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Contactless Human Activity Recognition (HAR) has played a critical role in smart

healthcare and elderly care homes to monitor patient behavior, detect falls

or abnormal activities in real time. The e�ectiveness of non-invasive HAR is

often hindered by location-centric variations in Channel State Information (CSI).

These variations limit the ability of HAR models to generalize across new unseen

cross-domain environments, for instance, a model trained in one location might

not perform well in another physical location. To address this challenge, in this

study, we present a novel federated learning (FL) algorithm designed to train a

robust global model from local datasets in di�erent localizations. The proposed

Federated Weighted Averaging for HAR (Fed-WAHAR) algorithm mitigates

location-induced disparities, including heterogeneity and non-Independent

and Identically Distributed (non-IID) data distributions. Fed-WAHAR employs

a dynamic weighting approach based on local models’ accuracy to improve

global model classification accuracy and reduce convergence time e�ectively.

We evaluated the performance of Fed-WAHAR using various metrics, including

accuracy, precision, recall, F1 score, confusionmatrix, and convergence analysis.

Experimental results demonstrate that Fed-WAHAR achieves an accuracy of 85%

in recognizing human activities across di�erent locations, enhancing the ability

of model to infer across new unseen locations.

KEYWORDS

federated learning, human activity recognition, non-independent and identically

distributed (non-IID) data, localization, weighted averaging

1 Introduction

With the advancement of technologies, smart healthcare systems have enhanced

the efficiency, accuracy, and accessibility of medical services to support proactive,

personalized, and data-driven patient care. One such cornerstone of smart healthcare

is Human Activity Recognition (HAR), particularly for settings such as elderly care

homes where continuous, unobtrusive monitoring is essential. Traditionally, biosensing

technologies such as electroencephalography (EEG) and electromyography (EMG)

(Lévi-Strauss et al., 2025) have been used to capture detailed neurophysiological signals,

aiding in the understanding neurological conditions. However, these methods often
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require direct physical contact and can be impractical in ambient,

long-term care environments. Recent advancements in contactless

wireless sensing (Kouhalvandi and Karamzadeh, 2025) especially

those leveraging Channel State Information (CSI) offer a promising

alternative. CSI-based HAR captures variations in wireless signal

propagation caused by human motion, enabling the detection

of activity patterns linked to neurological behaviors, such as

tremors or gait changes (López-Delgado et al., 2025), and vital

signs (Antolinos and Grajal, 2025) without compromising comfort

or privacy.

This shift toward contactless HAR monitoring aligns with

broader developments in localization technologies, which aim to

determine the position and movement of individuals within a

space. Localization can be performed effectively in an outdoor

environment using the Global Position System (GPS) (Li et al.,

2014). In contrast, it can be detected in an indoor environment

(Saeed et al., 2023) by employing technologies such as Ultra

Wide-Band (UWB), WiFi, Radio Frequency Identification (RFID),

Bluetooth, cameras, and inertial sensors (Liu et al., 2017; Mendoza-

Silva et al., 2019; Sophia et al., 2021; Yang et al., 2015). In addition to

localization, activity recognition, for instance, sitting, standing, and

walking, can be detected by inertial wearable sensors, cameras, and

contactless WiFi systems. Wearable device-based localization and

activity recognition pose no privacy concerns; however, camera-

based has certain privacy issues, and in some countries, video

surveillance is considered illegal (Klonovs et al., 2015). Contactless

RF-based Human Activity Recognition (HAR) and localization

approaches pose no privacy concerns and do not require the

gadgets to be worn as wearable sensors.

Indoor localization techniques are helpful and significant

in various domains, such as disaster prediction and recovery,

healthcare, intelligent transportation, and navigation. In healthcare,

both localization and activity-tracking techniques are desirable and

essential to identify critical activities, such as falls in elderly patients

due to dementia. Due to advancements in healthcare diagnostics,

the elderly population is growing with increasing life expectancy.

