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DTCNet: finger flexion decoding
with three-dimensional
ECoG data
Fufeng Wang, Zihe Luo, Wei Lv and XiaoLin Zhu*

School of Big Data, Zhuhai College of Science and Technology, Zhuhai, China

ECoG signals are widely used in Brain-Computer Interfaces (BCIs) due to

their high spatial resolution and superior signal quality, particularly in the field

of neural control. ECoG enables more accurate decoding of brain activity

compared to traditional EEG. By obtaining cortical ECoG signals directly from

the cerebral cortex, complex motor commands, such as finger movement

trajectories, can be decoded more efficiently. However, existing studies still

face significant challenges in accurately decoding finger movement trajectories.

Specifically, current models tend to confuse the movement information of

different fingers and fail to fully exploit the dependencies within time series

when predicting long sequences, resulting in limited decoding performance.

To address these challenges, this paper proposes a novel decoding method

that transforms 2D ECoG data samples into 3D spatio-temporal spectrograms

with time-stamped features via wavelet transform. The method further enables

accurate decoding of finger bending by using a 1D convolutional network

composed of Dilated-Transposed convolution, which together extract channel

band features and temporal variations in tandem. The proposed method

achieved the best performance among three subjects in BCI Competition IV.

Compared with existing studies, our method made the correlation coefficient

between the predicted multi-finger motion trajectory and the actual multi-finger

motion trajectory exceed 80% for the first time, with the highest correlation

coefficient reaching 82%. This approach provides new insights and solutions

for high-precision decoding of brain-machine signals, particularly in precise

command control tasks, and advances the application of BCI systems in real-

world neuroprosthetic control.

KEYWORDS

ECoG signals, brain-computer interfaces, finger movement trajectories, 3D
spatio-temporal spectrograms, dilated-transposed convolution

1 Introduction

The electrocorticogram (ECoG) is a brain signal recording method known for its high
spatial resolution and superior signal quality, offering significant advantages in brain-
computer interfaces (BCIs) and motion control. By directly placing electrodes on the
cortical surface, ECoG can precisely capture neural oscillations associated with movement,
such as µ-rhythm, β waves, and γ waves (Ball et al., 2008; Marjaninejad et al., 2017;
Tam et al., 2019). Compared to traditional Electroencephalography (EEG), ECoG greatly
enhances spatial resolution, overcoming the attenuation and diffusion of electrical signals
caused by the skull and scalp, thereby enabling more accurate localization of specific
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brain activity. Additionally, ECoG provides superior signal stability
and noise suppression compared to EEG, effectively reducing
interference from artifacts like electromyographic (EMG) signals
and eye movements, thus improving the accuracy of limb
motion decoding (Schalk and Leuthardt, 2011; Toro et al., 1994).
Particularly in tasks that require high precision and low latency,
such as finger trajectory decoding, ECoG offers more reliable and
timely signal feedback (Hill et al., 2006; Leuthardt et al., 2004;
Shenoy et al., 2008).

