important for simulating the behavior of the

system. Components can be brain areas that are known to perform

a specific function, such as memory coding, motor control or visual

sensory processing. Using larger brain areas as components, the

area is modeled as collections of neural circuits that all contribute

to perform specific tasks.

Components can also be modeled at different levels of

description. On the lowest level, brain models focus on single

neurons (Rotstein and Nadim, 2020). In such models, the

components are typically intra-cellular, like ion channels and

receptors (Abbott, 1999), but could also include cellular machinery

like mitochondria (Woo et al., 2021). A major steps toward more

complex models of single neuronal cells was the Hodgin-Huxley

model (Hodgkin and Huxley, 1952). This model is based on

the electrophysiological properties of squid neurons and focuses

on simulating conductances of various ions like calcium and

potassium and how these electrical dynamics together produce

action potentials. Single cell models can also include parts like

dendrites, soma, and the axon as components (Rall, 1964; Almog

and Korngreen, 2016).

At the next level, several neurons communicate using electrical

and chemical signals. Using this abstraction, the neuron is

simulated as receiving inputs from other individual neurons and

integration these inputs, to produce outputs in the form of action

potentials. Focusing on smaller circuits involving a few, or often

pairs of neurons can elucidate dynamics such as rhythm generation,

resonance behavior, and attractor dynamics (Brown, 1914; Kopell

and Ermentrout, 2002). In such small circuits it can make sense to

use different types of neurons as components, such as excitative

and inhibitive neurons (Kopell and Ermentrout, 2002). Groups

of neurons that are connected and influence a specific function

can be modeled as a network of interconnected neurons, that is

the overall activation of the neurons instead of each individual

neuron. For example, Marder (2002) reports how the study of

small-scale non-vertebrate neural systems contributed to changing

the view of neural networks as static entities toward realization

of their dynamic nature. In particular, the study of swimming

in molluscs (Getting and Dekin, 1985) and the stomatogastric

ganglion of lobsters and crabs (Nusbaum and Beenhakker, 2002)

have shown how changes in topology, and the interaction of

excitation, inhibition, and modulation contribute to producing

behavior.

At the system-level, a component corresponds to a whole

nucleus in the brain or to a neural field of neurons. Such network

models aim to simulate the connectivity patterns observed in the

brain’s neural circuits, often based on data from neuroimaging

techniques such as diffusion tensor imaging (DTI) or functional

magnetic resonance imaging (fMRI). Such connectome-based

models aims at providing insights into the large-scale organization

of the brain.

Breakspear (2017) reviews models of large-scale brain activity

based on dynamical systems theory, in essence presenting two

types: neural mass models (NMM) and networks of such models,

and neural field models (NFM).

The core principle of NMMs is to represent the average activity

of a local, interacting population of neurons as a single, aggregated

entity (Freeman, 1975). Combining multiple NMMs into large-

scale brain models offers a valuable approach to studying brain

dynamics. Prominent examples of NMMs include the Wilson-

Cowanmodel (Wilson and Cowan, 1972) and the Jansen-Rit model

(Jansen and Rit, 1995).

NFM can be used to model both cortical and subcortical

areas. For example, Roberts et al. (2016) use this framework to

construct a network based on the connectome of the human brain.

This network is then used to investigate the influence of spatial

geometry on brain topology, allowing the authors to quantify

the degree to which segregation, integration, and modularity in

the brain is due to its spatial embedding. NFMs model cortical

surfaces like a continuous field where activity is described by a

wave function (Jirsa and Haken, 1996). NFMs have reproduced the

typical wavefront dynamics that have been observed in particular

in sensory- and motor cortices (Muller et al., 2014; Rubino et al.,

2006).

On the highest system-level, components are purely functional.

This may be necessary for a model that produces measurable

behavior as output. At this level, it is possible to use Bayesian

models of cognitive processes, based on the idea that neural

populations in animals mediate probability distributions in part

shaped by sensory sampling of the environment. This process can

then be simulated by means of computer models of the same

probability distributions.

As an example, Yuille and Kersten (2006) describes the process

of using Bayesian inference to perform object recognition. The

authors make the case that top-down expectations make object

detection more robust, but requires learning of a possibly very

large data set in order to extract the necessary syntax and grammar

for the generation of those expectations. However, such a model

might be able to cope with even very complex natural scenes by

means of “analysis by synthesis;” this implies that a scene is viewed

as composed of several samples from probability distributions

representing concepts or categories of things. By generating suitable

instances of the categories in the syntax set such that they match

the bottom-up signatures of the scene in question, recognition of

individual components may be achieved.