According to one of the statistical figures shared by the United

Nations (UN), by 2050 elderly population is projected to be 2.1

billion (Naja et al., 2017). This rise in elderly population has rapidly

dwindled hospitals’ capacity (Haider et al., 2019).

Radio Frequency (RF) based human activity recognition

and localization has been researched recently (Khan et al.,

2025; Yurtman and Barshan, 2016; Bibbò et al., 2022; Chen

et al., 2021) due to its privacy-preserving, non-invasive, and

contactless nature. Indoor localization is affected by several factors,

including the noise level, signal attenuation, and the type of

surroundings (for instance, tables and chairs) where the activities

are performed. Different participants performing activities, the

location of the RF transmitter/receiver, and the exact location of

the performed activity in an indoor environment affect localization

and HAR.

RF-based activity recognition can be realized by systems

employing the Channel State Information (CSI) or the Received

Signal Strength Indicator (RSSI). As stated by Yang et al. (2013),

CSI is fine-grained, but RSSI provides coarse information. Another

study demonstrated that CSI can be employed to localize, detect,

and distinguish human activities by examining the amplitudes of

RF signal upon occurrence of a human activity (Chopra et al., 2016).

Several existing works have utilized the CSI of RF signals similar to

Wi-Fi for detecting activities such as vital signs Wang et al. (2020),

body motions (Taylor et al., 2020), and localization and tracking

(Shi et al., 2018).

In addition to the numerous advantages of CSI for localization

and activity monitoring, one significant challenge is its limited

ability to perform well in new, unseen cross-domain locations.

For instance, an optimized HAR model for one environment

might not perform well in another. The generation of the dataset

and training of the HAR model involves Sensors, Participants,

Environmental Conditions, and Signal Processing (SPECS). Even

if only the environmental conditions were changed, for instance,

training in one location and inference in another, the model

performance for HAR could be affected due to location disparities.

An obvious solution to this problem is to collect samples from new

environments and optimize the model to enhance the recognition

accuracy. However, this approach is too tedious and repetitive.

Federated learning (FL) (Ma et al., 2021; Hong et al., 2022)

is one such technique, which can incorporate location-centric

characteristics and features from multiple clients in different

locations for training the global model. The model can then infer

better in new locations/places without requiring extensive data

recording, annotations, and model training for each new location.

In addition, FL allows collaborative model training among clients

without sharing the critical data or dataset, addressing privacy and

ethical considerations.

In addition to the numerous advantages of FL, there are

associated challenges in FL when the client’s datasets are non-

homogeneous and non-Independent and Identically Distributed

(non-IID). The heterogeneous and non-IID characteristics in HAR

exist due to SPECS. Moreover, the sampling and label distribution

across domains can lead to heterogeneity. This can affect the

global model’s convergence as the local models drift according

to their data distribution and class labels. This leads to delays

in global model convergence, lower accuracy, and an inability to

generalize across new locations, with enhanced computation and

communications costs.

In this study, we employ RF-based Wi-Fi sensing for HAR,

which is readily available in every home. The primary Wi-Fi

device used is a software-defined radio (SDR). We enhance the

trained FL global model’s ability to generalize location-based

differences and variations in CSI across different zones where

activities were performed. The proposed Federated Weighted

Averaging for HAR (Fed-WAHAR) considers the non-IID and

non-homogeneity challenges in FL, leading to early convergence,

enhanced accuracy, and lower computational and communication

costs. Figure 1 presents the block diagram representing all steps

from data collection, dataset generation, model training and

aggregation, and activity recognition.

The rest of the study is organized as follows: Section 2 presents

the literature review of recent works on FL-based HAR. Section 3

details the employed dataset and its characteristics, while Section 4

presents the proposed Fed-WAHAR algorithm. Section 5 provides

the analysis and results, and Section 6 concludes the study.
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FIGURE 1

Flow diagram of RF-enabled setup for location independent human activity recognition.

2 Literature review

In this section, we review recent works on FL-based

HAR considering the metrics of underlying sensing technology,

employed algorithm, non-IID dataset setting among clients,

localization, and employed variant of FL.