In recent years, numerous studies have explored the motion
control applications of ECoG signals, particularly in the context of
decoding ECoG signals using machine learning or deep learning
models. Some studies focus on classifying finger activations
(Onaran et al., 2011; Saa et al., 2016; Shenoy et al., 2007),
while others target the decoding of finger bending trajectories
(Volkova et al., 2019). Flamary and Rakotomamonjy (2011) and
Liang and Bougrain (2012) sought to decode finger flexion using
the publicly available BCI Competition IV dataset (Schalk et al.,
2007)). Flamary proposed a switching linear regression method,
while Liang used a frequency-band-specific ECoG amplitude
modulation linear regression method. Both approaches secured
first and second place in the competition, respectively. With the
continuous advancement of deep learning technologies, methods
like Convolutional Neural Networks (CNNs) (LeCun and Bengio,
1995) and Recurrent Neural Networks (RNNs) (Hochreiter and
Schmidhuber, 1997) have been widely applied to ECoG decoding
tasks (Ingolfsson et al., 2020; Lawhern et al., 2018; Song et al.,
2023). For instance, Xie et al. (2018) used a CNN-LSTM (Shi
et al., 2015) architecture to decode finger trajectories; Frey
et al. (2021) developed a 2D convolutional decoder for ECoG
finger trajectory regression; Petrosyan et al. (2021) proposed a
compact and interpretable CNN architecture that allowed for
biologically interpretable spatial and temporal patterns; Yao et al.
(2022) introduced a new feature based on Riemannian geometry
for finger motion decoding and employed the LightGBM (Ke
et al., 2017) model, significantly improving continuous finger
trajectory decoding while reducing training and inference times;
and Lomtev et al. (2023) used a convolutional encoding-decoding
architecture with skip connections to further enhance motion
trajectory decoding performance. Recent advances in 2024 have
further demonstrated the versatility of CNNs architectures across
biomedical signal processing domains. Attention mechanisms have
been successfully integrated with CNNs for enhanced feature
extraction in neuroimaging applications (Rasheed et al., 2024b),
while hybrid CNN approaches have shown promising results in
multi-modal brain signal classification tasks (Ahmed et al., 2024;
Rasheed et al., 2024a). These developments highlight the growing
trend toward multi-feature fusion architectures that combine
convolutional layers with ensemble methods for improved signal
decoding performance (Ahmad et al., 2024). Such innovations
in neural network design provide valuable insights for advancing
ECoG based motion control systems, particularly in terms of
feature representation learning.

Traditional regression methods (Flamary et al., Liang et al.)
provide computational efficiency but are limited by linear
assumptions that cannot capture the nonlinear neural-motor
dynamics. CNN-based approaches (Xie et al., Frey et al.) excel at
spatial feature extraction but struggle with long-range temporal

dependencies crucial for continuous motion decoding. CNN-
LSTM hybrids address temporal modeling but suffer from
vanishing gradients and sequential processing limitations. Recent
encoder-decoder architectures (Lomtev et al.) preserve detailed
information through skip connections but remain constrained
by standard convolutions’ limited receptive fields for multi-
scale temporal pattern modeling. To address these challenges,
we propose a novel decoding method based on prior research.
Specifically, we constructed 3D ECoG data samples by calculating
spectrograms using wavelet transforms (Hazarika et al., 1997)
and employed a dilated transpose convolutional network to
decode finger bending. The dilated convolution captures temporal
dependencies between electrode and frequency signals while
improving computational efficiency, and the transpose convolution
restores temporal resolution, optimizing the decoding process.
Our model shows a significant improvement in performance over
previous approaches. The main contributions of this study can be
summarized as follows:

Overlapping Sliding Window Technique: We segment
long time-series data with multi-channel frequency-band
information into smaller time windows, increasing the diversity
of training samples while preserving information from both
previous and subsequent time points. This approach helps the
model better understand long-term dependencies and local
variations in the signal.

• Feature Extraction Stage: We use 1D dilated convolutions,
which not only enhance the interaction between signals
from different electrodes and frequency bands but also
capture their temporal dependencies. Compared to traditional
2D convolution methods, dilated convolutions reduce
the dimensionality of the input features by merging the
electrode and frequency dimensions into a unified feature
space, improving computational efficiency and reducing
model complexity.
• Decoding Stage: We use transposed convolutions to restore

temporal resolution and integrate low-level and high-
level features via skip connections. This allows the model
to generate appropriate interpolation patterns from low-
resolution feature maps, thereby recovering high-frequency
details and improving the numerical precision of the signal.