For Bayesianmotor control, Kording andWolpert (2006) argue

that probabilistic approaches makes for useful models of movement

under uncertainty. Although several sensor systems can contribute

to the brain keeping track of a reaching hand, for example, the loss

of critical ones like vision will make actions more error prone. The

speed of movement will affect uncertainty as well. Actions such as

reaching carry costs, most saliently in terms of metabolic energy.
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Deciding which exact movement to engage in from a near infinite

space of possibilities can be modeled in terms of Bayesian decision

theory. This framework, where decisions are happening at each

point in time, is identical to optimal feedback control in control

theory.

Each abstraction layer presented in the text can enhance our

understanding of the human brain. However, we want to argue that

the system-level is particularly useful when studying the function

of the brain in various cognitive processes where it is the behavioral

output that is the index of the function.

Which function is performed by each component? The

function refers to the specific role or purpose of the brain region

or circuit defined as a component. Each component performs a

specific operation contributing to the system’s overall function.

In a system-level brain model, there are strong claims about the

relation between each component in the model and the function

of a specific brain region. This does not mean that the component

performs a complete function on its own or that it is functionally

impenetrable (See Fodor, 1983, for an opposing view). Instead, the

claim is only that the operation of each component can be described

in functional terms.

Hence, in single cell models, components can compute

changes in ion currents, and how these currents contribute

to forming action potentials (Hodgkin and Huxley, 1952). In

small circuit models, the components may produce spikes, and

transform excitatory and inhibitory spikes into complex rhythms

at different frequencies (Bastos et al., 2018; Mejías et al., 2016). In

neurocognitive models, (see e.g. O’Reilly et al., 2016) components

can do both Hebbian- and error-driven learning. Inhibition also

affords winner-takes-all selection mechanisms which can be found

in many parts of the brain, including the basal ganglia and

the medial prefrontal cortex. Connectionist models, and deep

convolutional networks in particular, have become standardized

tools for patterns recognition and classification, perhaps most well

known in the context of images (LeCun and Bengio, 1998). In

these models, components work by essentially combining various

types of matrix operations, the most important of which is dot-

product matrix multiplication. In Bayesian models, components

perform transformations on probability distributions; a fitted

model can thus yield samples from a complex combination of

individual probability distributions and these samples can for

example produce behavior.

How do the components interact with each other? In

system-level brain modeling, the connectivity between brain

areas or circuits involved in various behaviors represents the

interactions between components. These interactions, which

simulate the transfer and processing of information across different

brain regions, are crucial for understanding the collaborative

mechanisms underlying behavior and cognition.

Components can also be organized hierarchically, in particular

when a model spans multiple descriptive levels. However,

hierarchies can also be a practical method of grouping components

that are the same descriptive level. For example, it is useful

to follow the normal anatomical hierarchy of the brain when

designing a system-level model. This is particularly useful for

large-scale models where the number of interacting components

may range in the hundreds. To specify the interaction between

the components is essential both to understand information

transfer in the model and for structural validation of the model

(see below).

What information is transmitted between the components?

In the highly interconnected human brain, the transfer

of information between different regions is essential for

understanding behavior, cognition, and perception. Information

transfer refers to the process by which neural activity is transmitted

and mediating information between structures or circuits between

different brain regions.

We use the word “information” in the sense used within

information theory (Shannon, 1948), that is, as a measure of the

uncertainty reduction or the ability to distinguish among a set of

possible messages or events. Hence, it is not necessarily tied to the

meaningful content of the message interpretable to humans, but

rather to the mathematical properties and probabilities associated

with the transmitted data.

The question about information contents is again strongly

connected to the claims of the model about how different

components, and hence their corresponding parts of the brain,

are able to influence each other. So, in single cell models, the

information can represent the concentration of ions, or changes in

ion currents, for example. In circuits of spiking units, information

represents electrical voltage as a function of time, implicitly

including frequency and phase information, while in connectionist

models the information may be interpreted as the activity of

neuronal populations in some cases, while there may be no obvious

biological interpretation in others. In Bayesian models, finally, the

information flowing between components may be samples from

multidimensional distributions.

How is this information coded? Coding is the neural activity

that represents different types of information or stimuli processed

by the brain and is a fundamental concept as it helps to explain

how the brain represents and processes information. Different

codings affect how the information is processed by the brain.

Although at the neuronal level, the most common intuition about

informationmediation is activity in terms of action potentials in the

biological brain, when zooming out to consider populations, these

action potentials afford a rich array of coding possibilities. When

taking into account also neuro-modulation, the possibilities grow

but the complexity grows with it, and can become challenging to

understand and make use of.

Although coding may appear peripheral but in a system-level

model, it is in fact essential to understand the processing in

each component. How information is coded greatly constrains the

possible architectures of the completemodel as well as themodeling

of the functional properties of each individual component. The

choice of spiking neuron models (Rieke et al., 1999), rate coding

(Van Rullen and Thorpe, 2001) or some form of population coding

(Pouget et al., 2000) will greatly influence the overall structure of a

system-level model. In connectionist models, where information is

structured in vectors or tensors, information may be coded as real

numbers in some interval, or e.g., a one-hot format for selection.

