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Introduction: Understanding the cognitive process of thinking as a neural 
phenomenon remains a central challenge in neuroscience and computational 
modeling. This study addresses this challenge by presenting a biologically grounded 
framework that simulates adaptive decision making across cognitive states.
Methods: The model integrates neuronal synchronization, metabolic energy 
consumption, and reinforcement learning. Neural synchronization is simulated using 
Kuramoto oscillators, while energy dynamics are constrained by multimodal activity 
profiles. Reinforcement learning agents—Q-learning and Deep Q-Network (DQN)—
modulate external inputs to maintain optimal synchrony with minimal energy cost. 
The model is validated using real EEG and fMRI data, comparing simulated and 
empirical outputs across spectral power, phase synchrony, and BOLD activity.
Results: The DQN agent achieved rapid convergence, stabilizing cumulative 
rewards within 200 episodes and reducing mean synchronization error by 
over 40%, outperforming Q-learning in speed and generalization. The model 
successfully reproduced canonical brain states—focused attention, multitasking, 
and rest. Simulated EEG showed dominant alpha-band power (3.2 × 10−4 a.u.), 
while real EEG exhibited beta-dominance (3.2 × 10−4 a.u.), indicating accurate 
modeling of resting states and tunability for active tasks. Phase Locking Value 
(PLV) ranged from 0.9806 to 0.9926, with the focused condition yielding the 
lowest circular variance (0.0456) and a near significant phase shift compared to 
rest (t = −2.15, p = 0.075). Cross-modal validation revealed moderate correlation 
between simulated and real BOLD signals (r = 0.30, resting condition), with 
delayed inputs improving temporal alignment. General Linear Model (GLM) 
analysis of simulated BOLD data showed high region-specific prediction 
accuracy (R2 = 0.973–0.993, p < 0.001), particularly in prefrontal, parietal, and 
anterior cingulate cortices. Voxel-wise correlation and ICA decomposition 
confirmed structured network dynamics.
Discussion: These findings demonstrate that the framework captures both 
electrophysiological and spatial aspects of brain activity, respects neuroenergetic 
constraints, and adaptively regulates brain-like states through reinforcement 
learning. The model offers a scalable platform for simulating cognition and 
developing biologically inspired neuroadaptive systems.
Conclusion: This work provides a novel and testable approach to modeling 
thinking as a biologically constrained control problem and lays the groundwork 
for future applications in cognitive modeling and brain-computer interfaces.

KEYWORDS

reinforcement learning, neuronal synchronization, EEG-fMRI integration, Kuramoto 
oscillator, cognitive modeling, energy-efficient computation, brain-inspired AI, 
Q-learning

OPEN ACCESS

EDITED BY

Hassene Seddik,  
The National Higher Engineering School of 
Tunis (ENSIT)–University of Tunis/RIFTSI 
Laboratory (Smart Robotic, Friability and 
Signal and Image Processing Research 
Laboratory), Tunisia

REVIEWED BY

Yikang Liu,  
United Imaging Intelligence, United States
Kusumika Krori Dutta,  
Dayananda Sagar College of Engineering, 
India

*CORRESPONDENCE

Horace T. Crogman  
 hcrogman@csudh.edu

RECEIVED 22 April 2025
ACCEPTED 22 August 2025
PUBLISHED 16 October 2025

CITATION

Hall R, Jackson M, Maleki M and 
Crogman HT (2025) Modeling cognition 
through adaptive neural synchronization: a 
multimodal framework using EEG, fMRI, and 
reinforcement learning.
Front. Comput. Neurosci. 19:1616472.
doi: 10.3389/fncom.2025.1616472

COPYRIGHT

© 2025 Hall, Jackson, Maleki and Crogman. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  16 October 2025
DOI  10.3389/fncom.2025.1616472

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2025.1616472&domain=pdf&date_stamp=2025-10-16
https://www.frontiersin.org/articles/10.3389/fncom.2025.1616472/full
https://www.frontiersin.org/articles/10.3389/fncom.2025.1616472/full
https://www.frontiersin.org/articles/10.3389/fncom.2025.1616472/full
https://www.frontiersin.org/articles/10.3389/fncom.2025.1616472/full
mailto:hcrogman@csudh.edu
https://doi.org/10.3389/fncom.2025.1616472
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2025.1616472


Hall et al.� 10.3389/fncom.2025.1616472

Frontiers in Computational Neuroscience 02 frontiersin.org

1 Introduction

Thinking, a complex and dynamic process underpinning human 
cognition, emerges from the intricate interplay of neural activity, 
sensory inputs, and energy dynamics. This interplay not only enables 
coherent thought but also facilitates adaptive decision-making and 
learning. Recent advances in neuroscience have highlighted the 
importance of neuronal synchronization where neurons fire in 
coordinated patterns—as a key mechanism underlying cognitive focus 
and mental coherence. However, the brain must strike a delicate 
balance between maintaining this synchronization and conserving 
metabolic resources, as neural activity demands significant energy 
expenditure (Pinker, 2011; Raichle, 2010).

Modern neuroimaging tools, such as electroencephalography 
(EEG) and functional magnetic resonance imaging (fMRI), provide 
unprecedented insights into the neural correlates of thinking by 
capturing spatiotemporal patterns of brain activity. These technologies 
reveal how neuronal networks synchronize during tasks requiring 
attention, learning, and decision-making. Despite these advances, 
there remains a lack of an integrated mathematical framework that 
combines neuronal synchronization, energy consumption, and 
adaptive behavior to model the thinking process comprehensively 
(Neurolaunch, n.d.).

This study proposes a novel framework to bridge this gap by:

	 1.	 Modeling neuronal synchronization as a quantifiable measure 
of cognitive focus, drawing upon the Kuramoto model for 
coupled oscillatory systems (Strogatz, 2000).

	 2.	 Quantifying energy dynamics in cognitive processes using 
neuroimaging data, particularly EEG and fMRI, to map 
transitions between cognitive states.

	 3.	 Implementing reinforcement learning through Q-learning to 
simulate adaptive decision-making, where the brain learns to 
optimize cognitive states for efficiency and task performance.

By integrating these elements, the proposed framework seeks to 
replicate key features of human thinking through simulations, offering 
new avenues for understanding and optimizing cognitive function. 
The potential applications of this model range from enhancing 
educational methodologies to developing neuroadaptive technologies 
and addressing cognitive disorders.

The integration of concepts from quantum psychology also 
informs this framework, emphasizing the non-linear, probabilistic 
nature of cognitive states and their transitions. This perspective 
suggests that human thought processes might share parallels with 
quantum systems, wherein decision-making and cognitive shifts occur 
within complex, multidimensional landscapes (Neurolaunch, n.d.). 
These insights provide an additional layer to the exploration of 
thinking, underscoring the need for interdisciplinary approaches to 
unravel the mysteries of human cognition. To model thinking in a 
biologically realistic way, it is essential to integrate mechanisms of 
neuronal synchronization, adaptive control, and metabolic energy 
constraints. The brain continuously balances these dimensions—
organizing neural activity (synchronization), responding to stimuli 
(adaptation), and preserving efficiency (energy use). This study seeks 
to capture that balance by combining dynamic synchronization 
modeling, reinforcement learning, and real neurophysiological data 
into a unified simulation of cognitive state transitions.

2 Literature review

Understanding human thinking as a process of neuronal 
synchronization influenced by external stimuli and cognitive 
demands has been a focal point in neuroscience and computational 
modeling. Research has demonstrated that neuronal synchronization, 
particularly in specific frequency bands such as alpha (8–12 Hz) and 
gamma (30–100 Hz), plays a critical role in cognitive functions like 
attention, memory, and perception (Garrett et al., 2024; Gupta and 
Bahmer, 2021; Scheeringa et  al., 2011). Functional magnetic 
resonance imaging (fMRI) studies have shown that as cognitive tasks 
become more difficult, neural activity—especially in the prefrontal 
cortex—increases, indicating heightened mental engagement (Crick, 
1996; Pagnoni et al., 2008; Kuhl, 2010; Nani et al., 2019; Dai, 2024). 
This association between neural activation and mental processing 
supports the idea that thinking can be tracked through patterns of 
brain activity.

A useful analogy compares this to the random motion of electrons 
in a metal. When an electric field is applied, electrons align in a 
specific direction. Similarly, neurons in the brain fire randomly until 
external stimuli—combined with memory and attention—cause them 
to synchronize (Crogman and Jackson, 2023). This synchronization 
marks the emergence of focused thought. For example, when a person 
sees something that captures their interest, their attention shifts, and 
a new thought process begins. In this framework, multitasking is less 
about simultaneous thought and more about rapid shifts in focus 
driven by competing stimuli (Crogman and Jackson, 2023).

Synchronization facilitates communication between brain regions, 
enabling efficient information processing. Computational models, 
such as those based on the Kuramoto oscillator, have been employed 
to simulate synchronization dynamics in neural populations 
(Kuramoto, 1975). Recent work has further emphasized how local and 
global synchrony govern attention-related cortical activation 
(Gundlach et al., 2024). However, while these studies underscore the 
importance of synchronization, they often do not address the 
emergence of this coherence from stochastic, diffuse neural states, 
particularly in the context of human thinking (Fries, 2005; Singer, 
1999; Breakspear et al., 2010).

The brain is frequently conceptualized as a noisy system, with 
random neural firings providing a foundation for its dynamical 
behavior. Studies have explored how stochastic neural activity can 
transition into coherent states driven by task demands or external 
influences. Deco et  al. (2009) discussed how these transitions 
underpin dynamic brain states, while Beggs and Plenz (2003) 
suggested that the brain operates near criticality, where the balance 
between noise and order optimizes computational efficiency. More 
recent findings also suggest that shifts in cortical synchrony can mark 
transitions into different states of awareness or readiness for action 
(Arzate-Mena et al., 2022). Despite these insights, explicit modeling 
of cognitive states and their transitions from randomness to 
synchronization remains underdeveloped.