2 Materials and methods

2.1 Dataset description

The dataset employed in this study is derived from the
publicly accessible BCI Competition IV dataset and comprises
electrocorticography (ECoG) signal recordings from three subjects.
The ECoG signals for each subject were acquired using the BCI2000
system. Subsequently, the signals were subjected to a band-pass
filtering process between 0.15 and 200 Hz, with a recorded sampling
rate of 1,000 Hz. It is important to note that the order of
the electrode channels has been disrupted by the data provider,
which has resulted in a lack of information regarding the spatial
distribution of the electrodes. In the experimental task, the subjects
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FIGURE 1

ECoG decoding finger flexing overview view.

were required to perform finger movements in accordance with
word commands displayed on a computer screen. Each cue lasted
for 2 s, followed by a 2-s rest period during which the screen was
blank. During each cue, subjects typically repeated the movement
of the cued finger three to five times, and the bending angle of the
finger was recorded at 25 Hz using a data glove. The experiment
lasted for 10 min per subject. To create the training and test
sets, the tournament organizers divided the 10-min ECoG signal
chronologically into a 6 min 40 s training set 400k samples and
a 3 min 20 s test set 200 k samples. Figure 1 shows how to
decode the degree of finger bending from the ECoG signal collected
by the BCI system.

2.2 Dataset preprocessing

In the data preprocessing stage, this study follows the method
described by Lomtev et al. (2023). The ECoG signals, initially
recorded at 1,000 Hz, and the finger flexion data, recorded at
25 Hz, were both resampled to a common rate of 100 Hz. The
primary aim of this preprocessing is twofold: first, to preserve
the temporal characteristics of the signals, ensuring the integrity
of time-dependent information; and second, to reduce the data
volume by lowering the temporal resolution, thereby improving the
efficiency of model training.

2.2.1 FingerFlexion data preprocessing
In the preprocessing of labeled data, the scaling ratio between

the ECoG signals and the finger bending data sampling rate is
first calculated. The finger bending data is then interpolated using
cubic interpolation to increase its sampling rate from 25 to 100 Hz.
This process ensures temporal alignment between the finger
bending data and the ECoG signals, enabling the construction of
3D signal samples.

2.2.2 ECoG data preprocessing
Figure 2 shows the data preprocessing process from raw data

through normalization, filtering, wavelet spectrum calculation, and
finally constructing 3D samples by time window segmentation.

Normalization. To eliminate amplitude differences between
channels and ensure consistent magnitude and distribution across

all channels, the mean and standard deviation of each channel are
first calculated, followed by normalization of the signals. To more
accurately reflect the activity of different brain regions, the median
of each channel is then removed from the normalized signals.

Filtering. In the next step, the ECoG signals are processed using
a bandpass filter with a frequency range of 40–300 Hz to remove
physiological noise below 40 Hz and high-frequency artifacts above
300 Hz. A notch filter is then applied to remove the 60 Hz
power line frequency and its harmonics, further reducing power
line interference.

Wavelet Spectrum Computation and Downsampling. In the
final step, the filtered ECoG signal is downsampled using the
Morlet wavelet transform to generate a spectrogram. This is
achieved by applying a set of frequencies, uniformly distributed
on a logarithmic scale (ranging from 40 to 300 Hz), with the
aim of capturing the time localized features of the different
frequency components.

The spectrogram produced by the Morlet wavelet transform
is represented as a three-dimensional matrix: electrode channels,
wavelet frequencies, and time. Each channel in the spectrogram
displays the power distribution of the signal across distinct
frequency bands. To ensure alignment with the labeled samples
at the same sampling rate, the time dimension was downsampled
from the original 1 kHz to 100 Hz, maintaining consistency with
the subsequent model input.