In the context of information coding it can also be useful

to use symbolic systems as a contrast. Cognitive science began

with symbolic models of cognition, where the brain-as-computer

metaphor was the dominating one (see Kotseruba and Tsotsos, 2018
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for a review of cognitive architectures, including symbolic ones).

Although symbolic models can also have a structural component,

its components typically have direct correspondence to different

cognitive functions.

How is timing modeled? Most models include some aspect

of time sensitivity either explicitly or implicitly in the form of

time steps. When designing a model it is necessary to decide how

time is handled. For a purely qualitative model, it may not be

important, but when the produced output will be compared to

measured signals it is necessary to know what the time scale is.

For simulations, it may be enough do decide on a correspondence

between a simulation step and real-time. However, for a brain

model that is to control a robot, it is often necessary to use a

real-time framework to implement the model.

In the context of levels of abstraction, and as mentioned

above, smaller circuits involving only a few neurons are useful for

testing hypotheses about time-related phenomena like rhythms,

resonance, attractor dynamics and so on. Kopell and Ermentrout

(2002), for instance, emphasize the role of delays in producing

various rhythmic signatures; this delay can be due to characteristics

of receptor proteins, but is often due to the length of axons through

which signals travel. Also using crustaceans in the form of the

crab Cancer borealis, (Nadim et al., 1998) showed how interacting

oscillator networks can produce sophisticated rhythmic patterns.

More specifically, they showed how neuronal oscillators outside

the crab’s central nervous system and associated with its digestive

system together regulate digestive rhythms. Here, a rapid oscillator

at the entry to the gut modulates the slower rhythm of the gastric

mill. This work indicates that oscillator units can compose into

larger systems to perform vital functions in organisms.

This ability of oscillators to compose dependent on tempo

(i.e., frequency) and rhythm (i.e., patterns of fast and slow tempo)

allows for a highly flexible way of recruiting and handing off

neural units at several system-levels to form transient networks and

implement functions. A key aspect of this is the ability of a coherent

group of units to entrain recruited units into their specific rhythm.

This principle of “communication through coherence” suggests

that synchronized neural units can process and communicate

information more efficiently (Fries, 2005).

Take simulation of motor control as a specific example. A group

of neural units connected to motor units (i.e., muscle fibers) can

entrain spinal motor neurons which again activate muscle fibers.

This synchronization, known as “corticomuscular coherence” can

yield more steady and powerful muscle activation compared

to when neural units act in a more random, unsynchronised

way (Mima and Hallett, 1999). At the same time, by changing

rhythmic phase, a big coherent group of neural units can

split into several distinct ones, allowing for e.g., fine motor

control of fingers, a phenomenon known as “event-related

desynchronization” (Pfurtscheller and da Silva, 1999). Functional

changes in rhythms and phase like this is typically handled by

careful control of fast inhibitory units which can modulate the

phase of rhythms sufficiently so that they can run stably out of

sync (Haken et al., 2004). As described in models of dynamics

of coupled oscillators, systems like this tend to settle into phase

(0 degrees) or antiphase (180 degrees), which allow information

to be bound or segregated. From the systems perspective, neural

implementations that support phase and rhythmicity may therefore

produce dynamics that can be used as building blocks to compose

higher order functionality—essentially providing a foundational

“syntax” for neural computation (Buzsaki, 2006).

The crucial role of time can be implemented as delays on

connections between components. If multiple connections with

different delays are used it becomes possible to implement different

forms of tapped delay lines (Desmond and Moore, 1988) and

spectral timing models (Grossberg and Schmajuk, 1989). This is

particularly important in the modeling of timing dependencies in

classical and operant conditioning (Schmajuk, 2010).

In contrast, connectionist systems do not typically exhibit

dynamical properties at all; these models are in this regard time-

independent functional input-output components. The same is the

case for probabilistic models that sample from distributions.

4 Simulation frameworks and model
architecture

System-level brain modeling involves two essential

components: the actual architecture of the model and the

simulation framework used to run it. These two parts are often

conflated in the literature, and it is not uncommon for publications

to conflate model architecture with the computational tools

used for implementation. This overlap is understandable, as the

development of the architecture and the simulation environment is

often tightly interwoven. Algorithms implemented by a framework

may become integral to the architecture itself, further blurring the

lines. However, it remains crucial to differentiate between these

components to better understand the structure and function of

system-level models.

