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Modeling cognition through
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Introduction: Understanding the cognitive process of thinking as a neural
phenomenon remains a central challenge in neuroscience and computational
modeling. This study addresses this challenge by presenting a biologically grounded
framework that simulates adaptive decision making across cognitive states.
Methods: The model integrates neuronal synchronization, metabolic energy
consumption, and reinforcement learning. Neural synchronization is simulated using
Kuramoto oscillators, while energy dynamics are constrained by multimodal activity
profiles. Reinforcement learning agents—Q-learning and Deep Q-Network (DQN)—
modulate external inputs to maintain optimal synchrony with minimal energy cost.
The model is validated using real EEG and fMRI data, comparing simulated and
empirical outputs across spectral power, phase synchrony, and BOLD activity.
Results: The DQN agent achieved rapid convergence, stabilizing cumulative
rewards within 200 episodes and reducing mean synchronization error by
over 40%, outperforming Q-learning in speed and generalization. The model
successfully reproduced canonical brain states—focused attention, multitasking,
and rest. Simulated EEG showed dominant alpha-band power (3.2 x 10~%a.u.),
while real EEG exhibited beta-dominance (3.2 x 10~* a.u.), indicating accurate
modeling of resting states and tunability for active tasks. Phase Locking Value
(PLV) ranged from 0.9806 to 0.9926, with the focused condition yielding the
lowest circular variance (0.0456) and a near significant phase shift compared to
rest(t = —2.15, p = 0.075). Cross-modal validation revealed moderate correlation
between simulated and real BOLD signals (r = 0.30, resting condition), with
delayed inputs improving temporal alignment. General Linear Model (GLM)
analysis of simulated BOLD data showed high region-specific prediction
accuracy (R? = 0.973-0.993, p < 0.001), particularly in prefrontal, parietal, and
anterior cingulate cortices. Voxel-wise correlation and ICA decomposition
confirmed structured network dynamics.

Discussion: These findings demonstrate that the framework captures both
electrophysiological and spatial aspects of brain activity, respects neuroenergetic
constraints, and adaptively regulates brain-like states through reinforcement
learning. The model offers a scalable platform for simulating cognition and
developing biologically inspired neuroadaptive systems.

Conclusion: This work provides a novel and testable approach to modeling
thinking as a biologically constrained control problem and lays the groundwork
for future applications in cognitive modeling and brain-computer interfaces.

KEYWORDS

reinforcement learning, neuronal synchronization, EEG-fMRI integration, Kuramoto
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1 Introduction

Thinking, a complex and dynamic process underpinning human
cognition, emerges from the intricate interplay of neural activity,
sensory inputs, and energy dynamics. This interplay not only enables
coherent thought but also facilitates adaptive decision-making and
learning. Recent advances in neuroscience have highlighted the
importance of neuronal synchronization where neurons fire in
coordinated patterns—as a key mechanism underlying cognitive focus
and mental coherence. However, the brain must strike a delicate
balance between maintaining this synchronization and conserving
metabolic resources, as neural activity demands significant energy
expenditure (Pinker, 2011; Raichle, 2010).

Modern neuroimaging tools, such as electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI), provide
unprecedented insights into the neural correlates of thinking by
capturing spatiotemporal patterns of brain activity. These technologies
reveal how neuronal networks synchronize during tasks requiring
attention, learning, and decision-making. Despite these advances,
there remains a lack of an integrated mathematical framework that
combines neuronal synchronization, energy consumption, and
adaptive behavior to model the thinking process comprehensively
(Neurolaunch, n.d.).

This study proposes a novel framework to bridge this gap by:

1. Modeling neuronal synchronization as a quantifiable measure
of cognitive focus, drawing upon the Kuramoto model for
coupled oscillatory systems (Strogatz, 2000).

2. Quantifying energy dynamics in cognitive processes using
neuroimaging data, particularly EEG and fMRI, to map
transitions between cognitive states.

3. Implementing reinforcement learning through Q-learning to
simulate adaptive decision-making, where the brain learns to
optimize cognitive states for efficiency and task performance.

By integrating these elements, the proposed framework seeks to
replicate key features of human thinking through simulations, offering
new avenues for understanding and optimizing cognitive function.
The potential applications of this model range from enhancing
educational methodologies to developing neuroadaptive technologies
and addressing cognitive disorders.

The integration of concepts from quantum psychology also
informs this framework, emphasizing the non-linear, probabilistic
nature of cognitive states and their transitions. This perspective
suggests that human thought processes might share parallels with
quantum systems, wherein decision-making and cognitive shifts occur
within complex, multidimensional landscapes (Neurolaunch, n.d.).
These insights provide an additional layer to the exploration of
thinking, underscoring the need for interdisciplinary approaches to
unravel the mysteries of human cognition. To model thinking in a
biologically realistic way, it is essential to integrate mechanisms of
neuronal synchronization, adaptive control, and metabolic energy
constraints. The brain continuously balances these dimensions—
organizing neural activity (synchronization), responding to stimuli
(adaptation), and preserving efficiency (energy use). This study seeks
to capture that balance by combining dynamic synchronization
modeling, reinforcement learning, and real neurophysiological data
into a unified simulation of cognitive state transitions.
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2 Literature review

Understanding human thinking as a process of neuronal
synchronization influenced by external stimuli and cognitive
demands has been a focal point in neuroscience and computational
modeling. Research has demonstrated that neuronal synchronization,
particularly in specific frequency bands such as alpha (8-12 Hz) and
gamma (30-100 Hz), plays a critical role in cognitive functions like
attention, memory, and perception (Garrett et al., 2024; Gupta and
Bahmer, 2021; Scheeringa et al., 2011). Functional magnetic
resonance imaging (fMRI) studies have shown that as cognitive tasks
become more difficult, neural activity—especially in the prefrontal
cortex—increases, indicating heightened mental engagement (Crick,
1996; Pagnoni et al., 2008; Kuhl, 2010; Nani et al., 2019; Dai, 2024).
This association between neural activation and mental processing
supports the idea that thinking can be tracked through patterns of
brain activity.

A useful analogy compares this to the random motion of electrons
in a metal. When an electric field is applied, electrons align in a
specific direction. Similarly, neurons in the brain fire randomly until
external stimuli—combined with memory and attention—cause them
to synchronize (Crogman and Jackson, 2023). This synchronization
marks the emergence of focused thought. For example, when a person
sees something that captures their interest, their attention shifts, and
a new thought process begins. In this framework, multitasking is less
about simultaneous thought and more about rapid shifts in focus
driven by competing stimuli (Crogman and Jackson, 2023).

Synchronization facilitates communication between brain regions,
enabling efficient information processing. Computational models,
such as those based on the Kuramoto oscillator, have been employed
to simulate synchronization dynamics in neural populations
(Kuramoto, 1975). Recent work has further emphasized how local and
global synchrony govern attention-related cortical activation
(Gundlach et al., 2024). However, while these studies underscore the
importance of synchronization, they often do not address the
emergence of this coherence from stochastic, diffuse neural states,
particularly in the context of human thinking (Fries, 2005; Singer,
1999; Breakspear et al., 2010).

The brain is frequently conceptualized as a noisy system, with
random neural firings providing a foundation for its dynamical
behavior. Studies have explored how stochastic neural activity can
transition into coherent states driven by task demands or external
influences. Deco et al. (2009) discussed how these transitions
underpin dynamic brain states, while Beggs and Plenz (2003)
suggested that the brain operates near criticality, where the balance
between noise and order optimizes computational efficiency. More
recent findings also suggest that shifts in cortical synchrony can mark
transitions into different states of awareness or readiness for action
(Arzate-Mena et al., 2022). Despite these insights, explicit modeling
of cognitive states and their transitions from randomness to
synchronization remains underdeveloped.

Physical analogies have long been used to describe neural systems.
For instance, models liken synchronization in the brain to physical
systems such as magnetization in the Ising model or coupled
oscillators in dynamic systems (Hopfield, 1982; Haken, 1983). These
analogies illustrate how external forces, such as sensory input or
intent, guide independent systems toward coherence. However, the
specific application of these physical analogies to model human
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thinking as transitions between random and synchronized neural
states is relatively unexplored.

Reinforcement learning has also been employed to simulate
decision-making and adaptive behavior in neural systems. These
models focus on optimizing actions based on rewards but typically do
not incorporate the underlying synchronization dynamics or energy
efficiency during cognitive transitions (Sutton and Barto, 1998). More
recently, deep reinforcement learning has been used to decode and
respond to attention states in real-time, demonstrating feasibility for
adaptive brain-computer interfaces (Rehman et al., 2025; Botvinick
et al, 2020). While reinforcement learning excels at simulating
adaptive processes, it has yet to be integrated with neural
synchronization and energy modeling to fully capture the complexity
of thinking.

This study builds upon these foundations to develop a novel
computational framework that integrates synchronization dynamics,
energy consumption, and reinforcement learning to simulate human
thinking. This framework models thinking as a transition from
random, diffuse neural states to synchronized patterns of activity.
Using the Kuramoto model, neurons are treated as coupled oscillators,
with synchronization representing unified cognitive states. Unlike
prior studies, this approach explicitly simulates how random neural
activity aligns under the influence of external stimuli, memory recall,
or intent. Furthermore, it incorporates energy dynamics by utilizing
EEG and fMRI data to quantify the metabolic cost of transitioning
between cognitive states, addressing gaps in prior work that have
largely considered synchronization and energy efficiency in isolation
(Schoknecht et al., 2025; Universitét Leipzig, 2025; Zandt et al., 2011;
Raichle, 2010).