The wavelet transform applied here converts a signal with
an input shape of (electrode_channel, time) into a spectrogram
with an output shape of (electrode_channel, wavelet_frequency,
time), thereby revealing the time-frequency characteristics of the
ECoG signal through time-frequency analysis. The Morlet wavelet
function is expressed as follows:

ψf (t) A · e−
t2

2σ2 · e2πift (1)

σ =
ncycles
2π f

(2)

where A is a normalization constant, σ controls the width
of the Gaussian envelope, e−(t/

√
2σ)

2
represents the Gaussian

envelope function that adjusts the temporal window width of
the wavelet, and ncycles determines the number of cycles that
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FIGURE 2

Flowchart of data preprocessing and sample construction.

balance time and frequency resolution, while f determines the
wavelet’s center frequency of the sinusoidal part. In the core step
of the wavelet transform, for each electrode channel c and each
frequency f the wavelet coefficients Wc,f ,t are computed using the
following equation:

Wc,f ,t = Xc ∗ ψf (t) (3)

where ∗ denotes the convolution operation, Xc is the number
of electrode channels in the input signal, and ψf is the Morlet
wavelet function. After this calculation, the signal for each
electrode channel is convolved with the wavelet function of the
corresponding frequency, and the wavelet coefficient at time t,
electrode channel c and frequency f is obtained. The final output
of the wavelet transform has a shape of (c, f , t), where c refers
to the number of electrode channels, f to the number of wavelet
frequencies, and t to the number of time samples.

2.2.3 Construction of the 3D dataset
Using a sliding time window with a step size of 1 and a window

length of 256 (adapted to the transpose-convolution operation
in the subsequent model), the ECoG data with shape (c, f , t) is
segmented. Simultaneously, the finger bending data with shape of
(finger, t) is matched based on the same time points, and the total T
time points are reassembled into Nsamples new data samples. After
segmentation, each data sample has the shape (c, f , l), where the
l = 256 represents the number of time samples within the window.
The number of samples, Nsamples generated by the sliding window
is calculated as:

Nsamples =

⌊
T−l
s

⌋
+ 1 (4)

This sliding window approach divides the original long time series
into multiple fixed-length samples. The step size s of the sliding

window determines the degree of overlap between samples, while
the window size l defines the time span of each sample. where s = 1
represents the step size of the sliding window.

2.3 Model architecture

2.3.1 Backbone network
Figure 3 shows the overall framework of the model, including

feature dimension reduction, encoder feature extraction, decoder
feature reconstruction, and final convolution output.

Figure 4 shows the structure of the encoder and decoder
modules in detail, including feature extraction and downsampling
through convolution blocks, and feature reconstruction and
upsampling through upconvolution blocks and skip connections.
The Feature Reduction module processes the raw input data
by reshaping and applying convolution, followed by the
Encoder, which compresses these features to capture essential
temporal, frequency, and spatial information. Next, the Decoder
reconstructs the temporal resolution using transposed convolution
and integrates low-level and high-level features through skip
connections. This process allows the model to recover detailed
temporal information and ultimately predict the bending
values of the five fingers. The model parameter count varies
by subject (550–790k parameters) as the Feature Reduction
layer adapts to different electrode sampling configurations
across subjects.

2.3.2 Feature Reduction
The original input data has a shape of (c, f , l), which

is first reshaped into (batchsize, feature, l), where the feature
dimension represents the combined features of all electrodes and
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FIGURE 3

General framework of the model.

FIGURE 4

Structure of encoder module and decoder module.

frequency bands at each time point. The purpose of the 1D dilated
convolution in the feature dimension is to extract information
across multiple electrode channels and frequency bands through
the convolution operation.

2.3.3 Encoder
The task of the Encoder layer is to extract and compress

the temporal, frequency, and spatial features of the input data,
ultimately obtaining a multiscale high-dimensional representation.
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First, 1D dilated convolution is applied to the feature
dimensions to capture the temporal representation of each feature
dimension. Next, layer normalization, GELU activation, and a
Dropout layer are applied sequentially. Finally, the temporal
dimension is downsampled using a max pooling layer to reduce the
temporal resolution. After the downsampling step of each encoder
layer, a pooled copy is saved for model skip connections. After five
encoder layer downsampling processes, a final high-dimensional
representation is obtained.

2.3.4 Decoder
The Decoder layer consists of a convolutional module and

a transposed convolutional module, designed to reconstruct the
temporal resolution by incorporating skip connections.