Physical analogies have long been used to describe neural systems. 
For instance, models liken synchronization in the brain to physical 
systems such as magnetization in the Ising model or coupled 
oscillators in dynamic systems (Hopfield, 1982; Haken, 1983). These 
analogies illustrate how external forces, such as sensory input or 
intent, guide independent systems toward coherence. However, the 
specific application of these physical analogies to model human 
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thinking as transitions between random and synchronized neural 
states is relatively unexplored.

Reinforcement learning has also been employed to simulate 
decision-making and adaptive behavior in neural systems. These 
models focus on optimizing actions based on rewards but typically do 
not incorporate the underlying synchronization dynamics or energy 
efficiency during cognitive transitions (Sutton and Barto, 1998). More 
recently, deep reinforcement learning has been used to decode and 
respond to attention states in real-time, demonstrating feasibility for 
adaptive brain-computer interfaces (Rehman et al., 2025; Botvinick 
et  al., 2020). While reinforcement learning excels at simulating 
adaptive processes, it has yet to be  integrated with neural 
synchronization and energy modeling to fully capture the complexity 
of thinking.

This study builds upon these foundations to develop a novel 
computational framework that integrates synchronization dynamics, 
energy consumption, and reinforcement learning to simulate human 
thinking. This framework models thinking as a transition from 
random, diffuse neural states to synchronized patterns of activity. 
Using the Kuramoto model, neurons are treated as coupled oscillators, 
with synchronization representing unified cognitive states. Unlike 
prior studies, this approach explicitly simulates how random neural 
activity aligns under the influence of external stimuli, memory recall, 
or intent. Furthermore, it incorporates energy dynamics by utilizing 
EEG and fMRI data to quantify the metabolic cost of transitioning 
between cognitive states, addressing gaps in prior work that have 
largely considered synchronization and energy efficiency in isolation 
(Schoknecht et al., 2025; Universität Leipzig, 2025; Zandt et al., 2011; 
Raichle, 2010).

To simulate adaptive thinking, the framework employs 
Q-learning, a form of reinforcement learning, to optimize 
synchronization and energy use during cognitive transitions. The 
Q-learning model links synchronization dynamics and energy 
consumption to rewards, providing a novel method for simulating the 
adaptive nature of human thought. Recent research has shown that 
reinforcement learning models applied to EEG and spiking neural 
networks can capture task dynamics and delay-adaptive behaviors in 
biologically plausible ways (Nadafian et al., 2024; Zhang et al., 2024). 
Additionally, reinforcement learning has been shown to operate 
effectively near the edge of synchronization transitions, which is 
precisely the regime modeled by the Kuramoto framework 
(Khoshkhou and Montakhab, 2022). By drawing on publicly available 
EEG and fMRI datasets for validation, this study ensures robust and 
reproducible results, distinguishing itself from purely theoretical 
models. The use of interdisciplinary analogies—such as electron 
alignment or magnetic domains—further enriches the conceptual 
understanding of synchronization, emphasizing its universality across 
complex systems.

This framework advances the study of human cognition by 
integrating neuronal synchronization, energy modeling, and 
adaptive decision-making into a unified computational paradigm. 
It addresses gaps in existing research by simulating transitions 
from random neural states to focused cognitive states and 
exploring the energy efficiency of these processes. Recent reviews 
highlight the importance of such integrative models in 
computational neuroimaging and emphasize that combining 
oscillations, mutual information, and synchrony will be critical for 
the next generation of brain-inspired models (Dai, 2024; Loosen 

et  al., 2024). This work has significant implications for 
understanding cognitive processes, including attention, 
multitasking, and disorders of thought. While prior studies have 
independently examined neuronal synchrony, energy modeling, or 
reinforcement learning in neural contexts, our work uniquely 
integrates all three. The novelty of this study lies in the synthesis of 
Kuramoto-based synchrony modeling, an energy cost function 
informed by EEG and fMRI, and biologically constrained 
reinforcement learning. This allows us to simulate how cognitive 
states evolve dynamically under task and energy demands—an area 
not fully explored in existing models.

3 Methods

This study employs publicly available datasets and computational 
modeling to explore the dynamics of thinking, focusing on the 
interplay between neuronal synchronization, energy consumption, 
and adaptive decision-making. The methodology involves three main 
phases: acquiring and preprocessing neuroimaging data, developing 
computational models, and conducting simulations to validate the 
framework. The description of the Kuramoto oscillator modeling, 
reinforcement learning integration, and reward function design was 
initially written by the authors and partially edited using OpenAI 
ChatGPT (GPT-4, April 2024) to enhance clarity. All underlying 
algorithms, equations, and simulation results were developed and 
validated independently by the authors. The AI tool did not contribute 
to the scientific interpretation, data analysis, or experimental design.

3.1 Theoretical framework

Human thinking can be  viewed as a process of neural 
synchronization, transitioning from stochastic, diffuse activity to 
coherent, focused states. At its core, this process can be modeled as a 
system of coupled oscillators. Neurons, operating at their natural 
frequencies, represent random background activity when 
uncoordinated. However, during focused thought, external forces 
such as sensory input or intentional focus act to synchronize these 
neurons, creating a coherent frequency that represents 
unified cognition.

This phenomenon is analogous to physical systems in which 
independent components align under external influence. For example, 
electrons align in response to an electric field, and magnetic domains 
synchronize under external magnetization (Crogman and Jackson, 
2023). Similarly, in the brain, sensory stimuli or task demands act as 
forces that drive neurons into alignment, forming the neural basis of 
focused thought. By employing the Kuramoto model of coupled 
oscillators, we mathematically represent this transition, exploring how 
synchronization emerges and is maintained.

Through this approach, the study aims to capture the underlying 
principles of human cognition, offering insights into how the brain 
organizes immense neural complexity into coherent states. 
Furthermore, modeling these transitions provides a foundation for 
understanding not only normal cognitive processes such as attention 
and multitasking but also pathological conditions where 
synchronization may be disrupted, such as in ADHD, schizophrenia, 
or other cognitive disorders.
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Figure 1 presents an overview of the theoretical model underlying 
this study. At the core of the framework is the hypothesis that thinking 
emerges from initially random neuronal firing that becomes 
synchronized in response to external stimuli. We  represent this 
synchronization using the Kuramoto model of coupled oscillators, 
allowing us to simulate collective neural dynamics. The resulting signals, 
interpreted as EEG power and fMRI-derived BOLD responses, serve as 
energy-related features of the system. These are fed into a reinforcement 
learning agent that adaptively selects external stimuli to optimize a 
reward function based on synchronization accuracy and energy 
efficiency. This closed-loop system aims to replicate the brain’s dynamic 
regulation of cognitive states.

3.2 Mathematical formulation

3.2.1 Phase dynamics and synchronization
To model neuronal synchronization, we implemented the 

Kuramoto model of coupled oscillators, where each oscillator’s phase 
evolves according to intrinsic frequency, coupling interactions, and 
external input (Equation 1):

	
( ) ( )θ ω θ θ

=
= + − +∑

1
sin

N

i i j i i
j

K I t
N

	
(1)

where:
θi​:Phase of the −i th neuron.
ωi : Natural frequency of the −i th neuron.
K : The coupling strength, determining how strongly each neuron 

is influenced by others. A higher K  leads to stronger interactions and 
faster synchronization.

( )iI t : External stimulus acting on the −i th neuron.

See appendix for a simple derivation of (1) from the coupled 
oscillator equations. This formulation captures three essential features 
of neuronal systems:

	 1.	 Intrinsic Variability: Each neuron oscillates at its own natural 
pace (ωi ​),

	 2.	 Coupling: Neurons influence one another based on their 
phase difference — when > 0K , this promotes  
synchronization,

	 3.	 External Modulation: The input ( )iI t  allows dynamic control 
over synchrony and models how attention or sensory stimuli 
influence cortical activity.

As neurons interact, they may entrain to a common rhythm, depending 
on the distribution of their frequencies, the value of K , and external 
stimulation. Low K  values produce desynchronized, resting-like activity, 
while higher values or targeted input can drive focused, coherent oscillations.

Synchronization in cortical networks has been strongly linked to 
cognitive function. Studies have shown that phase coherence 
increases during attention, working memory, and task engagement 
(Fries, 2005; Siegel et al., 2012). By modeling neurons as phase-locked 
oscillators, this framework simulates the emergence of coherent 
network states that underlie mental focus or distraction.

In this framework, the order parameter R(t) (see Section 3.2.2) is 
used to quantify the global synchrony of the population and serves as 
a proxy for cognitive state.

3.2.2 Order parameter
To quantify the level of collective neural synchronization, 

we’employ the Kuramoto order parameter R (t), which captures 
the degree of phase alignment across a network of N coupled 
neural oscillators. The level of global synchrony across oscillators 

FIGURE 1

Conceptual framework for modeling cognition as synchronized neuronal dynamics. Random firing evolves into organized brain states via the 
Kuramoto model, with EEG/fMRI features guiding a reinforcement learning agent to optimize external input based on energy and synchrony.
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is quantified using the Kuramoto order parameter ( )R t , as shown 
in Equation 2, which measures the magnitude of phase alignment:

	
( ) ( )θ

=
= ∑

1

1 j

N
i t

j
R t e

N
	

(2)

where ( )θ j t  is the instantaneous phase of neuron j , and ( )θ ji te  
maps that phase to the unit circle in the complex plane.

The order parameter takes values in the range [0,1] where:

	•	 R(t) ≈ 0 reflects a state of complete phase desynchronization, i.e., 
randomly firing neurons;

	•	 R(t) ≈ 1 corresponds to perfect synchrony, where most neurons 
are phase-aligned.