To simulate adaptive thinking, the framework employs
Q-learning, a form of reinforcement learning, to optimize
synchronization and energy use during cognitive transitions. The
Q-learning model links synchronization dynamics and energy
consumption to rewards, providing a novel method for simulating the
adaptive nature of human thought. Recent research has shown that
reinforcement learning models applied to EEG and spiking neural
networks can capture task dynamics and delay-adaptive behaviors in
biologically plausible ways (Nadafian et al., 2024; Zhang et al., 2024).
Additionally, reinforcement learning has been shown to operate
effectively near the edge of synchronization transitions, which is
precisely the regime modeled by the Kuramoto framework
(Khoshkhou and Montakhab, 2022). By drawing on publicly available
EEG and fMRI datasets for validation, this study ensures robust and
reproducible results, distinguishing itself from purely theoretical
models. The use of interdisciplinary analogies—such as electron
alignment or magnetic domains—further enriches the conceptual
understanding of synchronization, emphasizing its universality across
complex systems.

This framework advances the study of human cognition by
integrating neuronal synchronization, energy modeling, and
adaptive decision-making into a unified computational paradigm.
It addresses gaps in existing research by simulating transitions
from random neural states to focused cognitive states and
exploring the energy efliciency of these processes. Recent reviews
highlight the importance of such integrative models in
computational neuroimaging and emphasize that combining
oscillations, mutual information, and synchrony will be critical for
the next generation of brain-inspired models (Dai, 2024; Loosen
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et al, 2024). This work has significant implications for

understanding cognitive processes, including attention,
multitasking, and disorders of thought. While prior studies have
independently examined neuronal synchrony, energy modeling, or
reinforcement learning in neural contexts, our work uniquely
integrates all three. The novelty of this study lies in the synthesis of
Kuramoto-based synchrony modeling, an energy cost function
informed by EEG and fMRI, and biologically constrained
reinforcement learning. This allows us to simulate how cognitive
states evolve dynamically under task and energy demands—an area

not fully explored in existing models.

3 Methods

This study employs publicly available datasets and computational
modeling to explore the dynamics of thinking, focusing on the
interplay between neuronal synchronization, energy consumption,
and adaptive decision-making. The methodology involves three main
phases: acquiring and preprocessing neuroimaging data, developing
computational models, and conducting simulations to validate the
framework. The description of the Kuramoto oscillator modeling,
reinforcement learning integration, and reward function design was
initially written by the authors and partially edited using OpenAI
ChatGPT (GPT-4, April 2024) to enhance clarity. All underlying
algorithms, equations, and simulation results were developed and
validated independently by the authors. The Al tool did not contribute
to the scientific interpretation, data analysis, or experimental design.

3.1 Theoretical framework

Human thinking can be viewed as a process of neural
synchronization, transitioning from stochastic, diffuse activity to
coherent, focused states. At its core, this process can be modeled as a
system of coupled oscillators. Neurons, operating at their natural
frequencies, represent random background activity when
uncoordinated. However, during focused thought, external forces
such as sensory input or intentional focus act to synchronize these
neurons, creating a coherent frequency that represents
unified cognition.

This phenomenon is analogous to physical systems in which
independent components align under external influence. For example,
electrons align in response to an electric field, and magnetic domains
synchronize under external magnetization (Crogman and Jackson,
2023). Similarly, in the brain, sensory stimuli or task demands act as
forces that drive neurons into alignment, forming the neural basis of
focused thought. By employing the Kuramoto model of coupled
oscillators, we mathematically represent this transition, exploring how
synchronization emerges and is maintained.

Through this approach, the study aims to capture the underlying
principles of human cognition, offering insights into how the brain
organizes immense neural complexity into coherent states.
Furthermore, modeling these transitions provides a foundation for
understanding not only normal cognitive processes such as attention
and multitasking but also pathological conditions where
synchronization may be disrupted, such as in ADHD, schizophrenia,

or other cognitive disorders.
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Figure 1 presents an overview of the theoretical model underlying
this study. At the core of the framework is the hypothesis that thinking
emerges from initially random neuronal firing that becomes
synchronized in response to external stimuli. We represent this
synchronization using the Kuramoto model of coupled oscillators,
allowing us to simulate collective neural dynamics. The resulting signals,
interpreted as EEG power and fMRI-derived BOLD responses, serve as
energy-related features of the system. These are fed into a reinforcement
learning agent that adaptively selects external stimuli to optimize a
reward function based on synchronization accuracy and energy
efficiency. This closed-loop system aims to replicate the brain’s dynamic
regulation of cognitive states.

3.2 Mathematical formulation

3.2.1 Phase dynamics and synchronization

To model neuronal synchronization, we implemented the
Kuramoto model of coupled oscillators, where each oscillator’s phase
evolves according to intrinsic frequency, coupling interactions, and
external input (Equation 1):

. kY
9,' = w; +Ej§13in(0j_0i)+li(t)

1

where:

6;:Phase of the i —th neuron.

@;: Natural frequency of the i —th neuron.

K: The coupling strength, determining how strongly each neuron
is influenced by others. A higher K leads to stronger interactions and
faster synchronization.

I; (t): External stimulus acting on the i —th neuron.

10.3389/fncom.2025.1616472

See appendix for a simple derivation of (1) from the coupled
oscillator equations. This formulation captures three essential features
of neuronal systems:

1. Intrinsic Variability: Each neuron oscillates at its own natural
pace (@),

Coupling: Neurons influence one another based on their
when K >0, this

phase difference

promotes
synchronization,

External Modulation: The input I; (t) allows dynamic control
over synchrony and models how attention or sensory stimuli
influence cortical activity.

As neurons interact, they may entrain to acommon rhythm, depending
on the distribution of their frequencies, the value of K, and external
stimulation. Low K values produce desynchronized, resting-like activity,
while higher values or targeted input can drive focused, coherent oscillations.

Synchronization in cortical networks has been strongly linked to
cognitive function. Studies have shown that phase coherence
increases during attention, working memory, and task engagement
(Fries, 2005; Siegel et al., 2012). By modeling neurons as phase-locked
oscillators, this framework simulates the emergence of coherent
network states that underlie mental focus or distraction.

In this framework, the order parameter R(t) (see Section 3.2.2) is
used to quantify the global synchrony of the population and serves as
a proxy for cognitive state.

3.2.2 Order parameter

To quantify the level of collective neural synchronization,
weemploy the Kuramoto order parameter R (1), which captures
the degree of phase alignment across a network of N coupled
neural oscillators. The level of global synchrony across oscillators

Synchronization

Kuramoto Model

Energy Consumption

Reinforcement
Learning

o, K EEG and fMRI Q(s,a) = Q(s. a) + e,
th:wi*NZ(ez—ei) r+ymaxQ(s,a’) - Q(s,)
l
Randomly firing
neurons External
Stimuli

[ Simulated Cognitive Processes ]

FIGURE 1

Conceptual framework for modeling cognition as synchronized neuronal dynamics. Random firing evolves into organized brain states via the
Kuramoto model, with EEG/fMRI features guiding a reinforcement learning agent to optimize external input based on energy and synchrony.
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is quantified using the Kuramoto order parameter R(t), as shown
in Equation 2, which measures the magnitude of phase alignment:

N .
R() = 2 @

j=1

where ¢; (t) is the instantaneous phase of neuron j, and elef([)
maps that phase to the unit circle in the complex plane.
The order parameter takes values in the range [0,1] where:

o R(t) ~ 0 reflects a state of complete phase desynchronization, i.e.,
randomly firing neurons;

o R(t) & I corresponds to perfect synchrony, where most neurons
are phase-aligned.

This metric provides a macroscopic, time-resolved measure of
the system’s coherence. Unlike simple spike counts or firing
rates, R(t) captures the dynamic coordination of neuronal
property that has
recognized as essential for understanding cognition and

populations—a been increasingly
conscious processing.

Neuroscientific literature strongly supports the role of phase
synchrony in brain function. Varela et al. (2001) proposed phase
synchronization as a mechanism for large-scale integration of
distributed neural assemblies. Fries (2005) further argued that
coherence across frequency bands facilitates effective communication
between brain regions—a concept known as “communication through
coherence” Breakspear et al. (2010) demonstrated that phase-based
synchronization scales with cognitive effort and task complexity,
suggesting that phase coherence may act as a neural correlate of
cognitive control.

In our framework, R(t) is not only a state variable but also a
computational goal. It is used:

o As the basis for external stimulation control, guiding the
reinforcement learning agents;

o In the reward function (penalizing deviation from a target
synchrony level);

« In the energy function, where rapid changes in R(t) contribute
to metabolic cost;

« For biological validation, via comparison with phase locking
value (PLV) and circular statistics in real EEG data.