A variety of frameworks have been developed to support the

simulation of large-scale brain dynamics. The Virtual Brain (TVB)

is a neuroinformatics platform designed to simulate whole-brain

activity based on data from neuroimaging (Sanz Leon et al., 2013;

Schirner et al., 2022). It models brain regions and their connectivity

to study emergent phenomena such as oscillations and disease

states. NEST (Neural Simulation Tool), while primarily known

for detailed neuron-level simulations, also supports higher-level

modeling of simplified neuronal populations and networks of

brain regions, with a focus on system-wide dynamics rather than

individual spiking activity (Diesmann and Gewaltig, 2001).

The Brain Dynamics Toolbox (Heitmann and Breakspear,

2017), a MATLAB-based framework, models the collective

behavior of neural populations using differential equations. It

emphasizes macroscopic brain activity over microscopic neuron-

level detail. Similarly, the Human Brain Project’s Brain Simulation

Platform (BSP) enables simulations at the systems level, integrating

structural and functional data from connectomes to model

interactions between brain regions (Schirner et al., 2022).

Cedar is a framework developed to support models based on

dynamic field theory (Lomp et al., 2016). It is closely tied to

the building blocks of that theory and is capable of constructing

complex models of interacting neural fields. Cedar has also

been used in robotics (Tekülve et al., 2019), providing control

mechanisms based on dynamic neural modeling.
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Ikaros is another system-level modeling framework (Balkenius

et al., 2010, 2020), similar in some ways to Cedar but not tied to a

specific theory. It supports the development of large-scale models

and allows for both simulated and real-world validation using

robots (Johansson et al., 2020). Ikaros runs model components in

parallel and uses a rendezvous mechanism for inter-component

communication (Andrews, 1991). Both Ikaros and Cedar use the

first-order Euler method to update the state of the simulated

model, a method commonly used in artificial neural networks and

sufficient for system-level simulations. Both platforms have been

used to control robots.

Each framework presents specific advantages and limitations,

and selection should be based on the research objectives and

modeling requirements. In section 3, we outline a series of

considerations that the modeler needs to contemplate. The answers

to these questions assist in selecting the appropriate simulation

tool for the intended purpose. For instance, if the focus is on

achieving a highly realistic model of each neuron within the system,

a tool detailed enough to capture these intricacies must be chosen.

Conversely, if the goal is to model various behaviors of a robot, a

higher-level approach may be preferable, where modeling occurs at

the level of neural nuclei.

Across these platforms the focus is on understanding brain

function as an integrated system. They employ mathematical

models of neural populations and brain connectivity, rather than

simulating individual neurons in fine detail.

4.1 Real-time aspects of brain simulators

Very few brain simulation frameworks take real-time aspects

into account. Although time is often a factor in the models, there is

seldom any attempt to produce precisely timed outputs. This makes

sense for a pure simulation, but when brain models are to be used

to control robots, this becomes increasingly important, especially

for models directly involved in motor control.

Real-time systems and non-real-time systems differ primarily

in their timing requirements and the consequences of not meeting

those requirements (Laplante, 2004). Real-time systems have

strict timing requirements and deadlines that must be met and

are designed to respond to events or inputs within specific

time constraints. Failing to meet timing constraints can have

severe consequences. This does not mean that real-time systems

necessarily need to be fast. However, they often prioritize quick

response times to events or inputs and minimizes latency to

provide timely outputs. To meet such timing demands, real-time

systems require sophisticated scheduling and task management

mechanisms.

Real-time-models make it necessary to explicitly differentiate

between rate parameters that depend on time, such as a learning

rate, and other parameters that are independent of time. The former

must be scaled appropriately for the particular temporal granularity

used in the model execution. Ideally, the exact temporal resolution

should not fundamentally change the predictions of the model

although a too coarse temporal resolution could obviously have

detrimental effects and lead to numerical instability (cf. Lomp et al.,

2016).

For pure simulation models, it can sometimes be beneficial to

adapt the temporal resolution on-line to the necessary precision

are each time point. This is especially the case for models expressed

in terms of differential equations. However, for models controlling

robots, this is usually not practical and a fixed temporal resolution is

often more suitable (Balkenius et al., 2020) or a method for aligning

simulation time with real-time (Lomp et al., 2016).

5 Validating models

To validate the performance of a brain model, there are

essentially three complementary ways to do it: structural similarity,

functional similarity and behavioral validation.

Structural similarity describes the degree to which different

brain regions or circuits have similar anatomical connectivity, that

is, has similar topology to the real brain. A system-level brainmodel

can vary in terms of its level of structural similarity to the real brain

depending on at what resolution the model is specified as discussed

above.

For a system-level model, it useful to relate the connections

between components to the human or animal connectome to the

extent that it is known (Sporns et al., 2005). Automatic methods

can be used to make a graph comparison between the model

and the relevant aspects of the connectome (Osmanlıoğlu et al.,

2019; Pedigo et al., 2023). This assumes that the mapping between

components and brain regions is specified in a standardized way.