This metric provides a macroscopic, time-resolved measure of 
the system’s coherence. Unlike simple spike counts or firing 
rates, ( )R t  captures the dynamic coordination of neuronal 
populations—a property that has been increasingly 
recognized as essential for understanding cognition and 
conscious processing.

Neuroscientific literature strongly supports the role of phase 
synchrony in brain function. Varela et  al. (2001) proposed phase 
synchronization as a mechanism for large-scale integration of 
distributed neural assemblies. Fries (2005) further argued that 
coherence across frequency bands facilitates effective communication 
between brain regions—a concept known as “communication through 
coherence.” Breakspear et al. (2010) demonstrated that phase-based 
synchronization scales with cognitive effort and task complexity, 
suggesting that phase coherence may act as a neural correlate of 
cognitive control.

In our framework, ( )R t  is not only a state variable but also a 
computational goal. It is used:

	•	 As the basis for external stimulation control, guiding the 
reinforcement learning agents;

	•	 In the reward function (penalizing deviation from a target 
synchrony level);

	•	 In the energy function, where rapid changes in ( )R t  contribute 
to metabolic cost;

	•	 For biological validation, via comparison with phase locking 
value (PLV) and circular statistics in real EEG data.

Crucially, this parameter allows us to translate microscopic 
phase activity into a macroscopic cognitive state—such as focused 
attention, multitasking, or rest—enabling direct comparisons 
between simulated and empirical data. By capturing the emergent 
synchrony of neural ensembles, the order parameter 
provides a mechanistic link between phase dynamics and 
cognitive transitions.

The Kuramoto order parameter ( )R t  serves as a global metric 
of phase synchrony across neural oscillators. A high ( )R t  
indicates coherent firing—a hallmark of focused cognitive 
states—while low ( )R t  reflects unstructured activity typical of 
rest or cognitive disengagement. This parameter allows us to 
track transitions between cognitive states and forms the core of 
both the reward and energy functions in our model. By linking 
local phase dynamics to global brain states, ( )R t  provides a 
biologically plausible mechanism for modeling emergent 
thought processes.

3.2.3 Energy function
To model the energetic cost of cognitive processing, we define a 

composite energy function E(t), which accounts for synchronization 
state, transition dynamics, and both local and global neural activity 
(Equation 3):

	
( ) ( ) ( ) ( ) ( )α β γ δ= + + +EEG fMRI

dR t
E t R t P t S t

dt 	
(3)

where:
( )αR t : Baseline energy for maintaining synchronization.

( )
β

dR t
dt

: Energy cost for transitions between 
synchronization states.

( )EEGP t : EEG power, representing local neural activity.
( )fMRIS t : fMRI BOLD signal, representing metabolic activity.

This formulation is inspired by neuroenergetic principles 
articulated in foundational studies (Attwell and Laughlin, 2001; 
Raichle and Mintun, 2006), which emphasize that the brain’s energy 
usage is not only tied to neural activation but also to the transition 
cost—i.e., how rapidly cognitive states shift. In this model:

	•	 The term ( )αR t  reflects the baseline energy required to maintain 
a given level of neural coordination or attention.

	•	 The term ( )βdR t dt  represents the transitional energy cost, 
accounting for the effort involved in switching between states 
(e.g., shifting from rest to focus).

	•	 ( )γ EEGP t  quantifies localized energy expenditure, linked to 
electrical spiking and synaptic transmission.

	•	 ( )δ fMRIS t  captures global metabolic cost, as inferred from 
oxygen consumption and hemodynamic demand.

By integrating these components, Equation 3 provides a 
biologically plausible, continuous estimate of cognitive effort over 
time. This enables the model to simulate and optimize not just neural 
synchrony but also the energetic constraints of real-time brain 
function. In reinforcement learning, this energy term is penalized in 
the reward function to encourage low-cost, high-efficiency cognitive 
states—mimicking how the human brain balances performance with 
fatigue and metabolic load. Equation 3 builds upon prior 
neuroenergetics models (e.g., Attwell and Laughlin, 2001) where 
energy costs are proportional to both signal activity and 

transitiondynamics. Here, R(t) captures synchronization state, dR
dt

 

quantifies neural effort in phase transition, and EEG/fMRI 
components capture local and global energy use.

During agent training and simulation, both ( )EEGP t  and ( )fMRIS t  
are derived from model-generated signals. Specifically, ( )EEGP t  is 
computed from simulated EEG time series derived from Kuramoto 
oscillator output. The term ( )fMRIS t  is calculated by convolving the 
synchronization signal ( )R t  with a canonical hemodynamic response 
function (HRF), yielding simulated BOLD-like signals. These 
simulated values are used in the energy function and reward signal 
throughout reinforcement learning.

Simulated BOLD time series were generated by applying an HRF 
convolution to the order parameter ( )R t . This allowed us to construct 
voxel-level BOLD dynamics for GLM fitting, independent of real 
fMRI inputs.
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3.2.4 Q-learning and DQN agent design
To simulate adaptive cognitive control, we employ reinforcement 

learning agents that interact with the neural synchronization model. 
These agents observe the current system state—defined by 
synchronization ( )R t , energy cost ( ) ,E t  and task context—and select 
external inputs a to guide the system toward optimal states.

We implement both traditional Q-learning and a deep 
reinforcement learning variant, the Deep Q-Network (DQN). In both 
cases, the agent seeks to maximize a cumulative reward signal by 
learning an action-value function ( ),Q s a , which estimates the 
expected future reward of taking action aaa in state sss.

The Q-values are updated using a temporal-difference learning rule 
(standard Bellman equation) that balances immediate and future rewards, 
following the classical Q-learning formula shown in Equation 4:

	
( ) ( ) ( ) ( )η γ

′

 ← + ′  
′+ −, , max , ,

a
Q s a Q s a r Q s a Q s a

	
(4)

where:
s: Current state, represented as a vector containing ( )R t , ( )E t , and 

optionally task indicators.
a: Action, corresponding to a discrete level of external stimulation.
r: Reward signal derived from synchronization accuracy and 

energy efficiency (see Section 3.2.5).
γ: Discount factor that controls the importance of future rewards.
η: Learning rate for value updates.
s′: Next state resulting from action a.
In the DQN model, the Q-value function is approximated using a 

neural network ( )θ, ; ,Q s a  where θ are the learnable parameters. The 
network is trained to minimize the temporal-difference error between 
predicted and target Q-values, using experience replay and fixed target 
networks to stabilize learning. This enables the agent to handle high-
dimensional state inputs (e.g., continuous EEG-derived features) and 
learn more generalizable control policies.

The agent operates in a closed-loop simulation where it observes 
the synchronization-energy state of the system and chooses actions to 
drive the system toward a target synchronization level (e.g., 

= 0.9targetR ) while minimizing cumulative energy cost. Over time, the 
agent learns which input sequences yield optimal balance between 
coherence and effort.

Reinforcement learning is particularly well-suited for modeling 
cognition as a goal-directed, reward-sensitive process. In biological 
systems, attention and effort are modulated by reward-driven adaptation 
(Aston-Jones and Cohen, 2005). In our model, RL allows for a 
biologically plausible simulation of how cognitive states are actively 
regulated by interacting with environmental and internal dynamics.

3.2.5 Reward function
The reward function is designed to incentivize the agent to maintain 

high neural synchronization while minimizing metabolic cost. It 
captures the fundamental trade-off in cognitive control between focus 
(neural coherence) and effort (energy expenditure).

The agent receives a scalar reward at each step based on a 
combination of synchronization error and energy cost, as defined in 
Equation 5:

	 ( ) ( )( )= − − +tagretr R R t E t 	
(5)

where:
( )−targetR R t : Penalizes deviations from the target 

synchronization level.
targetR  is the desired synchrony level for the current cognitive.
( )E t  is the energy cost, as defined in Equation 3.

This formulation penalizes the agent for two types of deviation:

	 1.	 Synchronization Error: The absolute difference ( )−targetR R t  
quantifies how far the system is from its goal state.

	 2.	 Metabolic Load: The energy term ( )E t  incorporates both 
dynamic and signal-derived energy demands from EEG and 
fMRI features.

Quantifying energy consumption is biologically motivated by the 
brain’s high metabolic demand and its optimization of energy usage 
during cognitive tasks (Attwell and Laughlin, 2001; Raichle, 2010). 
Including EEG and fMRI features within the energy function allows 
the model to account for both local and global neural activity, 
providing a realistic constraint on neural synchrony and supporting 
the simulation of energy-efficient cognitive control. targetR  was set 
based on empirical PLV estimates for each cognitive state. Equal 
weighting was chosen as a baseline. While the current reward function 
uses a simple additive structure with equal weighting, future iterations 
will incorporate:

	•	 Empirical tuning or meta-learning of weights (e.g., via grid 
search or Bayesian optimization),

	•	 Task-dependent weighting schemes (e.g., greater penalty for 
energy use during prolonged multitasking).

These additions will allow the model to learn context-specific 
cognitive strategies aligned with both biological and behavioral  
efficiency.

3.3 Simulation procedure

The computational framework integrates three components: 
neuronal synchronization, energy consumption, and adaptive 
decision-making. Synchronization is modeled using the 
Kuramoto framework, energy consumption is informed by fMRI-
derived metabolic activity, and reinforcement learning simulates 
adaptive behavior. Additionally, we  implement three distinct 
firing rate distributions—Intrinsic, Gaussian, and Poisson—to 
investigate how variability affects synchronization and 
energy dynamics.

The computational framework used in this study is illustrated in 
Figure 2. A simulated input layer provides synthetic EEG- and fMRI-
like signals ( EEGP , fMRIS ) to a network model based on Kuramoto 
oscillators, which simulates neuronal synchronization dynamics. The 
model output includes two key metrics: synchronization level ( )R t  
and energy consumption ( )E t  computed via a biologically inspired 
energy function. This energy model integrates simulated neural 
synchrony, its rate of change, and synthetic physiological activity to 
approximate metabolic cost. A reward function then penalizes 
deviations from a target synchronization level and high energy 
expenditure. The resulting reward guides learning in the reinforcement 
learning loop (described in Section 2.3). This framework allows the 
system to adaptively learn coordination strategies based on synthetic 
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inputs, while later validating its outputs against empirical EEG and 
fMRI data (see Figure 3).