Crucially, this parameter allows us to translate microscopic
phase activity into a macroscopic cognitive state—such as focused
attention, multitasking, or rest—enabling direct comparisons
between simulated and empirical data. By capturing the emergent
synchrony of neural ensembles, the order parameter
provides a mechanistic link between phase dynamics and
cognitive transitions.

The Kuramoto order parameter R(t) serves as a global metric
of phase synchrony across neural oscillators. A high R(t)
indicates coherent firing—a hallmark of focused cognitive
states—while low R(t) reflects unstructured activity typical of
rest or cognitive disengagement. This parameter allows us to
track transitions between cognitive states and forms the core of
both the reward and energy functions in our model. By linking
local phase dynamics to global brain states, R(t) provides a
biologically plausible mechanism for modeling emergent

thought processes.
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3.2.3 Energy function

To model the energetic cost of cognitive processing, we define a
composite energy function E(t), which accounts for synchronization
state, transition dynamics, and both local and global neural activity

(Equation 3):
dR (1)
E(t)ZaR(t)+,BT+}/PEEG (t)+5sﬂ\/IRI(t) (3)
where:

aR(t): Baseline energy for maintaining synchronization.

SR

synchronization states.

Energy  cost for  transitions  between
Prrg (t): EEG power, representing local neural activity.
S mR1 (t): fMRI BOLD signal, representing metabolic activity.
This formulation is inspired by neuroenergetic principles
articulated in foundational studies (Attwell and Laughlin, 2001;
Raichle and Mintun, 2006), which emphasize that the brain’s energy
usage is not only tied to neural activation but also to the transition

cost—i.e., how rapidly cognitive states shift. In this model:

o The term aR(t) reflects the baseline energy required to maintain
a given level of neural coordination or attention.

o The term ,BdR(t)dt represents the transitional energy cost,
accounting for the effort involved in switching between states
(e.g., shifting from rest to focus).

o yPgrg (t) quantifies localized energy expenditure, linked to
electrical spiking and synaptic transmission.

* OSpmrr (t) captures global metabolic cost, as inferred from
oxygen consumption and hemodynamic demand.

By integrating these components, Equation 3 provides a
biologically plausible, continuous estimate of cognitive effort over
time. This enables the model to simulate and optimize not just neural
synchrony but also the energetic constraints of real-time brain
function. In reinforcement learning, this energy term is penalized in
the reward function to encourage low-cost, high-efficiency cognitive
states—mimicking how the human brain balances performance with
fatigue and metabolic load. Equation 3 builds upon prior
neuroenergetics models (e.g., Attwell and Laughlin, 2001) where
energy costs are proportional to both signal activity and

dR
transitiondynamics. Here, R(t) captures synchronization state, —
t

quantifies neural effort in phase transition, and EEG/fMRI
components capture local and global energy use.

During agent training and simulation, both Pggg (t)and S fmr1 (t)
are derived from model-generated signals. Specifically, Pggg (t) is
computed from simulated EEG time series derived from Kuramoto
oscillator output. The term S pyrr; (t) is calculated by convolving the
synchronization signal R(t) with a canonical hemodynamic response
function (HRF), yielding simulated BOLD-like signals. These
simulated values are used in the energy function and reward signal
throughout reinforcement learning.

Simulated BOLD time series were generated by applying an HRF
convolution to the order parameter R(t). This allowed us to construct
voxel-level BOLD dynamics for GLM fitting, independent of real
fMRI inputs.
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3.2.4 Q-learning and DQN agent design

To simulate adaptive cognitive control, we employ reinforcement
learning agents that interact with the neural synchronization model.
These agents observe the current system state—defined by
synchronization R (t), energy cost E(t), and task context—and select
external inputs a to guide the system toward optimal states.

We implement both traditional Q-learning and a deep
reinforcement learning variant, the Deep Q-Network (DQN). In both
cases, the agent seeks to maximize a cumulative reward signal by
learning an action-value function Q(s,a), which estimates the
expected future reward of taking action aaa in state sss.

The Q-values are updated using a temporal-difference learning rule
(standard Bellman equation) that balances immediate and future rewards,
following the classical Q-learning formula shown in Equation 4:

Q(s,u)<—Q(s,a)+n[r+ymng(s’,a')—Q(s,a)} (4)

where:

s: Current state, represented as a vector containing R (t), E (t), and
optionally task indicators.

a: Action, corresponding to a discrete level of external stimulation.

r: Reward signal derived from synchronization accuracy and
energy efficiency (see Section 3.2.5).

7: Discount factor that controls the importance of future rewards.

n: Learning rate for value updates.

s Next state resulting from action a.

In the DQN model, the Q-value function is approximated using a
neural network Q(s, a; 0), where @ are the learnable parameters. The
network is trained to minimize the temporal-difference error between
predicted and target Q-values, using experience replay and fixed target
networks to stabilize learning. This enables the agent to handle high-
dimensional state inputs (e.g., continuous EEG-derived features) and
learn more generalizable control policies.

The agent operates in a closed-loop simulation where it observes
the synchronization-energy state of the system and chooses actions to
drive the system toward a target synchronization level (e.g.,
Rigrget =0.9) while minimizing cumulative energy cost. Over time, the
agent learns which input sequences yield optimal balance between
coherence and effort.

Reinforcement learning is particularly well-suited for modeling
cognition as a goal-directed, reward-sensitive process. In biological
systems, attention and effort are modulated by reward-driven adaptation
(Aston-Jones and Cohen, 2005). In our model, RL allows for a
biologically plausible simulation of how cognitive states are actively
regulated by interacting with environmental and internal dynamics.

3.2.5 Reward function

The reward function is designed to incentivize the agent to maintain
high neural synchronization while minimizing metabolic cost. It
captures the fundamental trade-off in cognitive control between focus
(neural coherence) and effort (energy expenditure).

The agent receives a scalar reward at each step based on a
combination of synchronization error and energy cost, as defined in
Equation 5:

r=—(|Reagres = R(t)| + E(1)) (5)
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where:

|Rturget -R (t)| :
synchronization level.

Penalizes deviations from the target
Rigrget is the desired synchrony level for the current cognitive.
E (t) is the energy cost, as defined in Equation 3.

This formulation penalizes the agent for two types of deviation:

1. Synchronization Error: The absolute difference |Rm,ge, —R(t)|
quantifies how far the system is from its goal state.

2. Metabolic Load: The energy term E (t) incorporates both
dynamic and signal-derived energy demands from EEG and
fMRI features.

Quantifying energy consumption is biologically motivated by the
brain’s high metabolic demand and its optimization of energy usage
during cognitive tasks (Attwell and Laughlin, 2001; Raichle, 2010).
Including EEG and fMRI features within the energy function allows
the model to account for both local and global neural activity,
providing a realistic constraint on neural synchrony and supporting
the simulation of energy-efficient cognitive control. Rygger Was set
based on empirical PLV estimates for each cognitive state. Equal
weighting was chosen as a baseline. While the current reward function
uses a simple additive structure with equal weighting, future iterations
will incorporate:

« Empirical tuning or meta-learning of weights (e.g., via grid
search or Bayesian optimization),

o Task-dependent weighting schemes (e.g., greater penalty for
energy use during prolonged multitasking).

These additions will allow the model to learn context-specific
cognitive strategies aligned with both biological and behavioral
efficiency.

3.3 Simulation procedure

The computational framework integrates three components:
neuronal synchronization, energy consumption, and adaptive
decision-making. Synchronization is modeled using the
Kuramoto framework, energy consumption is informed by fMRI-
derived metabolic activity, and reinforcement learning simulates
adaptive behavior. Additionally, we implement three distinct
firing rate distributions—Intrinsic, Gaussian, and Poisson—to
investigate how variability affects synchronization and
energy dynamics.

The computational framework used in this study is illustrated in
Figure 2. A simulated input layer provides synthetic EEG- and fMRI-
like signals (PggG, S fvri) to a network model based on Kuramoto
oscillators, which simulates neuronal synchronization dynamics. The
model output includes two key metrics: synchronization level R(t)
and energy consumption E (t) computed via a biologically inspired
energy function. This energy model integrates simulated neural
synchrony, its rate of change, and synthetic physiological activity to
approximate metabolic cost. A reward function then penalizes
deviations from a target synchronization level and high energy
expenditure. The resulting reward guides learning in the reinforcement
learning loop (described in Section 2.3). This framework allows the
system to adaptively learn coordination strategies based on synthetic
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FIGURE 2

Simulation framework for reinforcement learning-based neural control. A simulated input layer provides synthetic EEG- and fMRI-like features (Peeg,
Smir) to the Kuramoto-based network model. Synchronization R(z) and energy E(t) are computed and passed to a reward function guiding agent
behavior. All components in this loop use simulated signals. Real EEG and fMRI data are used separately for validation, as shown in Figure 3.

inputs, while later validating its outputs against empirical EEG and
fMRI data (see Figure 3).

3.4 Neuronal synchronization

Synchronization is modeled using a Kuramoto-based approach,
informed by EEG data, to simulate transitions between synchronized
(focused) and desynchronized (multitasking or resting) states. Three
models of neuronal firing rates are used:

« Intrinsic Model:

o Neuronal frequencies are sampled from a normal distribution
[N(10,2)], representing natural oscillatory behavior.

o This serves as a baseline for comparison, simulating moderate
variability typically observed in resting and cognitive tasks.