Structural validation can be more feasible in animals with a smaller

nervous systems, such as insects that still have a large and complex

behavioral repertoire (Goulard et al., 2021). Creatures where the

complete neural structure is known such as molluscs (Kandel and

Schwartz, 1982) and nematodes (White et al., 1986) also offer

this advantage, but simultaneously show very limited behavior

compared to more advanced species.

Functional similarity refers to the degree these regions or

circuits exhibit similar neural activation as seen in the real brain.

To validate the functional output of the components that make up

a system-level brain model can be tricky for several reasons. First,

the notion of functional brain regions is somewhat controversial

in the first place (Pang et al., 2023), and second, it can be

hard to determine what constitutes the “output” of a neural

population, or an area of the brain given its highly recurrent

connections. Nevertheless, given some simplifying assumptions

such as that the activity of neurons reflect what they are sensitive

to, we can infer some transformations that various brain areas

appear to do. For example, there appears to be a process of

composing larger percepts from smaller building blocks in both the

visual- and auditory cortices (Hubel and Wiesel, 1968; Roe et al.,

1992). Similarly, winner-takes-all mechanisms appear to mediate

decisions and choices involving behavior in the basal ganglia

(Berns and Sejnowski, 1996). Another large-scale pattern appears

to be that the brain makes extensive use of opponent processing,

e.g. between the default mode network and external sensory and

processing networks (Smallwood et al., 2012). Common examples

of such opponent processes in terms of behavior is approach vs

avoidance (Palminteri and Pessiglione, 2017), or “tend-befriend vs.

fight-flight” in stressful situations (Turton and Campbell, 2005).
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Behavioral validation one important function of the brain of

animals is to produce behavior that contributes to keeping the

animal alive. In contrast to statistical models like linear regression

that are validated on how well they can predict data, models of the

brain or of parts of the brain can also be partially validated by being

able to produce similar behavior to that of an animal, including

humans. This is what we mean by “behavioral validation:” if a

model can produce functional, embodied behavior, like grasping,

manipulation, or navigation that model can tell us something

useful. Even if it is clear that the model is doing it in a very

simplified way compared to its biological counterpart, it can

contribute to our understanding of the biological system bymaking

what is possible concrete.

Behavioral validation typically uses the results of empirical

studies as benchmarks. For example, the recorded behavior of an

animal during a conditioning experiment is compared to the output

of the model using some suitable metric. Different experimental

conditions are tested with the model and compared to empirical

data.

System-level brain models allows this to be done in a systematic

way to evaluate the performance of a model on a large range

of experimental set-ups and conditions. Both quantitative and

qualitative measures can be used in the behavioral validation. A

particularly elegant early example of a model that combines a

system-level model different types of qualitative and quantitative

validation was presented by Schmajuk and DiCarlo (1992). The

model aims at investigating the role of the hippocampus in classical

conditioning and the model is tested on a large number of

experimental paradigms.

Another more recent example is the model illustrated in

Johansson et al. (2020) that aims at reproducing a number of

phenomena in the control of pupil dilation with a system-level

brain model (Johansson and Balkenius, 2018). This model stands

out in that it has almost no parameters. Instead, the anatomical

structure of the model is responsible for all qualitative results and

surprisingly also the quantitative relation between the time needed

for dilation and contraction of the pupil. The model has been

implemented in a humanoid robot where it controls its pupils

(Johansson et al., 2020). Although themodel includesmany areas of

the brain, it is limited to explaining a very small part of the overall

behavior.

In addition to testing individual models, it is also possible to

evaluate the behavioral output of a model on a population level by

running it multiple times with different parameters selected from

a suitable distribution. This is useful when the available empirical

data is only reported on a population level or there is a random

factor in the recorded output.

To be able to run large-scale simulation is very useful to test

models, but to validate that they are able to interact with the

real world it is necessary to confront the model with the physical

environment. This is best done using robots that are controlled

by the model. As stated by Brooks (1990), “the world is its own

best model.” By using a physical robot rather than a simulated

environment, a model is tested in a more realistic setting. Some

of the earliest attempts to use robot to test brain models were

published in the 1990s. For example, Edelman and coworkers

explored the use of a robot to test the theory of neuronal group

selection (Edelman et al., 1992).

Despite its inherent limitations, this marriage between brain

models and robots brings some extremely valuable benefits.

First, it makes the model embodied. This is not only useful

for testing a model but also for shifting focus during development

from internal processes to the role they serve in controlling the

body (Chiel and Beer, 1997). It also acknowledges that some of

the processing is made by the body itself (Pfeifer and Bongard,

2006).

Second, it makes the model embedded and situated in the

environment (Balkenius et al., 2023). It provides input to the

networks from the physical world. This is important because the

physical world provides rich structure that is hard to replicate in

simulations: texture, mass, colors, light and shade, space to move.