Skip concatenation combines the low-level detail information
obtained during the downsampling phase with the high-level
abstract features. The concatenated feature map doubles the
size of the feature in its second dimension, which is then
processed by a convolution module using conventional 1D
convolution. Subsequently, the timing information, which was
compressed into the deep convolutional kernel receptive fields
during downsampling, is reconstructed by applying a transposed
convolution to recover the temporal resolution.

Finally, the features obtained from the decoder are mapped
to five finger bend values using 1x1 convolutional layer. This
convolutional kernel performs a weighted summation across
channels at each position and each time point, and the output at
each time step is represented as a vector of length 5, with each
component corresponding to a finger bend value.

3 Results

3.1 Experimental details

The experiment was conducted on a personal computer
equipped with an Intel i7–14700KF CPU, 96 GB of RAM,
and an NVIDIA 4070TI SUPER GPU with CUDA acceleration.
The model was implemented using Python 3.11.7 and the
PyTorch Lightning framework. The computational environment
was configured within a Docker container based on the
nvcr.io/nvidia/pytorch:24.10-py3 image, which includes PyTorch
2.5.0, CUDA 12.6, and cuDNN 9.5.0, ensuring optimal efficiency
and compatibility.

In this experiment, the Adam optimiser was used for model
training, the learning rate was set to 8.42e-5, with reference
to Lomtev et al. (2023), and L2 regularization technique was
introduced to prevent overfitting, and the weight decay coefficient
was set to 1e-6. The encoder adopts a multilayer feature extraction
architecture, with the feature dimensions of each layer being,
in order, (64, 64, 128, 256, 512, 512). Among them, the
first 64-dimensional feature extraction layer serves as a feature
dimensionality reduction module and uses 3 × 3 convolution
kernel for standard convolution operation. The convolution kernel
sizes of the subsequent layers are set to (7, 7, 5, 5, 5), and
the corresponding dilation convolution expansion rates are (1, 2,
3, 1, 2), forming a sawtooth expansion pattern to enhance the
sensory field coverage. To prevent overfitting, the dropout rate

was uniformly set to 0.1. To ensure the model generalization
performance, this study constructed an independent training
model for each subject, but the hyperparameter tuning process
was completed on a single subject’s data only, and the optimal
hyperparameter configurations were subsequently applied to all
subjects. This strategy effectively avoids overfitting the model to
specific subjects and ensures the generalisability of the performance
improvement. The loss function combines mean squared error
(MSE) and cosine similarity to optimize model performance in
terms of both numerical accuracy and trend prediction. Specifically,
the mean squared error loss is used to assess the numerical error
in the model’s prediction of finger bending angles, while cosine
similarity evaluates the alignment between the predicted values and
the direction of change in the true bending angles. The cosine
similarity is calculated as shown in Equation (5):

Cosine Similarity (xi, yi) =
xi · yi
||xi|| ||yi||

(5)

Where xi · yi denotes the dot product of the vectors xi and yi,
with xi and yi representing the i-th sample in the vectors x and
y, respectively, and ||xi|| and ||yi|| denote the Euclidean norms of
xi and yi.

3.2 Evaluation metrics

We used the Pearson correlation coefficient as the key metric
for model evaluation, which was calculated according to the criteria
provided by the organizers of the BCI competition. The Pearson
correlation coefficient is used to quantify the linear relationship
between the predicted value and the true value, and is calculated
using the following formula:

r =
6n

i = 1 (xi−x)
(
yi−y

)√∑n
i = 1 (xi−x)

2 ∑n
i = 1

(
yi−y

)2
(6)

The specific calculation process involves first computing the
means x− and y− of the predicted values x_i and the true
values y_i, respectively. Next, the deviations of each predicted
and true value from their respective means are calculated. The
product of these deviations is then summed to obtain the
covariance, which is subsequently normalized using the standard
deviations of the predicted and true values to compute the Pearson
correlation coefficient.