3.4 Neuronal synchronization

Synchronization is modeled using a Kuramoto-based approach, 
informed by EEG data, to simulate transitions between synchronized 
(focused) and desynchronized (multitasking or resting) states. Three 
models of neuronal firing rates are used:

	•	 Intrinsic Model:
	o	 Neuronal frequencies are sampled from a normal distribution 

[N(10,2)], representing natural oscillatory behavior.
	o	 This serves as a baseline for comparison, simulating moderate 

variability typically observed in resting and cognitive tasks.
	•	 Gaussian Model:

	o	 Firing rates are sampled from a normal distribution with 
means ranging from 5 to 20 Hz and standard deviations 
ranging from 1 to 5 Hz, reflecting realistic clustering and 
moderate variability in neuronal firing rates.

	o	 This model mimics biological systems and explores how 
moderate variability supports synchronization and 
energy efficiency.

	•	 Poisson Model:
	o	 Firing rates are sampled uniformly over the range 5 to 20 Hz, 

introducing high variability and randomness.
	o	 This model explores the effects of unstructured variability, 

representative of early neural development or 
pathological conditions.

For all three models, coupling strength (K) and external stimuli 
were adjusted to simulate three cognitive conditions:

	•	 Focused Condition: Strong coupling (K = 10) and a uniform 
external input (5 Hz) to simulate high coherence during 
focused attention.

	•	 Multitasking Condition: Moderate coupling (K = 5) and split 
stimuli (+5 Hz to half the neurons, −5 Hz to the other half) to 
mimic competing inputs during multitasking.

	•	 Resting Condition: Weak coupling (K = 1) and no external input 
(0 Hz) to simulate loosely coupled dynamics in the resting state.

The Intrinsic model represents baseline resting behavior with 
natural variability. Gaussian firing reflects clustered neuronal 
populations, common in organized neural networks. Poisson firing 
simulates high-variability scenarios, such as early development or 
pathology (Beggs and Plenz, 2003). PEEG was derived from the 
instantaneous phase and coherence of the Kuramoto model 
output using Hilbert transform-based synthesis. This signal was 
used to mimic raw EEG dynamics for energy and synchronization  
evaluation.

3.4.1 Energy consumption
Energy consumption was modeled as a function of neural 

synchronization ( )R t , its temporal derivative /dR dt , and EEG and 
fMRI-like activity features EEGP  and fMRIS , using Equation 3. As 
shown in Figure 2, all features used in simulation were synthetically 
generated to reflect biologically plausible ranges (e.g., 0.4–0.8 for EEG 
power, 0.3–0.7 for BOLD signal intensity). In comparative experiments 
(Figure 3), we computed a parallel energy profile using real EEG and 
fMRI data: real EEGP  and fMRIS  values were inserted into the same 
energy model alongside simulated ( )R t , allowing us to assess how 
closely the simulated energy trajectory matches empirical neural 
signals. The weighting parameters were set to α = 10.01, β = 5.00, 
γ = 3.00, and δ = 2.00 to balance the influence of synchrony, its rate of 
change, and local/global activity features to the overall energy estimate.

FIGURE 2

Simulation framework for reinforcement learning-based neural control. A simulated input layer provides synthetic EEG- and fMRI-like features (PEEG, 
SfMRI) to the Kuramoto-based network model. Synchronization ( )R t  and energy ( )E t  are computed and passed to a reward function guiding agent 
behavior. All components in this loop use simulated signals. Real EEG and fMRI data are used separately for validation, as shown in Figure 3.
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3.4.2 Reinforcement learning
We implemented a reinforcement learning (RL) framework to 

simulate adaptive cognitive decision-making. As illustrated in 
Figure 3, this framework integrates real EEG and fMRI signals into a 
dynamic agent-environment loop, enabling an agent to optimize brain 
synchronization while minimizing metabolic cost. States in the model 
are defined by synchronization levels ( ( )R t ) derived from EEG power 
using a Kuramoto oscillator model, energy consumption ( ( )E t ) 
derived from EEG (PEEG) and fMRI (SfMRI) signals, and the task 
condition (focused, multitasking, or resting). These biologically 
grounded states reflect real cognitive demand and physiological cost.

In this study, the agent refers to a single reinforcement learning 
controller, either a tabular Q-learning model or a Deep Q-Network 
(DQN). It observes cognitive state variables such as synchronization 
level and energy cost and takes actions to modulate external input. 
The agent operates independently—there is no communication or 
collaboration between multiple agents. Its coordination is internal, 
aiming to optimize synchrony while minimizing metabolic  
expenditure.

The agent’s actions simulate modulation of external inputs such as 
stimulus intensity or frequency, or adjustments to the coupling 
constant K in the Kuramoto model. These actions affect the resulting 
neural synchronization dynamics and energy expenditure, which 
define the next state. The agent is rewarded at each time step based on 
a scalar reward function defined as: ( ) ( )( )= − − +|| || ,targetr R R t E t  
where targetR  is the desired synchronization level. This reward 
structure encourages the agent to approach stable, efficient 
coordination states with minimal physiological strain.

A classical Q-learning agent was implemented using a discretized 
state-action table, with fine-grained binning of R(t) and E(t), an 
ε-greedy exploration strategy, and an expanded action space. This was 
enhanced by increasing the number of episodes to promote learning 
stability. To generalize beyond discretized states, we implemented a 
Deep Q-Network (DQN) agent with a neural network to approximate 

Q-values. The DQN architecture included two hidden layers with 
ReLU activations and an output layer predicting Q-values for each 
action. It was trained using an experience replay buffer and the 
Adam optimizer.

Real EEG and fMRI data (EEG_P3_BOLD_300x3_Balanced.csv) 
were not used to drive or train the model, but were processed 
separately to extract empirical features EEGP  ​ and fMRIS ​. These 
features were passed into the same energy function used in the 
simulation pipeline and compared to model-generated outputs to 
assess the biological plausibility of the learned policy. This two-track 
framework—simulation-based learning and real-data-informed 
validation—demonstrates that reinforcement learning can discover 
control strategies that align with real neural dynamics.

By comparing learned synchronization–energy trajectories 
against empirical EEG and fMRI-derived profiles, we validated the 
system’s ability to mimic biological coordination patterns. This 
approach models adaptive decision-making with potential applications 
in neuroadaptive interfaces and brain-computer interaction.

3.5 Real EEG and fMRI integration

Real EEG and fMRI data were obtained from the NatView dataset 
(Subjects 01, 03, and 22). These real signals were not used during agent 
training or optimization. Instead, they served as validation 
benchmarks to evaluate the biological plausibility of simulated 
outputs. Specifically, we  compared spectral profiles, PLV, circular 
statistics, and GLM-predicted BOLD activity between real and 
simulated signals.

3.5.1 Data acquisition and preprocessing
To support multimodal modeling of cognitive states (focused 

attention, resting, and multitasking), EEG and fMRI data were 
extracted from the NATVIEW dataset, structured in accordance with 

FIGURE 3

Reinforcement learning framework for neuroadaptive control. The agent uses EEG and fMRI-derived features—synchronization ( )R t , energy ( )E t , and 
task context—to select stimuli that modulate neural activity. A Kuramoto-based model updates system dynamics, and a reward function guides the 
agent to optimize cognitive performance with minimal energy cost.
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the Brain Imaging Data Structure (BIDS) format. Data were retrieved 
using AWS CLI and Git Bash from a remote repository.

Functional neuroimaging data were obtained from the publicly 
available NatView dataset.1 We selected three subjects from the dataset 
(Subject 01, Subject 03, and Subject 22), each of whom participated in 
tasks categorized as Focused, Resting, and Multitasking. For each 
subject, we extracted EEG data (in .csv format) and fMRI BOLD data 
(in .nii format). EEG analysis was centered on the P3 electrode, a site 
widely associated with attentional modulation and decision-
making processes.

To retain maximum spatial resolution, we worked directly with 
the raw voxelwise fMRI BOLD signals and excluded atlas-parcellated 
or region-averaged derivatives. All data were resampled to a common 
temporal resolution of 0.01 s, and aligned across EEG and fMRI for 
each condition. For each cognitive state, we  selected 300 time-
synchronized samples, resulting in 900 integrated time points per 
subject. Data preprocessing—including temporal alignment, 
normalization, and merging of multimodal signals—was conducted 
in Python using standard libraries such as pandas and numpy. This 
integrated dataset was used as input for simulation and reinforcement 
learning phases.

EEG signals were normalized and aligned using Python-based 
tools, focusing on the P3 electrode without additional filtering or 
frequency band extraction. Artifact correction and spectral analysis 
are identified as future enhancements to the preprocessing pipeline. 
fMRI data were spatially smoothed, normalized, and subjected to 
region-of-interest (ROI) extraction using standard neuroimaging 
pipelines. fMRI signals were extracted as raw BOLD data and 
normalized for time alignment with EEG recordings. These steps 
ensured the data were clean, standardized, and ready for integration 
into computational simulations.

3.5.2 Simulations
Simulations replicate neural activity for the three cognitive 

scenarios—focused attention, multitasking, and resting-state 
conditions. Each model (Intrinsic, Gaussian, and Poisson) is used to 
simulate synchronization and energy dynamics under these 
conditions. Outputs, including synchronization levels and energy 
consumption, are compared against trends observed in the EEG and 
fMRI datasets to validate the computational framework. The 
reinforcement learning component is evaluated based on its ability to 
adapt to stimuli and reduce task-switching costs over time. 
Performance metrics include synchronization efficiency, energy 
expenditure, and adaptability.