Wen et al. (2024) focused on addressing the Non-IID

data challenges in HAR by the Federated Parameters Averaging
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(FedPA) algorithm. The proposed FedPA algorithm employed one-

dimensional 1-D convolution neural network (CCN) and long

short-term memory (LSTM) models and assigned varying model

weights to local clients based on their contribution to enhance

the efficacy of both the global and local models at clients. They

employed the PAMAP2 and the RealWorld dataset based on

Intertial Measuring Units (IMU) to demonstrate the results.

To minimize the training loss across several local client models,

Ouyang et al. (2022) proposed a clustering-based FL (ClusterFL)

approach to increase the accuracy and reduce communication

overhead. They employed multiple datasets based on IMU, camera,

and UWB in the IID data setting by using the CNN algorithm. In

another work by Xiao et al. (2021), they employed various IMU

datasets WISDM, UCI-HAR 2012, OPPORTUNITY, and PAMAP2

under the homogeneous data setting to propose an enhanced

feature extraction algorithm for HAR.

Hernandez and Bulut (2021) demonstrated HAR in co-located

environments using RF-WiFi sensing. For the generation of the

dataset, they performed four activities: sit, stand up, stand, and

sit down in a round-robin manner in bedroom, dining room, and

office environment. They demonstrated that the FL model trained

on various locations can infer better in new unseen locations.

However, the proposed CNN algorithm based on FedAvg is for

homogeneous and IID data distribution across all the clients.

Sozinov et al. (2018) compared a HAR CNN classifier in three

settings: (1) non-IID data, (2) skewed data, and (3) uniform data.

For the non-IID dataset, the FL clients have at most two activities

from the original set of total activities, with one activity having 50%

fewer data samples than the other. All the clients have equal data

samples from the dataset for a uniform data setting. They employed

an IMU-based HAR dataset (Stisen et al., 2015) to demonstrate that

FL for HAR is robust under various settings and produces models

with comparable accuracy to centralized machine learning.

Cheng et al. (2023) proposed a prototype-based HAR, where

instead of aggregating the local models, the activity prototypes

from the clients are shared to handle heterogeneity issues in non-

IID data. Their approach reduces communication costs by sharing

lightweight prototypes instead of gradients, where a prototype

for an activity class is the mean of all feature vectors of that

activity class in the client’s local dataset. The process works by

each client sending its activity prototypes to the server, which

aggregates the prototypes from all clients to reduce the data

disparity caused by data heterogeneity among clients. Prototype

aggregation captures a more general representation of each activity

as the knowledge is combined from several clients, reducing data

disparity among clients.

Li et al. (2023) presented CARING, a FL framework for cross-

domain Wi-Fi-based HAR. CARING introduced a collaborative

learning paradigm that enabled knowledge sharing across multiple

heterogeneous deployment environments. They addressed domain

shift inconsistencies due to the physical appearances of domains

and label imbalance across distributed clients. They introduced a

noise-dispelling scheme to isolate activity features from domain

noise, a hybrid CNN-RNNmodel for robust feature extraction, and

dynamic weighting for model updates.

Zhang et al. (2025) introducedWiFed-CHAR, an FL framework

for cross-environment HAR using Wi-Fi CSI. The framework

addressed issues of data heterogeneity and limited training

samples in new environments. They employed a cloud-edge

collaboration paradigm to enable environments with similar

recognition tasks to collaboratively learn and share feature

extraction knowledge via a task-based HAR knowledge base.

The collaborative learning pipeline consisted of whole-level

optimization for feature extraction, hierarchical clustering by

similarity, and partial-level optimization to generate specialized

HAR modules.

Albogamy (2025) proposed an FL framework for IoMT-

enhanced HAR using a hybrid LSTM-GRU architecture. The

framework targeted privacy-preserving and decentralized

HAR in healthcare and smart environments, where wearable

sensors generate sensitive user data. The model integrated 1D

convolutional layers for local pattern detection with LSTM-

GRU units for capturing complex temporal dependencies and

introduced an attention mechanism to emphasize critical features.