3.3 Comparison study

Tables 1, 2 present a comparative analysis of various methods
and the performance of our proposed solution on the BCI
Competition IV Dataset 4. Table 1 summarizes the performance
of several approaches, evaluated across three subjects (S1, S2,
and S3), and reports the average accuracy for each subject. The
methods range from traditional machine learning models to more
recent deep learning architectures. Table 2 provides a more detailed
analysis of the performance of our model on individual fingers for
each subject. The average accuracy across all fingers (Thumb, Index,
Middle, Ring, and Little) is 0.69, with the highest performance
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TABLE 1 Performance comparison on the BCI competition IV dataset 4
for different methods.

Method S1 S2 S3 Average

Switching linear
models (2012)

0.48 0.24 0.56 0.43

Interpretable
Compact CNN
(2021)

0.45 0.34 0.56 0.45

Linear regression
based on
band-specific
ECoG (2012)

0.45 0.39 0.59 0.48

CNN-LSTM
(2018)

0.56 0.41 0.58 0.52

Multi purpose
CNN (2021)

N/A N/A N/A 0.52

lightGBM (2022) 0.52 0.47 0.61 0.53

FingerFlex (2023) 0.64 0.56 0.73 0.64

Our solution 0.71 0.59 0.77 0.69

TABLE 2 Performance of our model on each finger for each subject.

Subject Thumb Index Middle Ring Little Avg

S1 0.69 0.76 0.76 0.74 0.60 0.71

S2 0.62 0.67 0.52 0.56 0.58 0.59

S3 0.82 0.73 0.72 0.81 0.77 0.77

Average 0.70 0.72 0.67 0.70 0.65 0.69

observed on S3, where accuracies range from 0.72 (Middle) to 0.82
(Thumb) for each finger.

S3 demonstrates strong overall performance, with the Thumb
and Ring fingers achieving accuracies exceeding 0.80. In contrast,
S2 exhibits relatively lower performance across all models,
particularly for the Middle finger (0.52). This lower performance
in S2 can be attributed to the participant having fewer effective
recording channels, resulting in greater instability during the
decoding process.

The results from both tables highlight the robustness and
adaptability of our model across various subjects and finger-specific
tasks. Compared to existing methods, our solution demonstrates
superior performance, particularly for subjects with more complex
data patterns, confirming its potential for practical applications
in Brain-Computer Interface (BCI) systems. Figure 5 shows the
comparison between the predicted and actual results of bending the
five fingers of one of the subjects.

To ensure the statistical significance of our results and address
the inherent non-determinism of neural network training, we
conducted multiple independent training runs with different
random seeds. Figure 6 shows a performance comparison between
our method and the FingerFlex baseline method. The results
show that our proposed method achieves significant performance
improvements, which are not due to random variations. In
addition, Figure 7 shows the correlation between the predicted
values and actual values for each finger in the form of a scatter plot.
Points closer to the diagonal line indicate higher decoding accuracy.

3.4 Ablation study

Ablation study demonstrates the effectiveness of each
component in our proposed method. Our full model, incorporating
Morlet wavelets, dilated convolution, and transposed convolution,
achieves the highest average Pearson correlation coefficient of
0.69 across all subjects. The results in Table 3 show the model
performance calculated for different variables.

Among different wavelet types, Morlet wavelets consistently
outperform alternatives. Compared to other wavelets, Morlet
wavelets show superior performance with Symlet wavelets
achieving the second-best results (average 0.67), followed by Haar
wavelets (0.66) and Daubechies wavelets (0.64). This validates our
choice of Morlet wavelets for ECoG signal analysis.

The ablation experiments reveal that each architectural
component contributes significantly to the overall performance.
Removing all enhancements (Morlet + No Dilated Conv +
No Transposed Conv) results in the lowest performance
(0.53). The combination of all components yields the optimal
performance, demonstrating the synergistic effect of our
architectural design choices.