« Gaussian Model:

o Firing rates are sampled from a normal distribution with
means ranging from 5 to 20 Hz and standard deviations
ranging from 1 to 5 Hz, reflecting realistic clustering and
moderate variability in neuronal firing rates.

o This model mimics biological systems and explores how
moderate variability supports synchronization and
energy efficiency.

« Poisson Model:

o Firing rates are sampled uniformly over the range 5 to 20 Hz,
introducing high variability and randomness.

o This model explores the effects of unstructured variability,
representative  of neural

early development  or

pathological conditions.

For all three models, coupling strength (K) and external stimuli
were adjusted to simulate three cognitive conditions:
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 Focused Condition: Strong coupling (K = 10) and a uniform
external input (5Hz) to simulate high coherence during
focused attention.

o Multitasking Condition: Moderate coupling (K =5) and split
stimuli (+5 Hz to half the neurons, —5 Hz to the other half) to
mimic competing inputs during multitasking.

« Resting Condition: Weak coupling (K = 1) and no external input
(0 Hz) to simulate loosely coupled dynamics in the resting state.

The Intrinsic model represents baseline resting behavior with
natural variability. Gaussian firing reflects clustered neuronal
populations, common in organized neural networks. Poisson firing
simulates high-variability scenarios, such as early development or
pathology (Beggs and Plenz, 2003). Py was derived from the
instantaneous phase and coherence of the Kuramoto model
output using Hilbert transform-based synthesis. This signal was
used to mimic raw EEG dynamics for energy and synchronization
evaluation.

3.4.1 Energy consumption

Energy consumption was modeled as a function of neural
synchronization R(t), its temporal derivative dR/dt, and EEG and
fMRI-like activity features Pggg and Spygy, using Equation 3. As
shown in Figure 2, all features used in simulation were synthetically
generated to reflect biologically plausible ranges (e.g., 0.4-0.8 for EEG
power, 0.3-0.7 for BOLD signal intensity). In comparative experiments
(Figure 3), we computed a parallel energy profile using real EEG and
fMRI data: real Pggg and S yry values were inserted into the same
energy model alongside simulated R(t), allowing us to assess how
closely the simulated energy trajectory matches empirical neural
signals. The weighting parameters were set to a = 10.01, f = 5.00,
y =3.00, and 6 = 2.00 to balance the influence of synchrony, its rate of
change, and local/global activity features to the overall energy estimate.

frontiersin.org


https://doi.org/10.3389/fncom.2025.1616472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Hall et al.

10.3389/fncom.2025.1616472

Reward

L = 7(|Rlury¢:l- - R(’)I + E(t))

FIGURE 3

agent to optimize cognitive performance with minimal energy cost.

Input Layer Feature
P-EEG Extraction Agent
S-IMRI R(t), E(t)
| Environment
s =R, E]
L=

Reinforcement learning framework for neuroadaptive control. The agent uses EEG and fMRI-derived features—synchronization R(t), energy E(t), and
task context—to select stimuli that modulate neural activity. A Kuramoto-based model updates system dynamics, and a reward function guides the

3.4.2 Reinforcement learning

We implemented a reinforcement learning (RL) framework to
simulate adaptive cognitive decision-making. As illustrated in
Figure 3, this framework integrates real EEG and fMRI signals into a
dynamic agent-environment loop, enabling an agent to optimize brain
synchronization while minimizing metabolic cost. States in the model
are defined by synchronization levels (R(t)) derived from EEG power
using a Kuramoto oscillator model, energy consumption (E (t))
derived from EEG (Przc) and fMRI (Spri) signals, and the task
condition (focused, multitasking, or resting). These biologically
grounded states reflect real cognitive demand and physiological cost.

In this study, the agent refers to a single reinforcement learning
controller, either a tabular Q-learning model or a Deep Q-Network
(DQN). It observes cognitive state variables such as synchronization
level and energy cost and takes actions to modulate external input.
The agent operates independently—there is no communication or
collaboration between multiple agents. Its coordination is internal,
aiming to optimize synchrony while minimizing metabolic
expenditure.

The agent’s actions simulate modulation of external inputs such as
stimulus intensity or frequency, or adjustments to the coupling
constant K in the Kuramoto model. These actions affect the resulting
neural synchronization dynamics and energy expenditure, which
define the next state. The agent is rewarded at each time step based on
a scalar reward function defined as: r = —(| |Rtarger = R(t)||+ E(t)),
where Rygrger is the desired synchronization level. This reward
structure encourages the agent to approach stable, efficient
coordination states with minimal physiological strain.

A classical Q-learning agent was implemented using a discretized
state-action table, with fine-grained binning of R(t) and E(t), an
e-greedy exploration strategy, and an expanded action space. This was
enhanced by increasing the number of episodes to promote learning
stability. To generalize beyond discretized states, we implemented a
Deep Q-Network (DQN) agent with a neural network to approximate
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Q-values. The DQN architecture included two hidden layers with
ReLU activations and an output layer predicting Q-values for each
action. It was trained using an experience replay buffer and the
Adam optimizer.

Real EEG and fMRI data (EEG_P3_BOLD_300x3_Balanced.csv)
were not used to drive or train the model, but were processed
separately to extract empirical features Pgpg and Spygr. These
features were passed into the same energy function used in the
simulation pipeline and compared to model-generated outputs to
assess the biological plausibility of the learned policy. This two-track
framework—simulation-based learning and real-data-informed
validation—demonstrates that reinforcement learning can discover
control strategies that align with real neural dynamics.

By comparing learned synchronization-energy trajectories
against empirical EEG and fMRI-derived profiles, we validated the
system’s ability to mimic biological coordination patterns. This
approach models adaptive decision-making with potential applications
in neuroadaptive interfaces and brain-computer interaction.

3.5 Real EEG and fMRI integration

Real EEG and fMRI data were obtained from the NatView dataset
(Subjects 01, 03, and 22). These real signals were not used during agent
training or optimization. Instead, they served as validation
benchmarks to evaluate the biological plausibility of simulated
outputs. Specifically, we compared spectral profiles, PLV, circular
statistics, and GLM-predicted BOLD activity between real and
simulated signals.

3.5.1 Data acquisition and preprocessing

To support multimodal modeling of cognitive states (focused
attention, resting, and multitasking), EEG and fMRI data were
extracted from the NATVIEW dataset, structured in accordance with
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the Brain Imaging Data Structure (BIDS) format. Data were retrieved
using AWS CLI and Git Bash from a remote repository.

Functional neuroimaging data were obtained from the publicly
available NatView dataset.' We selected three subjects from the dataset
(Subject 01, Subject 03, and Subject 22), each of whom participated in
tasks categorized as Focused, Resting, and Multitasking. For each
subject, we extracted EEG data (in .csv format) and fMRI BOLD data
(in .nii format). EEG analysis was centered on the P3 electrode, a site
widely associated with attentional modulation and decision-
making processes.

To retain maximum spatial resolution, we worked directly with
the raw voxelwise fMRI BOLD signals and excluded atlas-parcellated
or region-averaged derivatives. All data were resampled to a common
temporal resolution of 0.01 s, and aligned across EEG and fMRI for
each condition. For each cognitive state, we selected 300 time-
synchronized samples, resulting in 900 integrated time points per
subject. Data preprocessing—including temporal alignment,
normalization, and merging of multimodal signals—was conducted
in Python using standard libraries such as pandas and numpy. This
integrated dataset was used as input for simulation and reinforcement
learning phases.

EEG signals were normalized and aligned using Python-based
tools, focusing on the P3 electrode without additional filtering or
frequency band extraction. Artifact correction and spectral analysis
are identified as future enhancements to the preprocessing pipeline.
fMRI data were spatially smoothed, normalized, and subjected to
region-of-interest (ROI) extraction using standard neuroimaging
pipelines. fMRI signals were extracted as raw BOLD data and
normalized for time alignment with EEG recordings. These steps
ensured the data were clean, standardized, and ready for integration
into computational simulations.

3.5.2 Simulations

Simulations replicate neural activity for the three cognitive
scenarios—focused attention, multitasking, and resting-state
conditions. Each model (Intrinsic, Gaussian, and Poisson) is used to
simulate synchronization and energy dynamics under these
conditions. Outputs, including synchronization levels and energy
consumption, are compared against trends observed in the EEG and
fMRI datasets to validate the computational framework. The
reinforcement learning component is evaluated based on its ability to
adapt to stimuli and reduce task-switching costs over time.
Performance metrics include synchronization efficiency, energy
expenditure, and adaptability.

3.5.3 Data analysis

Model outputs are compared with empirical EEG and fMRI data.
EEG synchronization is quantified using metrics such as phase-
locking values (PLVs) and frequency band power. fMRI data is
analyzed using the General Linear Model (GLM) to identify task-
related activations in key brain regions. Statistical tests, including
paired t-tests and ANOVA, assess differences across task conditions
and evaluate the alignment between simulated and empirical data.
This approach ensures robust and reproducible results, leveraging

1 https://fcon_1000.projects.nitrc.org/indi/retro/nat_view.html

Frontiers in Computational Neuroscience

10.3389/fncom.2025.1616472

publicly available datasets without requiring direct human
participation or IRB approval.