3.5.3 Data analysis
Model outputs are compared with empirical EEG and fMRI data. 

EEG synchronization is quantified using metrics such as phase-
locking values (PLVs) and frequency band power. fMRI data is 
analyzed using the General Linear Model (GLM) to identify task-
related activations in key brain regions. Statistical tests, including 
paired t-tests and ANOVA, assess differences across task conditions 
and evaluate the alignment between simulated and empirical data. 
This approach ensures robust and reproducible results, leveraging 

1  https://fcon_1000.projects.nitrc.org/indi/retro/nat_view.html

publicly available datasets without requiring direct human 
participation or IRB approval.

Selection criteria emphasize datasets with high-quality 
preprocessing, including artifact removal and motion correction, to 
ensure reliability. EEG data will capture temporal synchronization 
patterns, while fMRI BOLD signals will provide insights into 
metabolic activity in brain regions associated with cognition, such as 
the prefrontal cortex and parietal lobe.

Preprocessing for EEG data will include artifact correction using 
tools like EEGLAB or MNE-Python and spectral analysis to extract 
relevant frequency bands, such as alpha and beta. For fMRI data, 
spatial smoothing, normalization, and region-of-interest (ROI) 
extraction will be performed using standard neuroimaging pipelines. 
These preprocessing steps will ensure that the data is clean, 
standardized, and ready for integration into computational models.

4 Results

4.1 Simulated data

4.1.1 Analysis of synchronization and energy 
consumption in intrinsic, Gaussian, and Poisson 
models

The intrinsic model uses frequencies sampled from a normal 
distribution ( )10,2N  to represent natural oscillations. Synchronization 
R(t) in this model is moderate and stable under the focused condition 
due to the uniform external stimulus, which enhances phase coherence. 
In the multitasking condition, the split stimulus reduces synchronization 
as competing stimuli create divergent phase dynamics. The resting 
condition naturally exhibits a decay in synchronization due to the 
absence of external stimuli. Energy consumption E(t) correlates directly 
with synchronization and its rate of change, peaking in the focused 
condition and diminishing in the resting condition, reflecting weaker 
neuronal interactions. Figure  4 shows PLV distributions across 
conditions, with higher PLV during focused attention. GLM analysis 
(Figure 4) revealed prefrontal and parietal activation during focus and 
DMN regions during rest. Paired t-tests confirmed statistical significance 
(p < 0.01).

The simulated results demonstrate distinct patterns of neural 
synchronization ( )R t  and energy consumption ( )E t  across three 
cognitive states: focused attention, multitasking, and resting-state. In 
the focused attention condition, the synchronization parameter ( )R t  
showed high levels, indicating strong neuronal alignment driven by 
uniform external stimuli and high coupling strength (Figure 5). Minor 
fluctuations were observed, likely due to intrinsic variability in 
neuronal frequencies. Correspondingly, energy consumption was 
consistently high, reflecting the metabolic demands of maintaining 
sustained synchronization during focused cognitive tasks.

For multitasking, synchronization levels were moderate, with 
noticeable oscillations that reflected the competition between neural 
sub-networks responding to different stimuli (Figure  6). These 
fluctuations represent the alternation of attention between multiple 
tasks. Energy consumption was the highest among the three 
conditions, driven by frequent transitions between synchronization 

states 
( ) 

  
 

dR t
dt  and the additional metabolic cost of managing 

competing attentional resources.
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FIGURE 5

Predicted vs. observed BOLD time series across regions. GLM results show strong alignment in task-relevant areas like prefrontal and parietal cortices, 
validating the model’s neurovascular plausibility. BOLD signals shown are simulated from model synchrony via HRF convolution, not extracted from 
real fMRI data.

FIGURE 4

Bar graph showing the mean ± SEM of alpha and beta PLVs across three cognitive states. Alpha PLV was consistently higher across conditions, though 
not significantly different (ANOVA, p > 0.05). Table 3. Mean and SEM of PLV values by condition.
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In the resting-state condition, synchronization was minimal, 
characterized by low ( )R t values and irregular oscillations (Figure 7). 
This reflects uncoordinated and random neuronal firing in the absence 
of significant external input. Energy consumption was the lowest in 
this condition, aligning with the brain’s reduced metabolic demand 
during rest.

Overall, focused attention exhibited the highest synchronization 
levels ( )( )≈ 0.8R t  with steady energy consumption, multitasking 
showed moderate synchronization ( )( )≈ 0.5R t R  with variable and 
high energy demands and resting-state demonstrated the lowest 
synchronization ( )( )≈ 0.3R t  and minimal energy use. These trends 
illustrate how cognitive demands influence both neural 
synchronization and metabolic costs. It is important to note that the 

energy values presented in Figures 8, 9 are normalized outputs of our 
simulation-based cost function and do not correspond to absolute 
physical units such as Joules. They allow for relative comparisons of 
metabolic cost across different firing models and cognitive conditions, 
offering insights into the energy efficiency of each configuration.

The Poisson model uses firing rates sampled uniformly within a 
specified range (5-205-20 Hz), resulting in a more random and diverse 
set of intrinsic frequencies (Figure 8). Synchronization in this model 
is the least stable across all conditions. While the focused condition 
improves synchronization slightly due to the uniform external 
stimulus, it remains less stable than in the Gaussian model. In the 
multitasking and resting conditions, synchronization is highly 
unstable, as the diverse firing rates hinder coherent phase alignment. 

FIGURE 7

Multitasking–synchronization and energy consumption. (Left, Synchronization): Moderate synchronization R(t) with pronounced oscillations, 
representing alternating engagement of neural sub-networks during multitasking. (Right, Energy Consumption): High and variable energy 
consumption E(t) highlights the metabolic cost of task switching and managing competing resources.

FIGURE 6

Focused attention–synchronization and energy consumption. (Left, Synchronization): High synchronization R(t) stabilizes with minor oscillations, 
indicating coherent neuronal activity during focused attention. (Right, Energy Consumption): Consistently high energy consumption E(t) reflects the 
metabolic demands of maintaining sustained focus.
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Energy consumption reflects these dynamics, showing erratic 
fluctuations in all conditions. The focused condition exhibits moderate 
but unstable energy, while the multitasking and resting conditions 
show reduced but highly variable energy levels.

The Gaussian model introduces firing rates sampled from a normal 
distribution with specified means (5-205-20 Hz) and standard deviations 
(1-51-5 Hz), adding variability while maintaining a central tendency 
(Figure  9). This model demonstrates better synchronization in the 
focused condition compared to the Poisson model, as the clustering of 
firing rates around the mean promotes coherent phase alignment. In the 
multitasking condition, synchronization diminishes but remains 
smoother and more stable than in the Poisson model. Even in the resting 
condition, some coherence is retained due to the natural clustering effect. 
Energy consumption in the Gaussian model is smoother and less erratic 
compared to the Poisson model, with higher energy in the focused 
condition and reduced but stable energy in the other conditions.

To evaluate the effects of different neuronal firing rate distributions 
on model behavior, three models were compared: the Intrinsic model, 
the Gaussian model, and the Poisson model. Each was tested under 
focused, multitasking, and resting cognitive states. As shown in Table 1, 
the Gaussian model produced the most biologically plausible outcomes, 
with high synchronization during focus and minimal, smooth energy 
decay during resting. In contrast, the Poisson model led to erratic 
dynamics and unstable synchronization, especially under multitasking 
conditions. The Intrinsic model maintained moderate levels across all 
states, making it a useful baseline.

4.1.2 EEG spectral analysis: comparison of raw 
and simulated data

The intrinsic model balances simplicity with moderate 
synchronization and energy dynamics, making it ideal for baseline 
studies where the effects of external stimuli need to be isolated. The 
Gaussian model provides smoother and more stable synchronization 
and energy patterns, making it a good choice for realistic simulations 
of neuronal dynamics where clustering around a mean firing rate is 
expected. Conversely, the Poisson model exhibits highly erratic 

synchronization and energy dynamics due to the uniform distribution 
of firing rates. It is better suited for studying systems with high 
variability or randomness, such as early neural development or 
pathological conditions.

Spectral analysis was performed on both the raw EEG signal and 
the simulated EEG (P_EEG) time series. As illustrated in Figure 10, 
both signals exhibit frequency-domain components in the alpha and 
beta bands. The raw EEG data showed alpha power of 1.98 × 10−4 a.u. 
and beta power of 3.32 × 10−4 a.u., whereas the simulated EEG 
displayed alpha power of 3.2 × 10−4 a.u. and beta power of 
5.6 × 10−5 a.u. (Table 2). This comparison reveals that the simulated 
signal emphasizes alpha band activity more strongly than beta, while 
the raw EEG signal shows the opposite trend, with dominant 
beta activity.

4.2 Real vs. simulated neural 
synchronization

We analyzed synchronization dynamics and energy 
consumption across three cognitive states focused, multitasking, 
and resting by comparing experimental EEG-fMRI data to 
simulated data modeled through the Kuramoto framework. Initially, 
real data exhibited gradual transitions in synchronization (R) and 
energy (E), while simulated data showed early, abrupt spikes in both 
measures, especially within the first 0.5 s. This discrepancy was 
attributed to the absence of biological signal latency in the 
simulated inputs.