Third, a physical robot interacting with the world automatically

frames the environment in terms of affordances (Balkenius et al.,

2023; Gibson, 1977; Cisek and Kalaska, 2010), or which interactions

are made possible given a specific robot and a specific network

and neuron implementation. The notion of affordance can here be

interpreted as opportunities for action that the environment and

objects in it allow—in a robot’s case it could be grippability for

an object like a cup, or navigability of a doorway or a corridor.

In other words, affordances are most easily thought of in terms

of manipulations such as grasping, pulling, and shoving. But a

robot without arms and hands still has affordances as long as it can

move at all: bumping into things is still interaction, albeit a crude

one. Notably, affordances are not only dependent on the physical

realization of the robot, but also on its control system. Even with a

very human-like hand, a robot won’t be able to grasp a cup without

appropriately sophisticated control software.

Further, the networks that control movement and perception

contribute significantly to how a robot might interact with its

environment. Sharper perception affords better discrimination;

support for salience affords filtering out the things that are

important to the task at hand; memory and learning affords

learning from trial and error, but can also afford simulation

of action and consequence, and navigating environments based

on experience. In short, the neurorobotics approach provides

opportunities to study cognition as a natural phenomenon that

is closer to “cognition in the wild” than is simulation of neural

networks, and it provides a degree of control over experiments that

is superior to behavioral experiments on animals. By grounding

brain models in robotic experiments, and keeping the demands of

a biological organism in focus makes for more realistic models that

have a greater potential to explain how the brain interacts with the

body and the environment (Krichmar and Hwu, 2022). Aiming at

models that will eventually control a robot structures the modeling

work toward a system that can operate in the real world. This

approach supports both computational rigor and the generation of

realistic behavioral outputs.

Since robots are not exact copies of humans (or animals), it

will not be possible in most cases to replicate the exact behavior

of a human. Instead, the validation of system-level brain models

in robots must also include qualitative aspects of behavior. For

example, it is not meaningful to try to replicate the exact reaction

times in a task since it will depend on the physical components

of the robot rather than the details of the model. It is however

interesting to look at the change in reaction time over time or how

a motor action changes as a result of training.
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FIGURE 2

The modeling pipeline.

Figure 2 shows the simulation pipeline. Here we describe the

Ikaros system, but the methodology is relevant also to other

simulation approaches. Starting with brain data in the form of

the connectome and other relevant data, such as receptor types,

a formal mathematical model is created. The model is described

in an XML-based language that allows the specification of the

components and their interaction as well as the hierarchical

organization of the model (Balkenius et al., 2010, 2020). The formal

model description can subsequently be structurally validated by

comparing it to the brain data that was used to create it. The next

step is to test the model using a number of data sets that probes the

functionality of the model. The experimental data is used first to set

up the experimental conditions for each simulation and second to

validate the behavioral output from the simulations.

6 A case study: control of pupil
dilation

In this section, we present an example of a system-level

brain model of pupil control. Pupil dilation provides a rich

testbed for modeling the integration of cognitive, emotional, and

sensory inputs. The model puts the concepts introduced above in

context and illustrates a number of aspects of system-level models

(Figure 3).

Most parts of the model are implemented using a single

nucleus-model indicated by the circular elements of the figure.

This level of detail is sufficient to capture the dynamics of the

nuclei involved in pupil control. Each nucleus is modeled using

the following equation, where Ei are the excitatory inputs, Ii are

direct inhibitory inputs and S is shunting inhibition. This captures

the dynamics of the different receptor types that are relevant to the

model as show in the figure.

ǫ
dx

dt
= α + β

(

1

1+ S

) N
∑

i=1

Eiwiu− γ

M
∑

j=1

Ij − x (1)

The resting level is defined by α, while β and γ scale excitation

and inhibition, respectively. Unless specified otherwise, they are

set to average the inputs: β = 1/N, γ = 1/M. This makes the

processing of the model stable as more connections are added since

the total input will always stay in the range [0, 1].

Excitatory weights wi are fixed at 1 for all non-plastic synapses,

except in the amygdala and cerebellum. Each synapse has an

input gain u, typically 1, which slowly adapts to the average

input, modeling receptor up- and downregulation. This adaptation

occurs on a time scale slower than the behavioral simulations and

represents a dynamic gain control mechanism. The nucleus output

is given by o = φ atan(x), with φ = 1/atan(1) to ensure that an

input of 1 yields an output of the samemagnitude, preventing signal

amplification at this stage.

Other components have more complex structure and are

illustrated by rectangles. This includes the visual cortex, the

cerebellum (CB) and the amygdala (AMY) (See Johansson and

Balkenius, 2018 for further details).

The overall structure of the model is given by the connection

graph, as illustrated by arrows in the figure. The type of arrow also

indicates the type of receptor dynamics used in each case.