4 Discussion

This study employs a variety of innovative techniques in
finger bending decoding to enhance model accuracy. These
techniques include the use of the Morlet wavelet transform
for constructing spectrograms, overlapping sliding windows for
time series segmentation, dilated convolution for enhanced
feature extraction, and transposed convolution for optimizing
the reconstruction process. The synergy of these methods allows
the model to better capture the complex dynamic changes in
time series data.

First, in constructing the spectrogram, this study opts for the
Morlet wavelet transform rather than Haar, Daubechies, or Symlet
wavelets. While these alternative wavelets offer high computational
efficiency, they are less effective in time-frequency localization,
and thus cannot capture high-frequency information or non-
stationarity in the signal effectively. In contrast, the Morlet wavelet
offers excellent time-frequency localization and can accurately
extract high-frequency information, making it more suitable for
finger bending tasks that exhibit complex dynamic characteristics.
We present a comparison of model performance obtained using
different wavelets in Table 3.

For time series processing, this study utilizes overlapping
sliding windows to construct a new set of data samples. This
approach enables the model to capture finer time variations
by dividing a long time series into smaller segments. By using
overlapping windows, the original time series generates a greater
number of training samples, thereby increasing the available
training data. The boundary of each window slides by one
step, allowing multiple samples to be derived from the same
time series, significantly boosting data diversity. Additionally,
overlapping windows retain information from both preceding and
succeeding time points, which is particularly beneficial in cases
where finger movements transition from a stable state to a bending
state. The overlapping time data helps the model understand the
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FIGURE 5

Visualization of predictions for five fingers of a subject.

FIGURE 6

Performance comparison between our method and FingerFlex across multiple independent training runs.
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FIGURE 7

Prediction accuracy scatter plot matrix for individual finger movements.

TABLE 3 Comprehensive ablation study of wavelet selection and
dilated convolution (Pearson correlation coefficient).

Variant S1 S2 S3 Average

Full Model (Morlet + Dilated
Conv + Transposed Conv)

0.71 0.59 0.77 0.69

Haar wavelets 0.68 0.55 0.74 0.66

Daubechies wavelets 0.67 0.52 0.72 0.64

Symlet wavelets 0.69 0.57 0.76 0.67

Morlet + No Dilated Conv +
No Transposed Conv

0.53 0.48 0.59 0.53

Morlet + Dilated Conv + No
Transposed Conv

0.61 0.50 0.66 0.59

Morlet + No Dilated Conv +
Transposed Conv

0.63 0.51 0.68 0.61

previous and subsequent states, thereby improving its ability to
decode finger bending. This strategy ensures that adjacent samples
exhibit high similarity, which helps the model better capture
local changes and long-term dependencies, thereby improving
the decoding accuracy. Figure 8 shows the performance test of
different window stride sizes and their corresponding epochs.
It is worth noting that the performance gap between different
stride lengths is more significant in the early training stages, but
gradually narrows as training time increases. This indicates that
although larger stride lengths can ultimately achieve reasonable
performance by extending the training time, stride length = 1 has
obvious advantages in terms of data efficiency and convergence

speed. Furthermore, a smaller stride is used to minimize temporal
differences between samples and mitigate the negative impact of
sparse training data on model performance.

In the feature extraction phase, 1D dilated convolution
plays a critical role. Since the spatial arrangement of electrodes
was unavailable, our method treats each electrode channel
as an independent feature dimension rather than relying on
spatial topography. The feature reduction layer adapts to this
constraint by learning optimal feature representations from the
electrode-frequency matrix without assuming spatial relationships.
Our method’s performance gains stem from superior temporal
modeling rather than spatial priors. The 1D dilated convolution in
the encoder enhances interactions across channels and frequency
bands and effectively captures the temporal dependencies of
signals from different electrodes and frequency ranges. Signals
from different electrodes and frequency bands often exhibit
unique temporal characteristics, and 1D dilated convolution is
well-suited to capture these temporal dependencies without the
need to model each electrode and frequency band separately.
This operation helps extract deep cross-temporal correlations
between different frequencies and channels, which aids in
modeling complex signal interactions. Compared to traditional 2D
convolution, dilated convolution reduces the model’s input feature
dimensions by merging the electrode and frequency dimensions
into a single feature dimension, thus improving computational
efficiency and avoiding the complexities associated with high-
dimensional inputs. Furthermore, compared to standard 1D
convolution, 1D dilated convolution offers significant advantages:
it achieves a larger receptive field without increasing the number of
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FIGURE 8