To address this mismatch, a 0.2-s delay was introduced at the 
onset of the simulated EEG (PEEG) and fMRI (SfMRI) signals. The 
adjustment improved temporal alignment between real and simulated 
dynamics across all conditions. As illustrated in Figures 11–13, each 
condition was plotted side-by-side, showing both real and simulated 
synchronization and energy curves. In the focused condition 
(Figure  11), real data showed a steady rise and stabilization in 
synchronization, while delayed simulated data more closely mirrored 

FIGURE 8

Resting-state–synchronization and energy consumption. (Left, Synchronization): Low and irregular synchronization R(t) reflects diffuse neuronal 
activity during rest. (Right, Energy Consumption): Minimal energy consumption E(t) aligns with the reduced metabolic demands of the resting brain.

https://doi.org/10.3389/fncom.2025.1616472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hall et al.� 10.3389/fncom.2025.1616472

Frontiers in Computational Neuroscience 13 frontiersin.org

this pattern, although some mismatch in curve shape remained. In the 
multitasking condition (Figure  12), both real and simulated data 
displayed higher variability, suggesting that the simulated system 

could reflect the dynamic switching and cognitive complexity inherent 
in this state. For the resting condition (Figure  13), both real and 
simulated synchronization remained low and stable, although the 

FIGURE 9

Poisson model dynamics across cognitive states. Synchronization ( )R t  and energy ( )E t  show unstable patterns across focused, multitasking, and 
resting conditions, reflecting erratic firing and variable metabolic cost. Energy is shown in normalized units for model comparison.
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simulated system exhibited a slight early onset in ( )R t  before 
correcting due to the imposed delay.

To quantify these observations, we computed the phase lag and 
Pearson correlation between real and simulated synchronization 
curves. The results are summarized in Figure 14. The bar chart on the 
left (Figure 14A) shows that simulated signals lagged real signals by 

1.19 s in the focused condition and 1.60 s in the multitasking 
condition, while the resting condition exhibited a slight lead (−0.23 s). 
The right panel (Figure 14B) displays Pearson correlation coefficients 
for each condition. The resting condition showed a moderate positive 
correlation (r = 0.30), indicating good shape agreement between real 
and simulated signals. In contrast, the multitasking condition had a 

FIGURE 10

Gaussian model dynamics across cognitive states. Focused attention yields high, stable synchronization and energy. Multitasking shows moderate, 
steady values, while rest exhibits gradual decline in synchrony and minimal energy use. Energy is normalized for comparative analysis.
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weak positive correlation (r = 0.23), and the focused condition 
exhibited a negative correlation (r = −0.33), highlighting a mismatch 
in signal shape.

Together, these plots and metrics confirm that while the 
simulation model captures general synchronization dynamics, the 
accuracy varies by cognitive condition. The addition of a signal delay 
substantially improves the realism of the model, particularly for the 
resting and multitasking states.

4.2.1 Phase-locking value and circular phase 
statistics from real EEG

4.2.1.1 Phase locking value (PLV) analysis
To quantify synchronization across brain states, we computed the 

Phase Locking Value (PLV) for alpha (8–12 Hz) and beta (13–30 Hz) 

frequency bands across three cognitive conditions: Focused, Rest, and 
Multitasking. As shown in Figure 15, mean PLV values were high 
across all conditions for both frequency bands. Specifically, alpha PLV 
ranged from 0.9806 (Rest) to 0.9926 (Focused), and beta PLV ranged 
from 0.9025 (Rest) to 0.9185 (Multitasking) (Table 3).

A one-way ANOVA revealed no significant differences between 
conditions for either alpha [F(2, N) = 0.70, p = 0.524] or beta PLV 
[F(2, N) = 1.21, p = 0.342], indicating that synchronization 
strength alone may not distinguish cognitive states. Nevertheless, 
the high PLV values suggest widespread phase consistency, 
motivating deeper  analysis of the structure and variability of 
phase dynamics.

4.2.1.2 Phase difference dynamics and circular statistics
To further investigate synchronization structure, we analyzed the 

instantaneous phase differences for both alpha and beta bands. 
Histograms (Figure 16) and time series plots (Figure 17) were used to 
visualize phase progression. The Focused condition showed narrower 
distributions and smoother trends, suggesting greater phase stability.

To quantify these observations, we computed circular statistics—a 
class of methods specifically designed for angular data like phase. 
These included the circular mean direction and circular standard 
deviation of phase differences across trials (Table 4). Circular statistics 

FIGURE 11

Power spectral density (PSD) analysis of EEG signals. The left panel shows the spectral decomposition of the raw EEG signal, and the right panel shows 
the simulated EEG time series (P_EEG) used in the Kuramoto model. Alpha (8–12 Hz) and Beta (13–30 Hz) bands are shaded in orange and green, 
respectively.

TABLE 2  Quantitative comparison of spectral power in alpha and beta 
bands between raw EEG and simulated P_EEG data.

Frequency band Raw_EEG (a.u.) P_EEG (a.u.)

Alpha (8–12 Hz) 1.98 × 10−4 3.2 × 10−4

Beta (13–30 Hz) 3.32 × 10−4 5.6 × 10−5

Power is expressed in arbitrary units (a.u.).

TABLE 1  Comparison of synchronization and energy dynamics across Intrinsic, Gaussian, and Poisson models under different cognitive states.

Aspect Intrinsic model Gaussian model Poisson model

Firing Rate Distribution Normal ( )10,2N Normal ( ( )µ σ,N  with variability
Uniform ([5,20]) with high 

randomness

Synchronization (Focused) Moderate, stable High, smooth Moderate, erratic

Synchronization (Multitasking) Reduced, moderate Reduced, smoother than Poisson Reduced, highly unstable

Synchronization (Resting) Decay over time Decay, retains slight coherence Rapid decay, high instability

Energy Consumption (Focused) High, stable High, smooth Moderate, fluctuating

Energy Consumption (Multitasking) Reduced, smoother Reduced, less variable Reduced, highly variable

Energy Consumption (Resting) Minimal, stable decay Minimal, smoother decay Minimal, erratic

The Gaussian model shows the most stable and biologically realistic behavior, while the Poisson model is highly variable.
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offer sensitivity to directional alignment and variability that traditional 
linear metrics cannot capture.

A one-way ANOVA applied to these circular metrics showed no 
significant differences across conditions (Table 5). However, pairwise 
comparisons revealed a near-significant trend in the alpha band 
between Focused and Rest conditions [t(6) = −2.15, p = 0.075], 
suggesting that phase alignment may be  more consistent during 
focused attention (Table 6). This directional effect aligns with the 
hypothesis that attentional states modulate phase dynamics, even 
when PLV strength remains statistically similar.

Finally, Figure 18 summarizes the circular standard deviation 
(variability) across conditions for both alpha and beta bands. 
Although differences were not statistically significant, alpha band 
variability was consistently lower, indicating tighter phase locking 
compared to beta.

These findings are consistent with prior studies suggesting that 
alpha phase alignment reflects attentional modulation and cognitive 
control mechanisms (Gundlach et al., 2024; Palva et al., 2024).

Instantaneous phase difference time series for alpha (top row) and 
beta (bottom row) bands in trial 0 for each condition.

4.3 Machine learning classification and 
Q-learning agent performance

A machine learning classifier was trained on extracted features 
(mean_R, std_E, corr_R, phase_lag) from both real and simulated 
datasets. Cognitive condition classification (focused, multitasking, 
resting) achieved 50% accuracy, while real vs. simulated classification 
reached 100% accuracy. This indicates that while simulations resemble 

FIGURE 12

Resting state: Real vs. simulated (delayed) dynamics. (Left) Synchronization ( )R t  shows smoother coordination in real data; simulation overestimates 
amplitude. (Right) Real energy ( )E t  is low and stable, while simulated energy is more variable due to synthetic input.

FIGURE 13

Multitasking state: Real vs. simulated (delayed) dynamics. (Left) Real synchronization ( )R t  shows rapid fluctuations; the simulation captures general 
oscillatory trends. (Right) Real energy ( )E t  varies moderately, while the simulation exaggerates peaks. Delay improves shape alignment.
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the statistical patterns of real data, structural differences are 
still detectable.

A classical Q-learning agent was trained to regulate R(t) and E(t) 
using the reward function ( ) ( )( )= − − +|| ||targetr R R t E t . Over 100 
episodes, the agent learned to reduce reward penalties and align R(t) 
toward the target level (0.1) while maintaining moderate energy 

(Figure 19). Trends in reward, synchronization, and energy over time 
confirm learning success.

A neural network–based DQN was implemented locally to 
support continuous-valued state spaces. The model achieved improved 
convergence over 300 episodes, as measured by cumulative reward 
trends, demonstrating its ability to optimize behavior in biologically 
informed environments.

4.4 Simulated and comparative 
neuroimaging results

General Linear Model (GLM) Analyses: We  performed GLM 
analysis using real and simulated data to explore whether neural 
decision suppression (as captured by EEG-like signals) and task 
engagement modulate fMRI BOLD responses. The original dataset 
included 1,000 timepoints with simulated EEG and BOLD signals. A 

FIGURE 14

Focused state: Real vs. simulated (delayed) dynamics. (Left) Real ( )R t  shows smooth modulation; simulation captures the trend with some offset. 
(Right) Real energy ( )E t  varies moderately; simulation shows higher, noisier spikes. Delay reduces misalignment but not structural differences.

FIGURE 15

Phase Lag and correlation between real and simulated synchronization. (A, Left) Phase lag between real and simulated ( )R t  across cognitive states. 
Simulated data lags real signals in focused and multitasking but leads slightly in resting. (B, Right) Pearson correlation of ( )R t  curves. Resting and 
multitasking show modest positive alignment, while focused exhibits a negative correlation, indicating shape mismatch.

TABLE 3  Mean and SEM of PLV values by condition.

Condition Alpha PLV 
(Mean  ±  SEM)

Beta PLV 
(Mean  ±  SEM)

Focused 0.9926  ±  0.0042 0.9036  ±  0.0085

Multitasking 0.9891  ±  0.0041 0.9185  ±  0.0009

Rest 0.9806  ±  0.0113 0.9025  ±  0.0111
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FIGURE 16

Histograms of instantaneous phase differences for alpha (top row) and beta (bottom row) bands in the first trial of each condition. Narrower 
histograms in the Focused condition suggest tighter phase locking. Histograms of instantaneous phase differences for alpha (top row) and beta 
(bottom row) bands in the first trial for each condition.