Selection criteria emphasize datasets with high-quality
preprocessing, including artifact removal and motion correction, to
ensure reliability. EEG data will capture temporal synchronization
patterns, while fMRI BOLD signals will provide insights into
metabolic activity in brain regions associated with cognition, such as
the prefrontal cortex and parietal lobe.

Preprocessing for EEG data will include artifact correction using
tools like EEGLAB or MNE-Python and spectral analysis to extract
relevant frequency bands, such as alpha and beta. For fMRI data,
spatial smoothing, normalization, and region-of-interest (ROI)
extraction will be performed using standard neuroimaging pipelines.
These preprocessing steps will ensure that the data is clean,
standardized, and ready for integration into computational models.

4 Results
4.1 Simulated data

4.1.1 Analysis of synchronization and energy
consumption in intrinsic, Gaussian, and Poisson
models

The intrinsic model uses frequencies sampled from a normal
distribution N (10,2) to represent natural oscillations. Synchronization
R(t) in this model is moderate and stable under the focused condition
due to the uniform external stimulus, which enhances phase coherence.
In the multitasking condition, the split stimulus reduces synchronization
as competing stimuli create divergent phase dynamics. The resting
condition naturally exhibits a decay in synchronization due to the
absence of external stimuli. Energy consumption E(t) correlates directly
with synchronization and its rate of change, peaking in the focused
condition and diminishing in the resting condition, reflecting weaker
neuronal interactions. Figure 4 shows PLV distributions across
conditions, with higher PLV during focused attention. GLM analysis
(Figure 4) revealed prefrontal and parietal activation during focus and
DMN regions during rest. Paired t-tests confirmed statistical significance
(p <0.01).

The simulated results demonstrate distinct patterns of neural
synchronization R(t) and energy consumption E (t) across three
cognitive states: focused attention, multitasking, and resting-state. In
the focused attention condition, the synchronization parameter R(t)
showed high levels, indicating strong neuronal alignment driven by
uniform external stimuli and high coupling strength (Figure 5). Minor
fluctuations were observed, likely due to intrinsic variability in
neuronal frequencies. Correspondingly, energy consumption was
consistently high, reflecting the metabolic demands of maintaining
sustained synchronization during focused cognitive tasks.

For multitasking, synchronization levels were moderate, with
noticeable oscillations that reflected the competition between neural
sub-networks responding to different stimuli (Figure 6). These
fluctuations represent the alternation of attention between multiple
tasks. Energy consumption was the highest among the three
conditions, driven by frequent transitions between synchronization

dR(t)

states dt and the additional metabolic cost of managing

competing attentional resources.
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FIGURE 4

Bar graph showing the mean + SEM of alpha and beta PLVs across three cognitive states. Alpha PLV was consistently higher across conditions, though
not significantly different (ANOVA, p > 0.05). Table 3. Mean and SEM of PLV values by condition.
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FIGURE 5
Predicted vs. observed BOLD time series across regions. GLM results show strong alignment in task-relevant areas like prefrontal and parietal cortices,

validating the model's neurovascular plausibility. BOLD signals shown are simulated from model synchrony via HRF convolution, not extracted from
real fMRI data.
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FIGURE 6
Focused attention—synchronization and energy consumption. (Left, Synchronization): High synchronization R(t) stabilizes with minor oscillations,
indicating coherent neuronal activity during focused attention. (Right, Energy Consumption): Consistently high energy consumption E(t) reflects the
metabolic demands of maintaining sustained focus.
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FIGURE 7

Multitasking—synchronization and energy consumption. (Left, Synchronization): Moderate synchronization R(t) with pronounced oscillations,
representing alternating engagement of neural sub-networks during multitasking. (Right, Energy Consumption): High and variable energy
consumption E(t) highlights the metabolic cost of task switching and managing competing resources.

In the resting-state condition, synchronization was minimal,
characterized by low R(t)values and irregular oscillations (Figure 7).
This reflects uncoordinated and random neuronal firing in the absence
of significant external input. Energy consumption was the lowest in
this condition, aligning with the brain’s reduced metabolic demand
during rest.

Overall, focused attention exhibited the highest synchronization
levels (R(t) ~ 0.8) with steady energy consumption, multitasking
showed moderate synchronization (R(t) ~0.5 R) with variable and
high energy demands and resting-state demonstrated the lowest
synchronization (R(t) ~ 0.3) and minimal energy use. These trends
how demands influence both neural

illustrate cognitive

synchronization and metabolic costs. It is important to note that the
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energy values presented in Figures 8, 9 are normalized outputs of our
simulation-based cost function and do not correspond to absolute
physical units such as Joules. They allow for relative comparisons of
metabolic cost across different firing models and cognitive conditions,
offering insights into the energy efficiency of each configuration.
The Poisson model uses firing rates sampled uniformly within a
specified range (5-205-20 Hz), resulting in a more random and diverse
set of intrinsic frequencies (Figure 8). Synchronization in this model
is the least stable across all conditions. While the focused condition
improves synchronization slightly due to the uniform external
stimulus, it remains less stable than in the Gaussian model. In the
multitasking and resting conditions, synchronization is highly
unstable, as the diverse firing rates hinder coherent phase alignment.

frontiersin.org


https://doi.org/10.3389/fncom.2025.1616472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Hall et al. 10.3389/fncom.2025.1616472

Multitasking - Synchronization Multitasking - Energy Consumption
5.0

0.12 4

0.10 4

0.08

R(t)

0.06

0.04 4

0.02 1

000 B T T T T 2'0 E T T T T

0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

FIGURE 8
Resting-state—synchronization and energy consumption. (Left, Synchronization): Low and irregular synchronization R(t) reflects diffuse neuronal
activity during rest. (Right, Energy Consumption): Minimal energy consumption E(t) aligns with the reduced metabolic demands of the resting brain.

Energy consumption reflects these dynamics, showing erratic  synchronization and energy dynamics due to the uniform distribution
fluctuations in all conditions. The focused condition exhibits moderate  of firing rates. It is better suited for studying systems with high
but unstable energy, while the multitasking and resting conditions  variability or randomness, such as early neural development or
show reduced but highly variable energy levels. pathological conditions.

The Gaussian model introduces firing rates sampled from a normal Spectral analysis was performed on both the raw EEG signal and
distribution with specified means (5-205-20 Hz) and standard deviations ~ the simulated EEG (P_EEG) time series. As illustrated in Figure 10,
(1-51-5 Hz), adding variability while maintaining a central tendency  both signals exhibit frequency-domain components in the alpha and
(Figure 9). This model demonstrates better synchronization in the  beta bands. The raw EEG data showed alpha power of 1.98 x 10~ a.u.
focused condition compared to the Poisson model, as the clustering of ~ and beta power of 3.32 x 107" a.u., whereas the simulated EEG
firing rates around the mean promotes coherent phase alignment. Inthe ~ displayed alpha power of 3.2x10™*a.u. and beta power of
multitasking condition, synchronization diminishes but remains 5.6 X 107 a.u. (Table 2). This comparison reveals that the simulated
smoother and more stable than in the Poisson model. Even in the resting ~ signal emphasizes alpha band activity more strongly than beta, while
condition, some coherence is retained due to the natural clustering effect. ~ the raw EEG signal shows the opposite trend, with dominant
Energy consumption in the Gaussian model is smoother and less erratic ~ beta activity.
compared to the Poisson model, with higher energy in the focused
condition and reduced but stable energy in the other conditions.

To evaluate the effects of different neuronal firing rate distributions 4.2 Real vs. simulated neural
on model behavior, three models were compared: the Intrinsic model, ~ SYNC hronization
the Gaussian model, and the Poisson model. Each was tested under
focused, multitasking, and resting cognitive states. As shown in Table 1, We analyzed synchronization dynamics and energy
the Gaussian model produced the most biologically plausible outcomes, ~ consumption across three cognitive states focused, multitasking,
with high synchronization during focus and minimal, smooth energy =~ and resting by comparing experimental EEG-fMRI data to
decay during resting. In contrast, the Poisson model led to erratic ~ simulated data modeled through the Kuramoto framework. Initially,
dynamics and unstable synchronization, especially under multitasking  real data exhibited gradual transitions in synchronization (R) and
conditions. The Intrinsic model maintained moderate levels across all ~ energy (E), while simulated data showed early, abrupt spikes in both

states, making it a useful baseline. measures, especially within the first 0.5 s. This discrepancy was
attributed to the absence of biological signal latency in the

4.1.2 EEG spectral analysis: comparison of raw simulated inputs.

and simulated data To address this mismatch, a 0.2-s delay was introduced at the

The intrinsic model balances simplicity with moderate  onset of the simulated EEG (Pgzs) and fMRI (Spm;) signals. The
synchronization and energy dynamics, making it ideal for baseline  adjustment improved temporal alignment between real and simulated
studies where the effects of external stimuli need to be isolated. The ~ dynamics across all conditions. As illustrated in Figures 11-13, each
Gaussian model provides smoother and more stable synchronization  condition was plotted side-by-side, showing both real and simulated
and energy patterns, making it a good choice for realistic simulations ~ synchronization and energy curves. In the focused condition
of neuronal dynamics where clustering around a mean firing rate is ~ (Figure 11), real data showed a steady rise and stabilization in
expected. Conversely, the Poisson model exhibits highly erratic ~ synchronization, while delayed simulated data more closely mirrored
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FIGURE 9
Poisson model dynamics across cognitive states. Synchronization R(t) and energy E(t) show unstable patterns across focused, multitasking, and
resting conditions, reflecting erratic firing and variable metabolic cost. Energy is shown in normalized units for model comparison.

this pattern, although some mismatch in curve shape remained. Inthe  could reflect the dynamic switching and cognitive complexity inherent
multitasking condition (Figure 12), both real and simulated data  in this state. For the resting condition (Figure 13), both real and
displayed higher variability, suggesting that the simulated system  simulated synchronization remained low and stable, although the
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FIGURE 10

Gaussian model dynamics across cognitive states. Focused attention yields high, stable synchronization and energy. Multitasking shows moderate,
steady values, while rest exhibits gradual decline in synchrony and minimal energy use. Energy is normalized for comparative analysis.

simulated system exhibited a slight early onset in R(t) before
correcting due to the imposed delay.