To address heterogeneity and data imbalance, the framework

employed weighted FedAvg.

Table 1 compares Fed-WAHAR with several existing works.

In contrast to other works, Fed-WAHAR presents a novel FL

algorithm that directly tackles the critical challenge of location-

centric variations in CSI-based HAR, an area often underexplored

in existing FL-HAR frameworks. Existing works focused on user-

level personalization or inter-device heterogeneity; however, this

research prioritizes real-world spatial variability, presenting an

accuracy-driven aggregation strategy to improve convergence and

cross-domain performance.

3 Dataset description

The HAR dataset is generated at the University of Glasgow,

UK Khan et al. (2022). The dataset is generated in an area of

5.2 × 3.8 m2. As seen from Figure 1, the area is partitioned into

three regions and three zones, and the partitions are, respectively,

named according to zone and region number, for instance,

R1Z1, R1Z2, and R3Z3. To capture the activities using CSI, the

USRP (National Instruments X310/X300) transmitter and receiver

devices were positioned in opposite corners of the room at a

45-degree angle facing each other. Sitting, standing, and leaning

activities are performed in all partitions. Walking is performed in

three partitions of a zone; for instance, walking in partitions R1Z3,

R2Z3, and R3Z3 is attributed to one walking activity. CSI was also

gathered across each partition when no activity was performed.

The signal processing pipeline involved extracting the

amplitude of CSI from complex OFDM subcarrier data (64

subcarriers). It was preprocessed using GNU Radio flowgraphs

and Python scripts, with configurable parameters: 3.75 GHz

centered frequency and transmitter/receiver gain levels (70/50 dB).

Data cleansing was conducted using Scikit-learn’s SimpleImputer,

appending the missing values via row-wise mean substitution.

Figure 2 presents the CSI of sitting activity performed across

region R1 and zones Z1, Z2, and Z3 localizations. As CSI

is sensitive to the environment, including the location of the

transmitter, receiver, and obstacles, the activities performed in

different localizations have distinct signal patterns due to varying
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TABLE 1 Summary of existing HAR and FL approaches.

References Sensing technology Algorithm Non-IID Localization FL variant

Wen et al. (2024) IMU CNN-LSTM Y N FedPA

Ouyang et al. (2022) IMU, Camera, CNN N N ClusterFL

UWB

Hernandez and Bulut (2021) RF-WiFi CNN N Y FedAvg

Sozinov et al. (2018) IMU CNN Y N FedAvg

Xiao et al. (2021) IMU CNN-LSTM N N FedAvg

Cheng et al. (2023) IMU CNN Y N Prototype guided FL

Li et al. (2023) RF-WiFi CNN-RNN Y Y Weighted FL

Zhang et al. (2025) RF-WiFi MobileNetV3 Y Y WiFed-CHAR

Albogamy (2025) IMU LSTM-GRU Y N Weighted FL

CNN

Fed-WAHAR RF-WiFi CNN Y Y Weighted FL

FIGURE 2

CSI samples of sitting activity across di�erent localizations. (a) Region R1 and zone Z1, (b) region R1 and zone Z2, and (c) region R1 and zone Z3.

multipath effects and signal propagation paths. Figure 3 presents

the CSI of standing, leaning, sitting, and walking activity across

region R3 and zone Z3. CSI amplitude for static activities such

as standing, sitting, and leaning remains relatively stable with

minor fluctuations. For a dynamic activity such as walking, CSI

amplitudes exhibit higher variability as seen from Figure 3d.

The recorded CSI from USRP was transformed into a CSV file.

The dataset consists of 4,200 samples and 1,252 features. There

are five activity labels: “Sitting,” “Leaning,” “Standing,” “Walking,”

and “NoActivity.” Figure 4 indicates the distribution of activities,

where it can be seen that the “Walking” activity has a significantly

smaller number of samples than other activities, making the dataset

non-IID. To realize localization and federated learning for three

clients in three zones, we merged the similar activity samples from

partitions in each zone; for instance, sitting activities in Zone1 and

regions R1, R2, and R3 were grouped as sitting-Z1= {sitting-R1Z1,

sitting-R2Z1, sitting-R3Z1} by removing the region label specifiers.