FIGURE 17

Time series plots of instantaneous phase differences for alpha and beta bands in trial 0 for each condition. The alpha band under Focused condition 
shows smoother and more consistent phase progression.

TABLE 4  Circular statistics per trial (first 5 rows shown).

Condition Trial Alpha mean 
phase diff

Alpha circular std Beta mean 
phase diff

Diff beta circular 
std

Focused 0 0.5690 0.0456 1.4686 0.4590

Focused 1 0.6739 0.1304 1.3867 0.3913

Focused 2 0.6310 0.1955 1.1750 0.4513

Rest 0 0.6793 0.1332 1.2846 0.5094

Rest 1 0.7011 0.1493 1.3225 0.4887

canonical Hemodynamic Response Function (HRF) was convolved 
with both the EEG signal and a simulated task block design 
(alternating 20s on/off periods).

Initial GLMs of the original single-region BOLD signal (S_fMRI) 
showed no statistically significant relationship with either the raw EEG 

signal (p = 0.398) or the task HRF (p = 0.350). Even when using 
HRF-convolved EEG as a regressor, the model did not significantly 
predict BOLD signal variance. Figure 20 illustrates the canonical HRF 
used to model the BOLD response. This waveform served as the basis for 
convolution with both the simulated EEG signal and task design events.
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Multi-Region Simulated GLMs: We then generated BOLD signals 
for four simulated brain regions (Prefrontal, Parietal, Motor, Visual) 
using different linear mixtures of task and EEG signals with added 
noise. GLM analyses with task HRF as a single regressor revealed 
significant results is show Table 7.

When EEG and task predictors were included together, both 
remained highly significant (p < 0.001), and model fit improved 
(R2 ≈ 1.000) for all regions. This confirmed their differential 
contributions: - Prefrontal: 60% task-driven, 30% EEG-driven - Parietal: 
30% task-driven, 60% EEG-driven  - Motor: ~10% contribution 
from both.

Figure  4 shows the predicted BOLD response from the GLM 
overlaid on actual BOLD signals for each region, highlighting the fit 
accuracy of the task-based model. An additional region (Anterior 
Cingulate Cortex) was added to simulate a cognitive control hub, 
showing intermediate effects from both predictors.

Functional Connectivity and Spatial Mapping: To examine the 
inter-regional relationships, we  calculated pairwise Pearson 
correlations. Figure  21 presents a heatmap that shows strong 
connectivity between Prefrontal, Parietal, and ACC signals, while 
Motor and Visual regions exhibit weaker correlations.

We further constructed a simplified 2D spatial map of brain 
regions using average BOLD intensity values (Figure 22), reflecting 
plausible functional topography.

Independent Component Analysis (ICA) and Voxel Simulation: 
We  conducted ICA to extract three statistically independent 
components from the standardized regional signals. Figure 23 shows 
the temporal evolution of these components, which captured distinct 
patterns of regional co-activation.

To increase spatial resolution, we simulated voxel-level BOLD 
signals (10 voxels per region, 50 total). The resulting 
voxel-wise correlation matrix is displayed in Figure  24, 
highlighting clustering patterns and functional coherence 
across voxels.

4.5 Results summary

This study presents a novel computational framework for 
modeling thinking as a transition from random neural firing to 
synchronized cognitive states. The key findings from simulations, 
empirical analysis, and machine learning validation are summarized 
as follows:

	•	 Simulated Synchronization and Energy Patterns (Section 4.1): 
The Gaussian firing model produced the most biologically 
realistic synchronization and energy profiles across cognitive 
conditions. Focused states exhibited high and smooth 
synchronization with stable energy usage; multitasking showed 

FIGURE 18

Bar plot comparing circular standard deviation (locking variability) between alpha and beta bands across conditions. Alpha locking tends to be more 
consistent, but differences are not statistically significant.

TABLE 5  One-way ANOVA results for circular phase metrics.

Metric F-statistic p-value

Alpha mean direction 2.25 0.161

Beta mean direction 1.43 0.288

Alpha circular std 0.86 0.454

Beta circular std 1.15 0.359

TABLE 6  Pairwise t-tests for alpha mean direction.

Comparison t-stat p-value

Focused vs. rest −2.15 0.075

Focused vs. multitasking −0.49 0.640

rest vs. multitasking 1.60 0.162
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FIGURE 19

Q-learning optimization of brain dynamics. (Top) Reward increases across episodes, indicating improved decisions. (Middle) Synchronization ( )R t  
approaches the target (dashed line). (Bottom) Energy ( )E t  stays moderate, showing efficient learning under biological constraints.

FIGURE 20

Canonical hemodynamic response function (HRF). Models the typical BOLD signal after neural activation, with a peak at ~5 s, undershoot, and return 
to baseline. Used to convolve neural predictors in GLM analysis.

TABLE 7  GLM summary for task HRF predictor.

Brain region Coefficient (β₁) R2 p-value Interpretation

Prefrontal 0.94 0.993 <0.001
Strongly task-driven, likely reflects decision 

suppression/focus

Parietal 0.98 0.973 <0.001
Highly correlated with task and EEG (adaptive 

control)

Motor 0.21 0.984 <0.001 Weakly modulated by task, mostly random noise
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moderate, fluctuating synchrony with elevated metabolic cost; 
resting states had low, irregular synchronization and minimal 
energy consumption (Figures 5–9 and Table 1).

	•	 EEG Spectral Decomposition (Section 4.1.2): Power spectral 
analysis of simulated (P_EEG) and real EEG revealed dominant 
alpha-band activity in simulations (3.2 × 10−4 a.u.)—consistent 
with internal attention—and stronger beta-band activity in real 
EEG (3.32 × 10−4 a.u.), associated with cognitive effort and 
engagement (Figure 10 and Table 2).

	•	 Phase Locking Value and Circular Statistics (Section 4.2.2): 
Real EEG analysis showed high alpha and beta PLVs across 

all conditions (Table  4). Although group-level ANOVA 
found no significant PLV differences, Focused vs. Rest in the 
alpha-band circular mean direction showed a near-
significant trend (t = −2.15, p = 0.075; Table 6), suggesting 
more consistent phase alignment during focused attention. 
Circular variability was lower in alpha than beta across all 
conditions, reinforcing this interpretation (Figure  5 and 
Tables 4–6).

	•	 Real vs. Simulated Synchronization (Section 4.2): Simulated and 
empirical EEG-fMRI time series were compared for each 
condition. A biologically plausible 0.2 s delay applied to simulated 
inputs improved alignment, particularly for resting and 
multitasking. Correlations confirmed strongest agreement for 
resting (r = 0.30), modest for multitasking (r = 0.23), and 
mismatch for focus (r = −0.33) (Figures 11–14).

	•	 Reinforcement Learning Performance (Section 4.3): Q-learning 
and Deep Q-Network (DQN) agents successfully learned to 
modulate neural inputs to optimize synchronization and energy 
cost. The DQN exhibited faster convergence, and both models 
generalized well under biologically inspired constraints. Real vs. 
simulated signal classification achieved 100% accuracy, 
highlighting remaining differences in temporal structure.

	•	 GLM-Based Neuroimaging Insights (Section 4.4): A General 
Linear Model (GLM) analysis of simulated BOLD data validated 
region-specific roles in cognitive state transitions. Prefrontal and 
parietal regions showed strong task and EEG-driven responses 
(R2 ≈ 0.99, p < 0.001), while motor areas showed weaker effects. 
Spatial maps, ICA, and voxel-wise analysis confirmed functional 
clustering and connectivity aligned with known cognitive 
networks (Figures 19–23).

FIGURE 21

Correlation heatmap of regional BOLD signals. Warmer colors indicate stronger functional connectivity. High intra-network correlations highlight 
modular organization in task-relevant regions.

FIGURE 22

Simulated spatial activation map. Model-derived BOLD signals show 
elevated activation in prefrontal and parietal regions, reflecting 
realistic task-related neural patterns.

https://doi.org/10.3389/fncom.2025.1616472
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hall et al.� 10.3389/fncom.2025.1616472

Frontiers in Computational Neuroscience 22 frontiersin.org

FIGURE 23

ICA components over time. Time series of spatially distinct sources from simulated BOLD signals reveal condition-specific and background activation 
patterns, supporting distributed neural dynamics.

FIGURE 24

Voxel-wise correlation heatmap. Correlation matrix reveals fine-grained functional connectivity, with high-correlation clusters reflecting local 
synchrony and broader patterns indicating distributed network interactions.
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Together, these findings validate the framework’s capacity to 
simulate biologically realistic cognitive transitions, modulate neural 
synchrony based on real EEG-fMRI data, and generate neuroadaptive 
predictions using reinforcement learning. The integrated approach 
provides a foundation for future brain-computer interface systems and 
adaptive AI informed by neurophysiological principles.

5 Discussion

This study presents a biologically grounded, multi-modal 
computational framework for modeling thinking as a dynamic 
transition from desynchronized to synchronized neural states. The 
model integrates Kuramoto-based phase synchronization, metabolic 
cost calculations, reinforcement learning, and empirical EEG-fMRI 
signals. Simulated cognitive conditions—rest, multitasking, and 
focused attention—were validated against real data, offering a new 
method for studying adaptive neural dynamics across time and space.

5.1 Synchronization patterns and 
energetics

Each cognitive state yielded distinctive synchronization and 
energy usage patterns. Focused attention showed high, stable 
synchrony with minimal energy variance; multitasking presented 
fluctuating synchrony and higher energy consumption; and resting 
was marked by low, unstable synchronization and minimal 
energy use. These outcomes are consistent with theoretical models 
of efficient neural computation, where task-relevant brain 
states optimize information transfer while minimizing metabolic 
load (Laughlin, 2001; Bullmore and Sporns, 2012; Marshall 
et al., 2015).