To quantify these observations, we computed the phase lag and
Pearson correlation between real and simulated synchronization
curves. The results are summarized in Figure 14. The bar chart on the
left (Figure 14A) shows that simulated signals lagged real signals by
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1.19s in the focused condition and 1.60s in the multitasking
condition, while the resting condition exhibited a slight lead (—0.23 s).
The right panel (Figure 14B) displays Pearson correlation coefficients
for each condition. The resting condition showed a moderate positive
correlation (r = 0.30), indicating good shape agreement between real
and simulated signals. In contrast, the multitasking condition had a
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TABLE 1 Comparison of synchronization and energy dynamics across Intrinsic, Gaussian, and Poisson models under different cognitive states.

Aspect Intrinsic model

Firing Rate Distribution Normal N (1 0,2)

Gaussian model Poisson model

Uniform ([5,20]) with high

Normal (N (1, 0°) with variability randomness

Synchronization (Focused) Moderate, stable

High, smooth Moderate, erratic

Synchronization (Multitasking) Reduced, moderate

Reduced, smoother than Poisson Reduced, highly unstable

Synchronization (Resting) Decay over time

Decay, retains slight coherence Rapid decay, high instability

Energy Consumption (Focused) High, stable

High, smooth Moderate, fluctuating

Energy Consumption (Multitasking) Reduced, smoother

Reduced, less variable Reduced, highly variable

Energy Consumption (Resting) Minimal, stable decay

Minimal, smoother decay Minimal, erratic

The Gaussian model shows the most stable and biologically realistic behavior, while the Poisson model is highly variable.

EEG Spectral Analysis from Raw Time Series
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FIGURE 11

respectively.

Power spectral density (PSD) analysis of EEG signals. The left panel shows the spectral decomposition of the raw EEG signal, and the right panel shows
the simulated EEG time series (P_EEG) used in the Kuramoto model. Alpha (8—-12 Hz) and Beta (13—30 Hz) bands are shaded in orange and green,

Simulated EEG Spectral Analysis from P_EEG Time Series
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TABLE 2 Quantitative comparison of spectral power in alpha and beta
bands between raw EEG and simulated P_EEG data.

Frequency band Raw_EEG (a.u.) P_EEG (a.u.)
Alpha (8-12 Hz) 198 x 10 32x10° ‘
Beta (13-30 Hz) 3.32x 107 5.6 107 ‘

Power is expressed in arbitrary units (a.u.).

weak positive correlation (r=0.23), and the focused condition
exhibited a negative correlation (r = —0.33), highlighting a mismatch
in signal shape.

Together, these plots and metrics confirm that while the
simulation model captures general synchronization dynamics, the
accuracy varies by cognitive condition. The addition of a signal delay
substantially improves the realism of the model, particularly for the
resting and multitasking states.

4.2.1 Phase-locking value and circular phase
statistics from real EEG

4.2.1.1 Phase locking value (PLV) analysis

To quantify synchronization across brain states, we computed the
Phase Locking Value (PLV) for alpha (8-12 Hz) and beta (13-30 Hz)
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frequency bands across three cognitive conditions: Focused, Rest, and
Multitasking. As shown in Figure 15, mean PLV values were high
across all conditions for both frequency bands. Specifically, alpha PLV
ranged from 0.9806 (Rest) to 0.9926 (Focused), and beta PLV ranged
from 0.9025 (Rest) to 0.9185 (Multitasking) (Table 3).

A one-way ANOVA revealed no significant differences between
conditions for either alpha [F(2, N) = 0.70, p = 0.524] or beta PLV
[F(2, N)=1.21, p=0.342], indicating that synchronization
strength alone may not distinguish cognitive states. Nevertheless,
the high PLV values suggest widespread phase consistency,
motivating deeper analysis of the structure and variability of
phase dynamics.

4.2.1.2 Phase difference dynamics and circular statistics
To further investigate synchronization structure, we analyzed the
instantaneous phase differences for both alpha and beta bands.
Histograms (Figure 16) and time series plots (Figure 17) were used to
visualize phase progression. The Focused condition showed narrower
distributions and smoother trends, suggesting greater phase stability.
To quantify these observations, we computed circular statistics—a
class of methods specifically designed for angular data like phase.
These included the circular mean direction and circular standard
deviation of phase differences across trials (Table 4). Circular statistics
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Resting state: Real vs. simulated (delayed) dynamics. (Left) Synchronization R(t) shows smoother coordination in real data; simulation overestimates
amplitude. (Right) Real energy E(t) is low and stable, while simulated energy is more variable due to synthetic input.
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offer sensitivity to directional alignment and variability that traditional
linear metrics cannot capture.

A one-way ANOVA applied to these circular metrics showed no
significant differences across conditions (Table 5). However, pairwise
comparisons revealed a near-significant trend in the alpha band
between Focused and Rest conditions [#(6) =—2.15, p =0.075],
suggesting that phase alignment may be more consistent during
focused attention (Table 6). This directional effect aligns with the
hypothesis that attentional states modulate phase dynamics, even
when PLV strength remains statistically similar.

Finally, Figure 18 summarizes the circular standard deviation
(variability) across conditions for both alpha and beta bands.
Although differences were not statistically significant, alpha band
variability was consistently lower, indicating tighter phase locking

compared to beta.
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These findings are consistent with prior studies suggesting that
alpha phase alignment reflects attentional modulation and cognitive
control mechanisms (Gundlach et al., 2024; Palva et al., 2024).

Instantaneous phase difference time series for alpha (top row) and
beta (bottom row) bands in trial 0 for each condition.

4.3 Machine learning classification and
Q-learning agent performance

A machine learning classifier was trained on extracted features
(mean_R, std_E, corr_R, phase_lag) from both real and simulated
datasets. Cognitive condition classification (focused, multitasking,
resting) achieved 50% accuracy, while real vs. simulated classification
reached 100% accuracy. This indicates that while simulations resemble
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Focused state: Real vs. simulated (delayed) dynamics. (Left) Real R(t) shows smooth modulation; simulation captures the trend with some offset.
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Phase Lag and correlation between real and simulated synchronization. (A, Left) Phase lag between real and simulated R(t) across cognitive states.
Simulated data lags real signals in focused and multitasking but leads slightly in resting. (B, Right) Pearson correlation ofR(t) curves. Resting and
multitasking show modest positive alignment, while focused exhibits a negative correlation, indicating shape mismatch.

TABLE 3 Mean and SEM of PLV values by condition.

Condition Alpha PLV Beta PLV
(Mean £ SEM) (Mean + SEM)
Focused 0.9926 + 0.0042 0.9036 + 0.0085
Multitasking 0.9891 + 0.0041 0.9185 £ 0.0009
Rest 0.9806 * 0.0113 0.9025 % 0.0111

the statistical patterns of real data, structural differences are
still detectable.

A classical Q-learning agent was trained to regulate R(t) and E(t)
using the reward function r = —(| |Rearget — R(t)| |+ E(t)) . Over 100
episodes, the agent learned to reduce reward penalties and align R(t)
toward the target level (0.1) while maintaining moderate energy
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(Figure 19). Trends in reward, synchronization, and energy over time
confirm learning success.

A neural network-based DQN was implemented locally to
support continuous-valued state spaces. The model achieved improved
convergence over 300 episodes, as measured by cumulative reward
trends, demonstrating its ability to optimize behavior in biologically
informed environments.

4.4 Simulated and comparative
neuroimaging results

General Linear Model (GLM) Analyses: We performed GLM
analysis using real and simulated data to explore whether neural
decision suppression (as captured by EEG-like signals) and task
engagement modulate fMRI BOLD responses. The original dataset
included 1,000 timepoints with simulated EEG and BOLD signals. A
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Histograms of instantaneous phase differences for alpha (top row) and beta (bottom row) bands in the first trial of each condition. Narrower
histograms in the Focused condition suggest tighter phase locking. Histograms of instantaneous phase differences for alpha (top row) and beta
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Time series plots of instantaneous phase differences for alpha and beta bands in trial O for each condition. The alpha band under Focused condition

TABLE 4 Circular statistics per trial (first 5 rows shown).