The distributions of activity samples across each zone can be seen

in Figure 5 and correspond precisely to how the activities were

recorded in a specific zone. As seen from Figure 5, the number

of samples in Zone2 is less than others, making this setting non-

homogeneous and non-IID.
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FIGURE 3

CSI samples of di�erent activities in region R3 and zone Z3. (a) Standing, (b) sitting, (c) leaning, and (d) walking.

FIGURE 4

Total sample distribution across activity classes.

The data are non-IID, as the class-level distribution and zone-

level contributions to the entire dataset are imbalanced. This non-

IID characteristic is typical in federated learning scenarios, where

client datasets (across cross-domains or zones) have heterogeneous

distributions. This affects the global model’s convergence and

performance across zones, as discussed in a subsequent section.

Regarding data cleaning, we further removed the zone indexes

from the labels so that overall, we have five labels across all three

zones, i.e., we transformed sitting-Z1 to sitting. Then, the zone

FIGURE 5

Total sample distribution across zones.

datasets were concatenated for label encoding, and the datasets

were again partitioned accordingly to zones. Each client dataset in

the respective zone is partitioned into 80:20 training and testing

samples. The testing samples are required to evaluate the accuracy

of the client’s local models during each round of the FL training

process. These testing samples are also employed to assess the

global model accuracy across different zones after the end of the

training process.
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4 Methodology

In this section, we present the proposed federated weighted

averaging algorithm for HAR to cater to the heterogeneity and

non-IID nature of the data across clients in zones. The proposed

Fed-WAHAR algorithm generalizes the model’s ability to adapt to

activities detected in different zones by capturing the temporal and

spatial patterns in the data. The algorithm uses the client’s local

model accuracy to determine its weights based on his contribution

to the training process. For jth clientCj, the weightWj is determined

by Equation 1, where Accj is the accuracy of the locally trained

model during each round of the FL process at Cj, and n is the total

number of clients.

Wj =
Accj

SA
where SA =

n∑

j=1

Accj (1)

These weights influence how each client’s locally trained model

parameters are aggregated into the global model (Ma et al., 2021;

Chourasia et al., 2024). For instance, clients with larger datasets

or higher local model accuracies significantly impact the global

update. The algorithm prioritizes clients with higher relevance and

better performance to update the global model, thereby enhancing

model robustness, accelerating its convergence, and improving

accuracy. The weighted update of each layer of the global model

from local models is determined by Equation 2, where l indicates

the layer of CNN model, ωo represents the updated parameters of

global model, and ωo,j indicates the local model parameters for jth

local client.

ωo[l]←

n∑

j=1

Wj · ωo,j[l] (2)

4.1 CNN

The CNN consists of two 1D Convolution layers, two

MaxPooling layers, a flattened layer, and a fully connected dense

layer. The kernel size of the convolution layer is 3 with ReLU as

the activation function, and the dense layer consists of 100 neurons

with a softmax activation function. The layered architecture is

detailed in Table 2. The CNN instance is shared with the server and

the clients, as seen in Figure 1.

4.2 Fed-WAHAR

In this subsection, we discuss the proposed

Fed-WAHAR algorithm, which takes as input the

client’s zone-specific training and testing datasets

C1 :{Z1,train,Z1,test},C2 :{Z2,train,Z2,test},C3 :{Z3,train,Z3,test} to

generate the global model Gθ which will realize the localization

effectively. Each client holds its training and testing dataset

separately according to its zone, as these were recorded.

Initially, a global model Gθ is initialized at the server, and its

parameters ωo[l] are shared with the clients Cj as in lines 1–2

TABLE 2 Layered architecture of CNNmodel.