Using reinforcement learning, both Q-learning and Deep 
Q-Network (DQN) agents learned to adjust external stimulation in a 
closed-loop system to maintain target synchrony while minimizing 
energetic cost. The DQN model exhibited faster convergence and 
broader generalization, supporting its potential use in real-time 
neuroadaptive control. This dynamical control distinguishes our 
model from traditional feedforward simulations and aligns with 
recent advances in AI-driven cognitive modulation (Rehman 
et al., 2025).

5.2 Temporal synchronization and circular 
phase dynamics

To evaluate neural timing, we  performed PLV and circular 
statistical analysis. All cognitive states exhibited strong phase 
synchronization in the alpha and beta bands, but Focused states 
showed significantly lower circular variance and a near-significant 
shift (p = 0.075) in alpha-band phase direction compared to Rest. This 
finding highlights the model’s sensitivity to subtle attentional shifts 
and supports growing evidence that cortical phase alignment plays a 
critical role in attentional gating and sensory readiness (Gundlach 
et al., 2024; Cruz et al., 2025; Busch et al., 2009).

Circular metrics revealed additional insights missed by PLV 
amplitude alone. This supports theories proposing that phase 
directionality and variability are crucial for neural coding, especially 

in conditions involving top-down control (Scheeringa et al., 2011; 
Mizuhara et al., 2005; Yi et al., 2021). The model’s success in capturing 
these dynamics strengthens its relevance for studying phase-locked 
cognition and dynamic attention filtering (Taya et  al., 2015; 
García, 2020).

5.3 Comparison of simulated vs. real EEG 
data

To validate model fidelity, we compared simulated EEG dynamics 
to real EEG recordings. Power spectral decomposition showed 
consistent alpha and beta band peaks across both datasets. However, 
simulated EEG emphasized alpha power—consistent with internal, 
resting-like synchrony—while real EEG during tasks showed stronger 
beta activity, reflecting heightened cognitive engagement.

Furthermore, cross-correlation analysis of PLV time series 
between real and simulated data showed the strongest match during 
Rest, suggesting that the baseline dynamics of the model are well-
tuned for low-cognitive-load states. Weaker correlations in 
Multitasking and Focused conditions suggest further refinement is 
needed in dynamic input tuning or noise modeling. Nonetheless, the 
directionality of these results aligns with prior work showing alpha-
phase locking dominates in internally focused, low-demand states 
(Cruz et al., 2025; Yi et al., 2021).

5.4 BOLD modeling and spatial network 
Fidelity

The model’s spatial dynamics were evaluated by simulating 
BOLD responses and analyzing them using General Linear Models 
(GLMs), voxel-wise correlation heatmaps, and Independent 
Component Analysis (ICA). GLM regressors based on 
HRF-convolved task and EEG signals significantly improved 
prediction of simulated BOLD activity, especially in prefrontal 
(task-driven), parietal (EEG-driven), and anterior cingulate 
(integrative) regions—consistent with studies of executive control 
and attentional modulation (Dai, 2024; Du et al., 2018; Mizuhara 
et al., 2005).

Voxel-wise connectivity maps and ICA components revealed 
modular activation and distinct network dynamics, including patterns 
that resemble frontoparietal and salience networks (Yao et al., 2023; 
Braga and Buckner, 2017). These spatial outputs match empirical 
fMRI findings and demonstrate the model’s ability to reproduce real-
world functional connectivity structures (Tavor et al., 2016; Bullmore 
and Sporns, 2012).

By accurately linking fast electrophysiological synchronization to 
slower BOLD fluctuations, the model addresses one of the core 
challenges in EEG-fMRI integration—a known difficulty in 
multimodal neuroimaging (Scheeringa et al., 2011).

5.5 Model novelty and broader implications

Our model’s novelty lies in its closed-loop design: it dynamically 
learns to regulate neural input to optimize synchronization and energy 
use, validated against both temporal (EEG) and spatial (fMRI) 
benchmarks. This sets it apart from traditional simulations that are 
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either feedforward or omit real neurophysiological constraints. These 
features open the door for several high-impact applications:

	•	 Real-time BCIs that monitor attention and adapt stimulation to 
avoid cognitive fatigue

	•	 Neuroadaptive learning environments responsive to brain 
state transitions

	•	 Energy-efficient AI inspired by neural optimization (Laughlin, 
2001; Rehman et al., 2025)

	•	 Hypothesis-driven simulations of perceptual switches, network 
collapse in disorders, or pharmacological modulation.

5.6 Limitations and future directions

While the present study demonstrates the utility of reinforcement 
learning for modeling cognitive-state transitions using EEG and fMRI 
data, several limitations remain. First, although the Kuramoto model 
offers a tractable representation of neuronal synchronization, it simplifies 
the complexity of real brain dynamics, omitting structural connectivity 
and regional specificity. Second, simulated EEG and fMRI metrics were 
used to approximate energy consumption and synchronization; future 
models will incorporate direct physiological metrics such as phase 
coherence and BOLD signals from real participants.

Additionally, the reward function is hand-designed and may 
benefit from empirical calibration or optimization based on behavioral 
performance. Lastly, generalization across subjects was not evaluated, 
and cognitive transitions were not yet validated using actual 
participant data in task-switching conditions. Further, our model 
currently assumes linear GLM dynamics and lacks time-varying 
coupling, stochasticity, or individual variability. Future work will 
incorporate nonlinear state-space models, subject-specific priors, and 
multi-resolution neural activity. Additionally, expanding the 
connectivity analysis to include Granger causality, coherence, or 
phase-amplitude coupling may yield richer insights into functional 
relationships (Bullmore and Sporns, 2012; García, 2020).

5.7 Summary

Overall, this study presents a biologically grounded, computational 
framework for modeling cognition as a dynamic transition from 
desynchronized to synchronized neural activity, optimized under 
metabolic constraints. Through the integration of Kuramoto-based 
neural oscillators, spectral EEG validation, fMRI-inspired GLM 
modeling, and reinforcement learning, the framework simulates and 
regulates cognitive states such as resting, multitasking, and 
focused attention.

The Gaussian firing model emerged as the most biologically 
realistic, producing smooth, energy-efficient synchrony aligned with 
empirical EEG and fMRI patterns, particularly under resting and 
focused conditions. In contrast, the Poisson model—characterized by 
high variability—offers utility for simulating cognitive transitions or 
pathological noise, while the Intrinsic model serves as a benchmark 
for evaluating structure vs. randomness in neuronal dynamics.

Phase-based metrics revealed that focused attention was 
associated with lower circular variance and near-significant alpha 
phase directional shifts, aligning with prior findings on cortical 
excitability and attentional filtering. These effects were missed by PLV 

magnitude alone, underscoring the added sensitivity of circular 
statistics in characterizing temporal coordination. Simulated EEG was 
dominated by alpha-band power, reflecting internally focused states, 
while real EEG exhibited stronger beta power during tasks—
highlighting the model’s fidelity to resting-state processes and its 
tunability for task-related synchrony.

On the spatial front, simulated BOLD signals processed via GLMs 
demonstrated region-specific profiles: task-driven in the prefrontal 
cortex, EEG-driven in parietal areas, and integrative in the anterior 
cingulate. ICA and voxel-wise analyses confirmed structured, 
functionally relevant networks resembling canonical control systems. 
Comparisons to real fMRI further validated these patterns, especially 
under resting conditions.

The reinforcement learning agents successfully learned to 
modulate external input to optimize synchrony and minimize energy, 
with the Deep Q-Network exhibiting faster convergence and stronger 
generalization. This illustrates the framework’s adaptive capacity and 
potential for real-time neuroadaptive applications.

Collectively, these findings validate the proposed framework 
as a biologically plausible, dynamically adaptive simulation of 
cognition. It bridges millisecond-scale synchronization with 
second-scale BOLD activity, and models cognition as an emergent, 
regulated process driven by neural timing, spatial engagement, 
and metabolic cost. The approach opens new directions for 
simulating attentional control, developing closed-loop BCIs, 
exploring neural dysfunction, and informing brain-inspired 
AI. Building on prior methods, our approach integrates 
GLM-based neuroimaging analysis (Lindquist and Mejia, 2015), 
graph-theoretical decomposition of fMRI networks (Abrol et al., 
2017), and reinforcement learning principles as previously 
explored in EEG-based cognitive modeling (Zhu, 2020). This 
multi-modal synthesis allows for biologically grounded simulation 
of cognitive state transitions, capturing both temporal synchrony 
and spatial network structure.

6 Conclusion

This study presents a biologically grounded, reinforcement 
learning-driven computational framework that models cognition as 
a dynamic, energy-constrained process of neural synchronization. 
By integrating real EEG and fMRI data with oscillatory neural 
models and adaptive control, the framework captures both the 
temporal precision of phase dynamics and the spatial organization 
of BOLD activation. It successfully simulates cognitive states such 
as rest, multitasking, and focused attention, with agents learning to 
modulate input to maintain optimal synchrony while minimizing 
energetic cost.

The model offers new insights into the neural and metabolic 
dynamics of cognition, validating its predictions through alignment 
with empirical data. Circular statistics revealed subtle yet meaningful 
differences in phase coordination across cognitive states, while spatial 
analyses using GLMs and ICA confirmed the emergence of structured, 
functionally relevant brain networks.

These findings provide a foundation for future neuroadaptive 
technologies, including closed-loop brain-computer interfaces and 
energy-efficient artificial intelligence systems capable of responding 
to shifting cognitive demands. The framework also has potential 
applications in studying neurological disorders marked by impaired 
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synchronization and cognitive regulation, such as ADHD, 
schizophrenia, or dementia.

By merging biologically inspired synchronization principles with 
reinforcement-based adaptation, this model offers a novel and scalable 
approach for understanding the emergence, regulation, and disruption 
of thought in both healthy and clinical populations.
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