Condition Trial Alpha mean Alpha circular std Beta mean Diff beta circular
phase diff phase diff std

Focused 0 0.5690 0.0456 1.4686 0.4590

Focused 1 0.6739 0.1304 1.3867 03913

Focused 2 0.6310 0.1955 1.1750 0.4513

Rest 0 0.6793 0.1332 1.2846 0.5094

Rest 1 0.7011 0.1493 1.3225 0.4887

canonical Hemodynamic Response Function (HRF) was convolved
with both the EEG signal and a simulated task block design
(alternating 20s on/off periods).

Initial GLMs of the original single-region BOLD signal (S_fMRI)
showed no statistically significant relationship with either the raw EEG
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signal (p=0.398) or the task HRF (p=0.350). Even when using
HRF-convolved EEG as a regressor, the model did not significantly
predict BOLD signal variance. Figure 20 illustrates the canonical HRF
used to model the BOLD response. This waveform served as the basis for
convolution with both the simulated EEG signal and task design events.
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Multi-Region Simulated GLMs: We then generated BOLD signals
for four simulated brain regions (Prefrontal, Parietal, Motor, Visual)
using different linear mixtures of task and EEG signals with added
noise. GLM analyses with task HRF as a single regressor revealed
significant results is show Table 7.

When EEG and task predictors were included together, both
remained highly significant (p <0.001), and model fit improved
(R*~1.000) for all regions. This confirmed their differential
contributions: - Prefrontal: 60% task-driven, 30% EEG-driven - Parietal:
30% task-driven, 60% EEG-driven - Motor: ~10% contribution
from both.

Figure 4 shows the predicted BOLD response from the GLM
overlaid on actual BOLD signals for each region, highlighting the fit
accuracy of the task-based model. An additional region (Anterior
Cingulate Cortex) was added to simulate a cognitive control hub,
showing intermediate effects from both predictors.

TABLE 5 One-way ANOVA results for circular phase metrics.

10.3389/fncom.2025.1616472

Functional Connectivity and Spatial Mapping: To examine the
inter-regional relationships, we calculated pairwise Pearson
correlations. Figure 21 presents a heatmap that shows strong
connectivity between Prefrontal, Parietal, and ACC signals, while
Motor and Visual regions exhibit weaker correlations.

We further constructed a simplified 2D spatial map of brain
regions using average BOLD intensity values (Figure 22), reflecting
plausible functional topography.

Independent Component Analysis (ICA) and Voxel Simulation:
We conducted ICA to extract three statistically independent
components from the standardized regional signals. Figure 23 shows
the temporal evolution of these components, which captured distinct
patterns of regional co-activation.

To increase spatial resolution, we simulated voxel-level BOLD
signals (10 voxels per region, 50 total). The resulting
voxel-wise correlation matrix is displayed in Figure 24,
highlighting clustering patterns and functional coherence
across voxels.

4.5 Results summary

This study presents a novel computational framework for
modeling thinking as a transition from random neural firing to
synchronized cognitive states. The key findings from simulations,
empirical analysis, and machine learning validation are summarized
as follows:

o Simulated Synchronization and Energy Patterns (Section 4.1):
The Gaussian firing model produced the most biologically
realistic synchronization and energy profiles across cognitive
conditions. Focused states exhibited high and smooth
synchronization with stable energy usage; multitasking showed

Metric F-statistic p-value
Alpha mean direction 2.25 0.161
Beta mean direction 1.43 0.288
Alpha circular std 0.86 0.454
Beta circular std 1.15 0.359
TABLE 6 Pairwise t-tests for alpha mean direction.
Comparison t-stat p-value
Focused vs. rest -2.15 0.075
Focused vs. multitasking —0.49 0.640
rest vs. multitasking 1.60 0.162
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
Focused
FIGURE 18
consistent, but differences are not statistically significant.

multitasking

rest

Bar plot comparing circular standard deviation (locking variability) between alpha and beta bands across conditions. Alpha locking tends to be more
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approaches the target (dashed line). (Bottom) Energy E(¢) stays moderate, showing efficient learning under biological constraints.
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TABLE 7 GLM summary for task HRF predictor.

Brain region Coefficient (p,) R? p-value Interpretation
Strongly task-driven, likely reflects decision
Prefrontal 0.94 0.993 <0.001
suppression/focus
Highly correlated with task and EEG (adaptive
Parietal 0.98 0.973 <0.001
control)
Motor 0.21 0.984 <0.001 Weakly modulated by task, mostly random noise
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FIGURE 20

Canonical hemodynamic response function (HRF). Models the typical BOLD signal after neural activation, with a peak at ~5 s, undershoot, and return

to baseline. Used to convolve neural predictors in GLM analysis.
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FIGURE 21
Correlation heatmap of regional BOLD signals. Warmer colors indicate stronger functional connectivity. High intra-network correlations highlight
modular organization in task-relevant regions.

all conditions (Table 4). Although group-level ANOVA
Simulated Spatial Activation Map found no significant PLV differences, Focused vs. Rest in the
AcCC 120 . . s

alpha-band circular mean direction showed a near-

significant trend (t = —2.15, p = 0.075; Table 6), suggesting

Prefrontal pari{ }100 more consistent phase alignment during focused attention.
= Circular variability was lower in alpha than beta across all
. 80 5'? conditions, reinforcing this interpretation (Figure 5 and
> =] Tables 4-6).
co § « Real vs. Simulated Synchronization (Section 4.2): Simulated and
empirical EEG-fMRI time series were compared for each
condition. A biologically plausible 0.2 s delay applied to simulated
_— o inputs improved alignment, particularly for resting and
> multitasking. Correlations confirmed strongest agreement for
FIGURE 22 resting (r=0.30), modest for multitasking (r=0.23), and
Simulated spatial activation map. Model-derived BOLD signals show mismatch for focus (r = —0.33) (Figures 11-14).

elevated activation in prefrontal and parietal regions, reflecting

realistic task-related neural patterns. Reinforcement Learning Performance (Section 4.3): Q-learning

and Deep Q-Network (DQN) agents successfully learned to
modulate neural inputs to optimize synchronization and energy
cost. The DQN exhibited faster convergence, and both models

moderate, fluctuating synchrony with elevated metabolic cost; generalized well under biologically inspired constraints. Real vs.
resting states had low, irregular synchronization and minimal simulated signal classification achieved 100% accuracy,
energy consumption (Figures 5-9 and Table 1). highlighting remaining differences in temporal structure.

o EEG Spectral Decomposition (Section 4.1.2): Power spectral o GLM-Based Neuroimaging Insights (Section 4.4): A General
analysis of simulated (P_EEG) and real EEG revealed dominant Linear Model (GLM) analysis of simulated BOLD data validated
alpha-band activity in simulations (3.2 x 10~ a.u.)—consistent region-specific roles in cognitive state transitions. Prefrontal and
with internal attention—and stronger beta-band activity in real parietal regions showed strong task and EEG-driven responses
EEG (3.32 x 10" a.u.), associated with cognitive effort and (R*~0.99, p < 0.001), while motor areas showed weaker effects.
engagement (Figure 10 and Table 2). Spatial maps, ICA, and voxel-wise analysis confirmed functional

» Phase Locking Value and Circular Statistics (Section 4.2.2): clustering and connectivity aligned with known cognitive
Real EEG analysis showed high alpha and beta PLV's across networks (Figures 19-23).
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FIGURE 23
ICA components over time. Time series of spatially distinct sources from simulated BOLD signals reveal condition-specific and background activation
patterns, supporting distributed neural dynamics.
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FIGURE 24
Voxel-wise correlation heatmap. Correlation matrix reveals fine-grained functional connectivity, with high-correlation clusters reflecting local
synchrony and broader patterns indicating distributed network interactions.
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Together, these findings validate the frameworK’s capacity to
simulate biologically realistic cognitive transitions, modulate neural
synchrony based on real EEG-fMRI data, and generate neuroadaptive
predictions using reinforcement learning. The integrated approach
provides a foundation for future brain-computer interface systems and
adaptive Al informed by neurophysiological principles.

5 Discussion

This study presents a biologically grounded, multi-modal
computational framework for modeling thinking as a dynamic
transition from desynchronized to synchronized neural states. The
model integrates Kuramoto-based phase synchronization, metabolic
cost calculations, reinforcement learning, and empirical EEG-fMRI
signals. Simulated cognitive conditions—rest, multitasking, and
focused attention—were validated against real data, offering a new
method for studying adaptive neural dynamics across time and space.

5.1 Synchronization patterns and
energetics

Each cognitive state yielded distinctive synchronization and
energy usage patterns. Focused attention showed high, stable
synchrony with minimal energy variance; multitasking presented
fluctuating synchrony and higher energy consumption; and resting
was marked by low, unstable synchronization and minimal
energy use. These outcomes are consistent with theoretical models
of efficient neural computation, where task-relevant brain
states optimize information transfer while minimizing metabolic
load (Laughlin, 2001; Bullmore and Sporns, 2012; Marshall
et al., 2015).

Using reinforcement learning, both Q-learning and Deep
Q-Network (DQN) agents learned to adjust external stimulation in a
closed-loop system to maintain target synchrony while minimizing
energetic cost. The DQN model exhibited faster convergence and
broader generalization, supporting its potential use in real-time
neuroadaptive control. This dynamical control distinguishes our
model from traditional feedforward simulations and aligns with
recent advances in Al-driven cognitive modulation (Rehman
etal., 2025).