Layer (type) Output shape Parameters

Conv1D1 (None, 1249, 64) 256

MaxPooling1D1 (None, 624, 64) 0

Conv1D2 (None, 622, 128) 24,704

MaxPooling1D2 (None, 311, 128) 0

Flatten1 (None, 39808) 0

Dense1 (None, 100) 3,980,900

Dense2 (None, 5) 505

Total parameters: 4,006,365

Trainable parameters: 4,006,365

Non-trainable parameters: 0

Require: Local zone training and testing

datasets respectively for clients

C1 :{Z1,train,Z1,test},C2 :{Z2,train,Z2,test},

C3 :{Z3,train,Z3,test}

Ensure: Global model Gθ

1: Initialize global model Gθ with parameters ωo[l]

2: Send global model parameters ωo[l] to all clients

3: Initialize local models Lθ,j with parameters

ωo,j[l] ∀Cj

4: for r = 1 to k do ⊲ For each round in FL

5: for j = 1 to n do ⊲ For each client

6: Update Lθ,j,ωo,j[l] ← Lθ,j(ep,bs,ωo[l],

Zj,train)

7: Evaluate Accj ← Lθ,j(Zj,test)

8: Send Accj,ωo,j[l] to server

9: end for

10: Server computes Wj =
Accj
SA

where SA =
∑n

j=1 Accj

11: Server updates ωo[l]←
∑n

j=1 Wj · ωo,j[l]

12: Server sends updated weights ωo[l] to all

clients

13: end for

14: Evaluate accuracy across zones Accj ← Gθ(Zj,test)

15: Evaluate accuracy across site Acc ←

Gθ(
∑n

j=1 Zj,test)

Algorithm 1. Fed-WAHAR.

of Algorithm 1, where l represents the layer of the CNN model.

Then, for every round, each client Cj individually updates its local

model Lθ ,j based on the received global model parameters ωo[l],

its local dataset Zj,train, epoch value ep, and batch size bs as in

lines 4–6 of the algorithm. Afterwards, each client locally evaluates

its trained model Lθ ,j on its test dataset Zj,test to determine the

accuracy in line 7. The clients then share their respective model

accuracy Accj and local model weights ωo,j[l] with the server, as

in line 8.

To update the global model after each FL round, the server

evaluates the optimal weights Wj for each client upon receiving

updates from each client. For that, the server first evaluates the

weighted average of accuracy reported by clients so that the clients
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with higher accuracy can contribute more to the global model

update in line 10. Thereafter, the server updates the global model

based on the updated client’s weight in line 11. The server finally

sends the clients the updated global model weights ωj[l].

Once the FL training over the r number of rounds is completed,

the performance of Fed-WAHAR is evaluated. To assess the

performance of the globally trained algorithm Gθ across each zone,

its accuracy across each zone is determined using the particular

zone test dataset Zj,test as in line 14.

5 Results and discussion

This section presents the results of the proposed Fed-

WAHAR, highlighting its performance under various metrics and

conventional techniques. All the experiments were performed

on an AMD Ryzen 7 4800H Radeon Graphics Laptop with

a processor running at 2.90 GHz and supported with 16 GB

RAM. The implementation of Fed-WAHAR employed machine

learning libraries, including TensorFlow and Scikit-Learn. We

FIGURE 6

Optimal hyperparameters.

FIGURE 7

Convergence analysis.
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evaluated Fed-WAHAR against the metrics, including accuracy,

precision, recall, F1 score, confusion matrix, communication cost,

and convergence time. As detailed in Section 3, the dataset was

systematically partitioned across zones, preserving each zone’s

TABLE 3 Classification report of Fed-WAHAR on test datasets in di�erent

zones.

Zone Precision (%) Recall (%) F1 (%) Acc (%)

Z1 82.99 82.86 82.74 82.86

Z2 87.61 87.50 87.51 87.50

Z3 86.61 86.39 86.26 86.39

All zones 85.61 85.48 85.44 85.48

natural data generation characteristics. Furthermore, each zone

dataset is split into training (80%) and testing (20%) datasets.