The coding of the signals in the model is mainly as the

scalar output of the nuclei components. However, the rectangular

components in the figure use different types of matrix coding. For
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FIGURE 3

A system-level model of pupil dilation. R, The retina; PTA, Pretegmental area; EWpg, Edinger-Westphal nucleus, preganglion portion; CG, ciliar

gangion; SCG, superior cervical ganglion; IML, intermedio-lateral column of the spinal cord; CB, cerebellum; LH, lateral hypothalamus; DMH,

dorsomedial hypothalamus; VLPO, ventrolateral preoptic nucleus; SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus; LC, locus coeruleus;

AMY, amygdala; LGN, lateral geniculate nucleus; SC, superior colliculus; PULV, the pulvinar of the thalamus [Adapted from Johansson and Balkenius

(2018), Balkenius et al. (2019) and Tjøstheim et al. (2019)].

example, the retina (R) uses a matrix to represent a gray scale image

while the cortex output is a single array coding the identity of a

recognized stimuli used by the cerebellum component as well as

surprise signals sent to the amygdala.

Timing is modeled using a delay in the signal path between each

pair of components. This delay is equal for all components except

for the cerebellum where it was adjusted to capture the optimal

inter-stimulus interval for classical conditioning.

The full model runs in real time on standard consumer

hardware, such as an Apple Mac Mini, without specialized

processing hardware. This means that users do not need specialized

or high-end hardware to execute the model effectively.

The model was validated both in simulation in a humanoid

robot and reported in three papers that collectively reproduce

a broad range of experimental phenomena related to pupil

dynamics, trust formation, emotion, and cognition, using system-

level simulations. This model is evaluated through simulations that

qualitatively and quantitatively mirror empirical findings.

In the study by Johansson and Balkenius (2018), we presented a

model that successfully reproduced five key phenomena associated

with pupil dynamics. First, it replicated the pupillary light reflex,

including the characteristic shape of the response curve and the

latency and magnitude scaling with stimulus intensity, consistent

with Ellis (1981). Second, the model elicited pupil dilation in

response to novel stimuli, showing greater dilation during first

exposures compared to subsequent ones—a qualitative result

supported by empirical findings (Aboyoun and Dabbs, 1998).

Third, the model demonstrated emotional reactivity, with stronger

pupil dilation to emotionally charged stimuli regardless of polarity

(positive or negative), matching the findings of Hess and Polt

(1960). Fourth, it reproduced conditioned responses to images

associated with brightness, such as the sun, even when actual

luminance was equal, simulating the learned “light response”

via the cerebellum; this is a qualitative result tightly linked

to the experimental design by Binda et al. (2013). Lastly, the

model captured the fear-inhibited light reflex, wherein the pupil

constriction in response to light was reduced when preceded by a

fear-conditioned stimulus—matching experimental findings from

Bitsios et al. (1996).

Building on this, Balkenius et al. (2019) extended the model

to include additional structures such as the superior colliculus

and the pulvinar, enabling it to simulate pupillary contagion—

a phenomenon where an observer’s pupils dilate in response to

seeing dilated pupils in others. The model reproduced empirical

results from infant studies and adult visual perception by showing

greater dilation to larger circular stimuli simulating eyes, but

no response to squares, thus offering a quantitative match to

data reported by Fawcett et al. (2017). It also replicated cognitive

effort effects, where pupil dilation increased with the difficulty of

arithmetic problems. Using simulated training and emotionally

conditioned associations, the model generated a dilation curve

closely mirroring empirical data fromKahneman and Beatty (1966)

and Hess and Polt (1964). Furthermore, the model simulated

various hypotheses about pupil anomalies in autism spectrum

disorder, such as increased baseline dilation due to sympathetic tone

or increased light reflex magnitude from α7-receptor upregulation.

These results were partly quantitative (e.g., changes in latency and

amplitude) and partly qualitative, aligning with observations from
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FIGURE 4

The Epi robot used for system-level brain model of pupil control.

studies like Nyström et al. (2015) and Anderson and Colombo

(2009).

Lastly, Tjøstheim et al. (2019) extended the model further

to incorporate trust, motivation, and tactile feedback to model

unconditional trust formation based on familiarity and gentle or

painful touch stimuli. The model showed that trust increased

with familiarity and gentle touch, while painful touch significantly

reduced trust and increased avoidance motivation. These changes

were accompanied by corresponding shifts in pupil dilation, with

pain and distrust correlating with higher dilation—findings that

aligned with empirical results by Kret et al. (2015) and Höfle

et al. (2008). The results were primarily quantitative, as the model

produced explicit numerical values for trust, approach/avoidance

motivation, and pupil dilation. Additionally, when faces were

reintroduced without tactile input, the model’s trust responses

reflected prior associations, demonstrating a form of context-

dependent memory effect in pupil and motivational dynamics—a

result that is both qualitative and quantitative.