Impact of different window step sizes on model performance and training duration based on the average across all subjects.

FIGURE 9

Impact of transposed convolution versus linear interpolation upsampling on model performance for each subject.
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parameters, enabling more efficient capture of long-range temporal
dependencies; and after the feature reduction layer, all electrode
channels and fre-quency features are compressed into a one-
dimensional vector, and 1D dilated convolution can effectively
learn patterns across the temporal dimension from this com-
pressed representation, capturing complex temporal interactions
that would be difficult for standard 1D convolution to detect within
the same parameter budget.

In the decoding phase, transposed convolution is used to
restore temporal resolution and integrate low- and high-level
features through skip connections. Unlike the first convolution
module in the Decoder, which performs standard convolution,
transposed convolution reconstructs detailed information by
expanding the size of the input feature map, thereby ensuring
the restoration of temporal resolution. Figure 9 visualizes
the performance difference between transposed convolution
and ordinary linear upsampling. Compared to traditional
interpolation-based upsampling methods, transposed convolution
offers superior performance in restoring high-frequency details and
improving numerical accuracy. While interpolation upsampling
is computationally cheaper, it generates new data solely based
on existing feature maps, which can result in overly smooth
predictions and fail to capture complex dynamic changes such as
finger bending. The primary advantage of transposed convolution
is its ability to generate appropriate interpolation methods by
learning from low-resolution feature maps, not only restoring
the temporal resolution but also recovering lost details during
downsampling, leading to more refined and coherent predictions.

Higher correlation between test samples and actual results
indicates better decoding performance, which means higher
decoding accuracy. This means that our algorithm can better
assess the extent to which patients with spinal cord injuries
or amputations can control prosthetic devices, including basic
activities of daily living such as grasping objects and typing.

Although this study makes significant advances in finger
bending decoding, there remain some challenges in achieving fine-
grained control of motion direction. Specifically, while the model
can successfully decode finger movements, there is still a gap
between the predicted and actual values, and the model’s output
does not perfectly match the true motion trajectory. This small
sample size may limit the generalizability of our findings across
diverse populations with varying neuroanatomical characteristics,
age groups, and motor abilities. Access to larger, multi-center
datasets with diverse subject populations would enable more
robust validation of our method’s generalizability and facilitate the
development of universal decoding models. The computational
overhead of our approach, including Morlet wavelet transforms
and skip connections architecture, may present challenges for
real-time implementation in resource-constrained environments.
Future research can focus on improving decoding accuracy and
real-time performance, particularly for fine-grained control of
motion direction. Additionally, integrating more efficient timing
modeling techniques and adaptive algorithms will enhance the
system’s adaptability and robustness across various environment.

5 Conclusion

In this study, we developed a novel deep learning method to
decode the degree of finger bending based on 3D ECoG signals.
By constructing 3D data samples and employing an encoder with
dilated convolution and a decoder with transposed convolution,
our model achieves a significant breakthrough, surpassing an
80% correlation coefficient for single-finger decoding in the BCI
Competition IV dataset 4. Compared to previous studies, our
model demonstrates an overall performance improvement of
2.98%, with an average correlation coefficient of 0.69 for all
fingers across all subjects. Our proposed method holds promise for
advancing limb movement control systems based on ECoG signals
and highlights the potential of techniques that decode human
intentions to enable movement control.
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