We conducted numerous experiments to determine the optimal

hyperparameters for the training of Fed-WAHAR, including the

number of epochs, batch size, and learning rate. As seen from

Figure 6, a Learning Rate (LR) of 0.001 exhibited an accuracy

of over 80% in 10 rounds of FL. In addition, a batch size of

32 and an epoch value of 5 proved to be optimal for ensuring

early convergence of the model, striking a balance between

computational efficiency and model performance.

The comparison of Fed-WAHAR with the standard Fed-Avg

algorithm and FedProx Li et al. (2020) further illustrates the

advantage of the proposed algorithm. As seen from Figure 7, Fed-

WAHAR attained a test accuracy of 85% within just 25 rounds

of training, while FedAvg and FedProx plateau ∼81%–82% and

FIGURE 8

Confusion matrix for di�erent zones. (a) Zone 1. (b) Zone 2. (c) Zone 3. (d) All zones.
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require more rounds to reach comparable accuracy. The results

also highlight that FedProx offers only marginal improvements

over FedAvg, indicating limited gains from proximal regularization

in this setting. In contrast, the accuracy-weighted aggregation

of Fed-WAHAR enables faster convergence and more stable

training dynamics.

This significant reduction in a number of training rounds

to attain an accuracy threshold directly translates into enhanced

communication efficiency, as each round involves the exchange of

model parameters between the clients and the server. The total

communication cost for a single round of FL between three clients

and a server is 62.5 megabytes (MB). As Fed-WAHAR converges

the model earlier, it improves communication efficiency by 50%.

We assessed the global model’s performance on each client’s

local test dataset to evaluate its fairness and consistency across

clients. Table 3 presents a classification report of Fed-WAHAR in

different zones. The testing accuracy in Zone Z2 is 87.50%. It is

the highest among all zones because, within Z2, the distribution

of labels is balanced, i.e., the walking, standing, sitting, leaning,

and no-activity all have the same number of samples. Z3 has the

most significant samples among all zones and slightly less accuracy

of 86.39%, which can be attributed to data heterogeneity and

imbalanced data distribution, and the number of walking activity

samples is half in contrast to other activities. Fed-WAHAR has an

overall test accuracy of 85.48% over accumulated test datasets from

all the zones.

In Figure 8, we present the classification report across different

zones to evaluate the generalization of the global model across

the local model’s unseen datasets. As seen from Figure 8b, for Z2,

walking activity is misclassified only two times, unlike Z1 and Z3,

where it is more than 10, as the dataset across Z2 is homogeneous.

This stark difference can be attributed to the homogeneity of

the Z2 dataset, which enables the model to learn more accurate

representations of the underlying classes. These results demonstrate

the robustness of Fed-WAHAR in handling heterogeneous data

while highlighting areas where further improvements can be made

to address discrepancies across zones.

Fed-WAHAR is scalable as the aggregation is decentralized

and parallelisable, making it feasible for expansion across hospitals

or care homes. However, we acknowledge potential privacy

limitations, including model inversion attacks, and recommend

incorporating differential privacy or secure aggregation in future

work to mitigate such risks.

6 Conclusion

This work addressed the challenge of location-centric CSI

variability in HAR to detect daily activities such as standing,

sitting, walking, and leaning with high precision in different

zones. By integrating a dynamic weighting approach, Fed-

WAHAR handles heterogeneous, Non-IID and location-sensitive

data distributions generated across different zones to train a global

FL model for improved cross-domain generalization. This research

demonstrates the feasibility of effectively detecting human activities

in collaborative settings, where the data generated by the entities

exhibit heterogeneity and non-IID ness. Overall, the proposed Fed-

WAHAR algorithm achieved a test accuracy of 85% across all zones,

demonstrating its ability to generalize effectively in a federated

learning setting. Future work will further enhance accuracy,

extend the framework to additional cross-domain environments

by varying SPECS, and incorporate advanced privacy-preserving

mechanisms to improve data security in collaborative setups.
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