5.2 Temporal synchronization and circular
phase dynamics

To evaluate neural timing, we performed PLV and circular
statistical analysis. All cognitive states exhibited strong phase
synchronization in the alpha and beta bands, but Focused states
showed significantly lower circular variance and a near-significant
shift (p = 0.075) in alpha-band phase direction compared to Rest. This
finding highlights the model’s sensitivity to subtle attentional shifts
and supports growing evidence that cortical phase alignment plays a
critical role in attentional gating and sensory readiness (Gundlach
et al., 2024; Cruz et al., 2025; Busch et al., 2009).

Circular metrics revealed additional insights missed by PLV
amplitude alone. This supports theories proposing that phase
directionality and variability are crucial for neural coding, especially
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in conditions involving top-down control (Scheeringa et al., 2011;
Mizuhara et al., 2005; Yi et al., 2021). The model’s success in capturing
these dynamics strengthens its relevance for studying phase-locked
cognition and dynamic attention filtering (Taya et al, 2015;
Garcia, 2020).

5.3 Comparison of simulated vs. real EEG
data

To validate model fidelity, we compared simulated EEG dynamics
to real EEG recordings. Power spectral decomposition showed
consistent alpha and beta band peaks across both datasets. However,
simulated EEG emphasized alpha power—consistent with internal,
resting-like synchrony—while real EEG during tasks showed stronger
beta activity, reflecting heightened cognitive engagement.

Furthermore, cross-correlation analysis of PLV time series
between real and simulated data showed the strongest match during
Rest, suggesting that the baseline dynamics of the model are well-
tuned for low-cognitive-load states. Weaker correlations in
Multitasking and Focused conditions suggest further refinement is
needed in dynamic input tuning or noise modeling. Nonetheless, the
directionality of these results aligns with prior work showing alpha-
phase locking dominates in internally focused, low-demand states
(Cruz et al., 2025; Yi et al., 2021).

5.4 BOLD modeling and spatial network
Fidelity

The model’s spatial dynamics were evaluated by simulating
BOLD responses and analyzing them using General Linear Models
(GLMs), voxel-wise correlation heatmaps, and Independent
(ICA). GLM
HRF-convolved task and EEG signals significantly improved

Component Analysis regressors based on
prediction of simulated BOLD activity, especially in prefrontal
(task-driven), parietal (EEG-driven), and anterior cingulate
(integrative) regions—consistent with studies of executive control
and attentional modulation (Dai, 2024; Du et al., 2018; Mizuhara
et al., 2005).

Voxel-wise connectivity maps and ICA components revealed
modular activation and distinct network dynamics, including patterns
that resemble frontoparietal and salience networks (Yao et al., 2023;
Braga and Buckner, 2017). These spatial outputs match empirical
fMRI findings and demonstrate the model’s ability to reproduce real-
world functional connectivity structures (Tavor et al., 2016; Bullmore
and Sporns, 2012).

By accurately linking fast electrophysiological synchronization to
slower BOLD fluctuations, the model addresses one of the core
challenges in EEG-fMRI integration—a known difficulty in
multimodal neuroimaging (Scheeringa et al., 2011).

5.5 Model novelty and broader implications

Our model’s novelty lies in its closed-loop design: it dynamically
learns to regulate neural input to optimize synchronization and energy
use, validated against both temporal (EEG) and spatial (fMRI)
benchmarks. This sets it apart from traditional simulations that are
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either feedforward or omit real neurophysiological constraints. These
features open the door for several high-impact applications:

Real-time BClIs that monitor attention and adapt stimulation to

avoid cognitive fatigue

o Neuroadaptive learning environments responsive to brain
state transitions

« Energy-eflicient Al inspired by neural optimization (Laughlin,
2001; Rehman et al., 2025)

 Hypothesis-driven simulations of perceptual switches, network

collapse in disorders, or pharmacological modulation.

5.6 Limitations and future directions

While the present study demonstrates the utility of reinforcement
learning for modeling cognitive-state transitions using EEG and fMRI
data, several limitations remain. First, although the Kuramoto model
offers a tractable representation of neuronal synchronization, it simplifies
the complexity of real brain dynamics, omitting structural connectivity
and regional specificity. Second, simulated EEG and fMRI metrics were
used to approximate energy consumption and synchronization; future
models will incorporate direct physiological metrics such as phase
coherence and BOLD signals from real participants.

Additionally, the reward function is hand-designed and may
benefit from empirical calibration or optimization based on behavioral
performance. Lastly, generalization across subjects was not evaluated,
and cognitive transitions were not yet validated using actual
participant data in task-switching conditions. Further, our model
currently assumes linear GLM dynamics and lacks time-varying
coupling, stochasticity, or individual variability. Future work will
incorporate nonlinear state-space models, subject-specific priors, and
multi-resolution neural activity. Additionally, expanding the
connectivity analysis to include Granger causality, coherence, or
phase-amplitude coupling may yield richer insights into functional
relationships (Bullmore and Sporns, 2012; Garcia, 2020).

5.7 Summary

Overall, this study presents a biologically grounded, computational
framework for modeling cognition as a dynamic transition from
desynchronized to synchronized neural activity, optimized under
metabolic constraints. Through the integration of Kuramoto-based
neural oscillators, spectral EEG validation, fMRI-inspired GLM
modeling, and reinforcement learning, the framework simulates and
regulates cognitive states such as resting, multitasking, and
focused attention.

The Gaussian firing model emerged as the most biologically
realistic, producing smooth, energy-efficient synchrony aligned with
empirical EEG and fMRI patterns, particularly under resting and
focused conditions. In contrast, the Poisson model—characterized by
high variability—offers utility for simulating cognitive transitions or
pathological noise, while the Intrinsic model serves as a benchmark
for evaluating structure vs. randomness in neuronal dynamics.

Phase-based metrics revealed that focused attention was
associated with lower circular variance and near-significant alpha
phase directional shifts, aligning with prior findings on cortical
excitability and attentional filtering. These effects were missed by PLV
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magnitude alone, underscoring the added sensitivity of circular
statistics in characterizing temporal coordination. Simulated EEG was
dominated by alpha-band power, reflecting internally focused states,
while real EEG exhibited stronger beta power during tasks—
highlighting the model’s fidelity to resting-state processes and its
tunability for task-related synchrony.

On the spatial front, simulated BOLD signals processed via GLMs
demonstrated region-specific profiles: task-driven in the prefrontal
cortex, EEG-driven in parietal areas, and integrative in the anterior
cingulate. ICA and voxel-wise analyses confirmed structured,
functionally relevant networks resembling canonical control systems.
Comparisons to real fMRI further validated these patterns, especially
under resting conditions.

The reinforcement learning agents successfully learned to
modulate external input to optimize synchrony and minimize energy,
with the Deep Q-Network exhibiting faster convergence and stronger
generalization. This illustrates the frameworKk’s adaptive capacity and
potential for real-time neuroadaptive applications.

Collectively, these findings validate the proposed framework
as a biologically plausible, dynamically adaptive simulation of
cognition. It bridges millisecond-scale synchronization with
second-scale BOLD activity, and models cognition as an emergent,
regulated process driven by neural timing, spatial engagement,
and metabolic cost. The approach opens new directions for
simulating attentional control, developing closed-loop BClIs,
exploring neural dysfunction, and informing brain-inspired
Al Building on prior methods, our approach integrates
GLM-based neuroimaging analysis (Lindquist and Mejia, 2015),
graph-theoretical decomposition of fMRI networks (Abrol et al.,
2017), and reinforcement learning principles as previously
explored in EEG-based cognitive modeling (Zhu, 2020). This
multi-modal synthesis allows for biologically grounded simulation
of cognitive state transitions, capturing both temporal synchrony
and spatial network structure.

6 Conclusion

This study presents a biologically grounded, reinforcement
learning-driven computational framework that models cognition as
a dynamic, energy-constrained process of neural synchronization.
By integrating real EEG and fMRI data with oscillatory neural
models and adaptive control, the framework captures both the
temporal precision of phase dynamics and the spatial organization
of BOLD activation. It successfully simulates cognitive states such
as rest, multitasking, and focused attention, with agents learning to
modulate input to maintain optimal synchrony while minimizing
energetic cost.

The model offers new insights into the neural and metabolic
dynamics of cognition, validating its predictions through alignment
with empirical data. Circular statistics revealed subtle yet meaningful
differences in phase coordination across cognitive states, while spatial
analyses using GLMs and ICA confirmed the emergence of structured,
functionally relevant brain networks.

These findings provide a foundation for future neuroadaptive
technologies, including closed-loop brain-computer interfaces and
energy-efficient artificial intelligence systems capable of responding
to shifting cognitive demands. The framework also has potential
applications in studying neurological disorders marked by impaired
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synchronization and cognitive regulation, such as ADHD,
schizophrenia, or dementia.

By merging biologically inspired synchronization principles with
reinforcement-based adaptation, this model offers a novel and scalable
approach for understanding the emergence, regulation, and disruption
of thought in both healthy and clinical populations.
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