Together, these studies demonstrate that system-level,

biologically plausible models can reproduce a wide variety of

pupil-linked cognitive and emotional effects observed in humans,

providing both mechanistic insight and computational tools

for future research in affective neuroscience and human-agent

interaction.

For the robotics validation, we used the Epi robot (Figure 4)

(Johansson et al., 2020). Only minimal changes were made to

the model. The component implementing the visual cortex was

replaced with a model that could categorize objects from the visual

input from the two cameras in the eyes of the robot. In addition,

the delayed connection used to model the optimal inter-stimulus

interval for conditioning was replaced by a tapped delay-line to

accommodate a larger variability in the timing in this real-world

situation compared to the simulation. Furthermore, the output was

sent to the servo controllers for the pupils of the robot. This allowed

the different experiment that was initially tested in simulation to

be run on the robot. Here, the real-time features of the Ikaros

framework were essential.

7 Discussion

We have argued that system-level brain modeling is a viable

approach to developing and testing brain models. The main

advantage of system-level models is that it allow a level of
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abstraction that makes large-scale brain models within reach also

with modest computational resources. This contrasts with models

specified at a lower level that may require high-performance

computing resources.

A central question to ask when using models to understand

how brains and nervous systems work is: What is a good model?

The validity of the model depends, of course, on what we are trying

to understand, and thus how well the particular model confers the

insights we are seeking. But given that we are in fact wanting to

understand the whole brain, or even the entire cognitive system,

including the interactions with its body and its environment, it is

clear that the model must be both embodied and situated. That is,

we need a physical robot that can engage with its environment, and

which is controlled by a model that has the necessary analogies to a

biological central nervous system.

A future direction for the field is to develop benchmarking

standards for brain models comparable to those used in artificial

neural networks. This makes it easy to see if progress has been

made. First, for the model to generate insights about the brain as

a whole, it should consist of an analogous number of systems as

does the biological brain, and the scope of these systems should

map to their biological counterparts as well. The challenge then is to

find the appropriate resolution of the model and of its components.

Second, the model should display computational soundness. Here

it is useful to recall Marr’s levels of analysis regarding computation:

at the highest level is the outcome of a process, called the

computational level; next down is the algorithmic level concerning

how the computation is done using available primitives; and

lowest is the implementation level, concerning how primitives

are realized.

A more straightforward way of looking at the problem is to

simply consider whether the model solves the problem under

scrutiny at all like a biological brain. From a neurobiological

perspective, models that rely heavily on iterative computational

structures typical of conventional computer science may not align

well with how biological systems process information. On the other

hand, if the solution depends instead on excitation, inhibition, and

modulation, this may suggest a closer alignment with biological

plausibility.

Third, the number of behavioral or other experimental

paradigms that can be reproduced qualitatively and quantitatively

should be maximized. This implies that the same model should be

able to generate behaviors sufficiently rich that could be applied to

a wide set of experimental paradigms from behavioral psychology.

Examples thus include executive paradigms such as the Flanker task

(Eriksen and Eriksen, 1974) where the experimental participant

is required to inhibit distractor stimuli that are either congruent

or incongruent with the centrally positioned stimuli, as well as

reaction-time tasks such as go-no go paradigms where participants

must react only to stimuli that are occasionally presented, while

inhibiting behavior most of the time. In practice though, the model

should display a wide range of cognitive processing including

attention, perception, executive function, and memory, all of which

are amendable to testing with standard protocols.

Fourth, given that the above experiments can be simulated

using the model, the output should quantitatively match results

reported in the literature. This requirement puts rather tight

constraints on the real-time performance of the model, entailing

in effect millisecond resolution on its turnaround or step time.

In addition to appropriate responses with realistic temporal

signatures, the model should also reproduce measures like EEG-

like recording and activation of regions analogous to those

recorded with fMRI techniques. If this can be achieved, the model

would allow for broad experimentation to tease out functional

relationships in the brain, and should be able to produce robust

predictions for validation in animal- or human experiments.

To date, there have been few attempts to systematically test

system-level brain models in robots on a large range of behavioral

data from empirical research. As a concrete step toward this vision,

we are developing the BAM model of the brain. The model runs

on the Ikaros framework and is currently used to control the

humanoid robot Epi. When complete, the model will include

several hundred brain regions and be tested on a wide range of

empirical data. The goal is to be able to perform basic neurological

tests on the robot as well as to test it on a large set of experimental

paradigms including classical and instrumental conditioning, visual

attention and memory tasks, eye-hand coordination, and spatial

navigation. Many of the required components have been developed

over the last 20 years and are ready to be combined into an

integrated system-model. The methodology outlined in this paper

offers a structured framework for advancing the integration of

system-level modeling with empirical validation.
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